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Abstract—Recently, learning-based approaches for 3D
reconstruction from 2D images have gained popularity due to
its modern applications, e.g., 3D printers, autonomous robots,
self-driving cars, virtual reality, and augmented reality. The
computer vision community has applied a great effort in
developing functions to reconstruct the full 3D geometry of
objects and scenes. However, to extract image features, they
rely on convolutional neural networks, which are ineffective
in capturing long-range dependencies. In this paper, we
propose to substantially improve Occupancy Networks, a
state-of-the-art method for 3D object reconstruction. For such
we apply the concept of self-attention within the network’s
encoder in order to leverage complementary input features
rather than those based on local regions, helping the encoder
to extract global information. With our approach, we were
capable of improving the original work in 5.05% of mesh
IoU, 0.83% of Normal Consistency, and more than 10× the
Chamfer-L1 distance. We also perform a qualitative study
that shows that our approach was able to generate much
more consistent meshes, confirming its increased generalization
power over the current state-of-the-art.

Index Terms—3D Reconstruction, Self-Attention, Computer
Vision

I. INTRODUCTION

There are a variety of applications that make use
of three-dimensional object models, like 3D printing,
computer-generated imagery for scenario modeling on
movies, object modeling for video-games, simulation of
buildings in the field of architecture and civil engineering,
and building reconstruction of archaeological sites. The
current process of 3D modeling requires expert knowledge
on modeling tools and techniques or specialized sensors for
3D reconstruction, such as contact methods (e.g., coordinate
measuring machines) or non-contact methods (e.g., X-rays
and laser scanning). Still, there is no single modeling
technique that satisfies every requirement of high geometric
accuracy, portability, full automation, photo-realism, low
cost, flexibility, and efficiency [1].

One possible portable and low-cost solution is to model
3D objects based on simple commands, such as taking a
picture of the object with a regular camera. There have
been attempts to image-based 3D reconstruction by using
geometrical measures of a sequence of images [2], [3] or
of a single image [4]–[6]. These methods use hard-coded
features, like image shading and texture, or human inputted
features via interactive interfaces.

Considering the success of deep neural networks
approaches for function modeling [7], current research
on computer vision mostly revolves around Convolutional
Neural Networks (CNNs) [8]. CNNs have been successfully
used for automated feature extraction of 2D images,
achieving state-of-the-art in many computer vision tasks like
image classification, object detection, and image captioning.
Reconstruction of 3D models from 2D images using
artificial intelligence is an active area of research.

Current work mostly relies on deep neural networks for
feature extraction or structure prediction [9]–[18]. Those
applications propose to accelerate the creation of 3D models,
automating the process and reducing the need of 3D
modeling experts for simple modeling tasks so they can
focus on refining the models, changing the way as different
industries handle 3D modeling such as architecture, digital
games, movies, and healthcare [19]–[21].

Most state-of-the-art methods on single image 3D
reconstruction [14]–[18] exploit CNNs as feature extractors
to capture relevant information from a given 2D image and
then generate a 3D representation from the object. Roughly
speaking, those methods generate the 3D surfaces in one of
these three kinds of volume representation:
• Voxel: a regular grid representation of 3D surfaces in

which we can infer the coordinates upon the relative
position of a voxel to the others.

• Point Cloud: a cloud of points in the 3D space which
represents the 3D surface.

• Mesh: a 3D representation of a surface from an
object using vertices (points in the 3D space), edges
(connections between two vertices), and faces (closest
set of edges).

Meschender et al. [18] propose a novel method called
Occupancy Networks (ONets) that represent 3D surfaces
with a continuous decision boundary function, enabling
extracting meshes at any resolution. ONet can reconstruct
3D objects from voxels, point clouds, and 2D images,
achieving state-of-the-art results on 3D mesh reconstruction
from 2D images on the ShapeNet dataset [22].

Despite those methods being capable of reconstructing a
3D volume from a 2D image, there are problems on the
3D reconstruction still poorly addressed, such as missing
structural parts of the object (e.g., missing arms of an
armchair), wrong textures (e.g., foiling a smooth texture),
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Figure 1. One of our proposed encoder architectures. This example is a ResNet-18 with four self-attention modules.

or nonexistent structures being added to the object (e.g.,
filling a leaked surface). Considering there is a single view
angle from the object (based on the 2D image), the extracted
features might not represent all the three-dimensional
information (e.g., the unseen backside of the object). Since
the convolution operation of a CNN works over local
receptive fields, the network can only process long-range
dependencies after many sequences of convolutional layers
(i.e., a very deep architecture). Therefore, many CNNs fail
to capture patterns on images across different image regions.
We hypothesize that a mechanism such as self-attention [23]
could leverage the field of 3D model reconstruction from a
single image, considering its previous success on machine
translation [23], image generation [24], and other tasks in
which one must capture global dependencies to succeed.

In this work, our main contribution is to substantially
improve the Occupancy Networks [18], which outperformed
previous approaches and is the current state-of-the-art on
supervised single image 3D reconstruction. Our approach
enhances ONet’s encoder in order to extract more
informative features from 2D images, and hence better
model the latent feature space, and it does so by exploiting
strategies that have been successful in other computer
vision (and even natural language processing) tasks, such
as self-attention and adaptive instance normalization.

II. RELATED WORK

Reconstructing 3D objects from 2D images is an active
research area in computer vision, and the interest in
synthesizing 3D shapes with deep neural networks is
increasing. Recent work in neural image synthesis has aimed
at improving the fidelity of the resulting generated images
with 3D-aware networks.

Choy et al. [14] propose a recurrent neural network called
3D Recurrent Reconstruction Neural Network (3D-R2N2),
which takes in one or more images of an object instance
from different viewpoints to learn a reconstruction of the
object in a 3D occupancy grid based on synthetic data in
a supervised manner. For single-view image reconstruction,
3D-R2N2 achieved state-of-the-art on the ShapeNet dataset
[22] at the time.

Wang et al. [15] propose a supervised graph-based
convolution algorithm that can extract a 3D triangular mesh
from a single image. Their approach deforms an ellipsoid
mesh with fixed size to the target geometry, allowing to
refine the shape gradually, outperforming 3D-R2N2.

There are also unsupervised approaches to single image
3D reconstruction. Rezende et al. [25] propose a neural
projection layer and a black-box renderer for supervising
the learning process, which is built by first applying a
transformation to the reconstructed volume, followed by a
combination of 3D and 2D convolutional layers mapping
the 3D volume into a 2D image. Yan et al. [26] explore
the task of 3D object reconstruction and proposes an
encoder-decoder network that uses projection transformation
as regularization, obtaining satisfactory performance in
object reconstruction. Henderson and Ferrari [27] present
a unified framework for both reconstruction and generation
of 3D shapes with only 2D supervision.

III. PROPOSED APPROACH

A. Occupancy Networks

The Occupancy Network [18] is composed of three
modules: an initial encoder as a feature extractor, which
can vary according to the input type (e.g., for 2D images the
encoder is a ResNet-18 [28]); a system with five Conditional
Batch Normalization blocks as decoder of the generated
features; and finally the occupancy function o : R3 →{0,
1}, which classifies each point from the space whether or
not it belongs to the surface.

The ResNet-18 encoder architecture contains four ResNet
layers. Each ResNet layer consists of two ResNet blocks,
and each ResNet block contains a convolutional layer
followed by batch normalization, a ReLU activation
function, and finally another convolutional layer followed
by batch normalization. This process generates the features
c from the input image. We can see an example of ONet
encoder with four blocks of self-attention in Figure 1.

The decoder takes as input the features c extracted from
the encoder and a batch of learned 3D coordinates T . It is
a system of five Conditional Batch Normalization (CBN)
blocks, where each CBN block computes the batch of 3D
coordinates via three ResNet blocks. Between each ResNet
block, a CBN normalizes the tensor computed by the 3D
coordinates over the features c extracted from the 2D input.
We can compute the CBN by passing the features c through
two parallel fully-connected layers φ(c) and ψ(c) and then
normalizing it as in Equation 1:

CBN(c, fin) = ψ(c)
fin − µ√
σ2 + ε

+ φ(c) (1)
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Figure 2. Decoder architecture. The decoder has five Conditional Batch Normalization Blocks.

where fin is the tensor outputted by the previous ResNet
block, µ and σ is the mean and standard deviation over
fin. Figure 2 shows a visual representation of the CBN
blocks and the entire decoder. The CBN box on the diagram
represents the operation defined in Equation 1.

Finally, ONet predicts the complete occupancy function
o of the 3D object by approximating it with a neural
network fθ(p, k) that given an observation k ∈ χ as input
assigns to every point p ∈ R3 a probability to which it
belongs to the object, as in Equation 2:

fθ : R3 ×X → [0, 1] (2)

ONet predicts all grid points as active (belongs to the
object) if the output from ONet is greater than a threshold
τ . Then, ONet divides the active voxels into eight subvoxels
and re-evaluate them by the occupancy function o, repeating
this process iteratively until it reaches the desired resolution.
The Marching Cubes algorithm [29] is applied to the final
resolution to extract an approximate isosurface.

B. Self-Attention

Our approach is to apply self-attention [23] in ONet’s
encoder, as shown in the Figure 1, to focus on regions of
interest on the image and generate meshes more related to
the input object. This approach makes the network leverage
complementary features rather than local regions, e.g., both
arms of a chair. The self-attention module, when used in
earlier layers, is also able to focus more on finer details (e.g.,
the fine details of a sofa), and when used in later layers, on
structural features (e.g., not miss the rifle scope) [30], [31].

With this understanding, we believe that applying the
self-attention module makes our method more robust to
reconstruct meshes. We expect to be able to correct different
textures from the same object (not fill hollow spaces) and
create more consistent objects without missing pieces (a sofa
with no legs).

In our work, we use an attention module based
on the Self-Attention Generative Adversarial Network
(SAGAN) [24]. SAGAN uses a self-attention module over
internal network states, outperforming prior work in image
synthesis. The self-attention module calculates response at
a position as a weighted sum of the features at all positions,
capturing global dependencies with a small computational
cost [32].

Given an input feature map z from a previous layer, first
we compute the key f(z), the query g(z) and the value
h(z) with convolutional filters of size 1x1 and the equations
f(z) =Wfz, g(z) =Wgz, and h(z) =Whz. With the key
f and the query g, we can compute the attention map in
two steps. The first step is shown Equation 3,

sij = f(zi)
T g(zj) (3)

then, we compute the softmax function βj,i over the sij ,
which indicates the network attention to the i-th location
when synthesizing the j-th region. With the attention map β
and the values h(z), now we can compute the self-attention
feature maps a = (a1, a2, ..., aN ) ∈ RC×N as shown in
Equation 4,

aj = υ

(
N∑
i=1

βj,ih(zi)

)
, υ(zi) =Wυzi (4)

where N is the number of feature locations and C is the
number of channels. In this formulation, Wf , Wg and Wh ∈
RC̃×C and Wυ ∈ RC×C̃ , where C̃ is C/k to reduce the
number of features.

After computing the self-attention feature map a, we
perform a normalization operation to compute the final
output as shown in Equation 5,

yi = γai + zi (5)

where γ is a learnable parameter initialized as 0.

C. Ensemble Approach

In our previous experiments, we observed that some
models trained with self-attention just in one category
outperform the model trained in all the categories, showing
that the high diversity of objects in all the dataset does
not improve the model in terms of generalization. Based
on these preliminary results, we propose an ensemble of
ONets, where each category has one specialized ONet.

To create this ensemble of ONets, we evaluate three
ONet versions for each category, and we use the best
model in each category. The first version is an original
ONet. The second version is an ONet attentioned in the
initial layers, which were shown to represent details of
high granularity [24]. The attention modules are added after
the first and second ResNet layers. This means that the
neurons have a small receptive field, looking over a smaller
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Figure 3. Generated meshes based on a 2D image input. Comparison between ONet [18] and our approach when receiving the same input. Showing
results for 12 different ShapeNet classes

area on the input, and the attention will impact on the
general structure of the output. The third version is an ONet
attentioned in the last layers, representing details of small
granularity. The attention modules are added after the third
and fourth ResNet layers, meaning that the neurons have
a large receptive field, looking over a larger area of the
input, and the attention will impact on the finer details of
the output.

In our final approach, ONets have self-attention modules
after the first and second ResNet layers, except for
the bench, display, and lamp categories, which have
self-attention over the third and fourth ResNet layers.

IV. EXPERIMENTS

A. Data

To train and evaluate our model both quantitatively and
qualitatively, we use the ShapeNet dataset [22] subset of
Choy et al. [14]. This subset consists of images of thirteen
classes of objects, with 24 images of different viewpoints
of each object in a 137x137 resolution, and for each object
in the dataset, it has the expected surface in meshes, point
clouds, and voxels. We use the official train/test split.

To test for generalization, we also use a subset of Stanford
Online Products Dataset [33]. This dataset presents real
images,obtained from online products available on eBay.
Unlike ShapeNet, which presents synthetic data, Online
Products contains pictures of real images. The dataset
contains 120,053 images of 22,634 products (classes) with
different resolutions. It was originally used for image
retrieval. In this work, we use this dataset to evaluate the
models just in a qualitative manner, since this dataset was
not created for the task of 3D reconstruction and does
not contain ground-truth meshes or voxels to evaluate the
quality of generated volume quantitatively. The subset used
to perform single image 3D reconstruction are the cabinet,
chair, lamp, sofa, and table product categories, which are

the common objects between ShapeNet and Stanford Online
Products.

B. Metrics

We evaluate our proposed method with the same metrics
as Mescheder et al. [18]: the Intersection Over Union
(IoU) of the generated mesh with the ground-truth, the
Chamfer-L1 distance, and the Normal Consistency.

1) IoU: The Intersection over Union (IoU) of the
generated mesh with the ground-truth is computed as the
quotient of the volume of the two meshes union and the
volume of their intersection. The intersection is computed
by randomly sampling 100,000 points from the bounding
volume and determining if the predicted points lie inside or
outside the ground truth.

2) Chamfer-L1: Chamfer distance is a metric to measure
the distance between two edges of images/volumes, where
a set of points represents the edges [34]. Given two images
X and Y , the Equation 6 computes the Chamfer distance

dChamfer (X,Y ) =
∑
x∈X

min
y∈Y
‖x− y‖22 +

∑
y∈Y

min
x∈X
‖x− y‖22

(6)
where ‖x−y‖22 is the Euclidean distance between two points,
x and y, belonging to the 2D objects X and Y respectively.
The Chamfer distance penalizes for points belonging to the
edge of X that are so far from any point in the edge of Y .
Also, it does not obey the triangle inequality rule.

The Chamfer distance has a high computational cost for
meshes due to the high number of points, so it is interesting
to compute an approximation [34]. For this purpose, we use
the Chamfer-L1, an approximation using L1 norm as in [18],
by the Equation 7:
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Table I
QUANTITATIVE RESULTS OF SINGLE IMAGE 3D RECONSTRUCTION. RESULTS FROM 3D-R2N2, PIX2MESH AND ONET FROM [18].

IoU ChamferL− 1 Normal Consistency
Category 3D-R2N2 Pix2Mesh Onet Ours 3D-R2N2 Pix2Mesh Onet Ours 3D-R2N2 Pix2Mesh Onet Ours

airplane 0.426 0.420 0.571 0.645 0.227 0.187 0.147 0.011 0.629 0.759 0.840 0.868
bench 0.373 0.323 0.485 0.493 0.194 0.201 0.155 0.016 0.678 0.732 0.813 0.813
cabinet 0.667 0.664 0.733 0.737 0.217 0.196 0.167 0.016 0.782 0.834 0.879 0.876

car 0.661 0.552 0.737 0.761 0.213 0.180 0.159 0.014 0.714 0.756 0.852 0.855
chair 0.439 0.396 0.501 0.534 0.270 0.265 0.228 0.021 0.663 0.746 0.823 0.829

display 0.440 0.490 0.471 0.520 0.314 0.239 0.278 0.026 0.720 0.830 0.854 0.863
lamp 0.281 0.323 0.371 0.379 0.778 0.308 0.479 0.045 0.560 0.666 0.731 0.722

loudspeaker 0.611 0.599 0.647 0.660 0.318 0.285 0.300 0.028 0.711 0.782 0.832 0.839
rifle 0.375 0.402 0.474 0.527 0.183 0.164 0.141 0.012 0.670 0.718 0.766 0.804
sofa 0.626 0.613 0.680 0.689 0.229 0.212 0.194 0.019 0.731 0.820 0.863 0.866
table 0.420 0.395 0.506 0.535 0.239 0.218 0.189 0.019 0.732 0.784 0.858 0.861

telephone 0.611 0.661 0.720 0.754 0.195 0.149 0.140 0.012 0.817 0.907 0.935 0.937
vessel 0.482 0.397 0.530 0.568 0.238 0.212 0.218 0.018 0.629 0.699 0.794 0.801

mean 0.493 0.480 0.571 0.600 0.278 0.216 0.215 0.019 0.695 0.772 0.834 0.841

ChamferL1(Mpred,MGT) ≡
1

2 |∂Mpred|

∫
∂Mpred∈∂MOr

‖p− q‖dp+

1

2 |∂MGT|

∫
∂MGTp∈∂Mred

‖p− q‖dq

(7)

where Mpred and MGT are the meshes from a prediction
and the ground-truth, respectively, and ∂Mpred ∂MGT

represents the surfaces of the two meshes. As in the work of
Mescheder et al. [18], we sample 100,000 random points to
represent the surface. Chamfer-L1 is a dissimilarity metric,
so lower values mean more favorable results.

3) Normal Consistency: We compute the Normal
Consistency over two meshes by the Equation 8,

NormalConsistency (Mpred,MGT) ≡
1

2 |∂Mpred|

∫
∂Mpred

|〈n(p), n (proj2(p))〉| dp+

1

2 |∂MGT|

∫
∂MGF

|〈n (proj1(q)) , n(q)〉|dq

(8)

where 〈·, ·〉 is the inner product over two vectors, n(p) and
n(q) are the normal vectors on the meshes ∂Mpred and
∂MGT and proj2(p) and proj1(q) denote the projections
of p and q onto the meshes of ground-truth and prediction,
respectively.

This metric is a way to measure how two volumes are
consistent between them. For instance, two meshes may have
a high IoU belonging to different classes. The consistency
will measure the sharp differences between the objects and
penalize the score in a way that does not occur in the IoU.

C. Implementation Details

In our work, we train our models using Adam Optimizer
[35], with a learning rate of 0.001, weight decay of 1e-5,
and the default betas β1 of 0.9 and β2 of 0.999. We train for
200K steps, evaluating the validation subset at every 2,000
steps and saving the models that achieve the best validation
loss. In other ONet hyperparameters, we use the default from
Mescheder et al.’s implementation [18].

V. RESULTS

A. Quantitative Results

As shown in Table I, our proposed approach performs
slightly better in all object categories using the IoU
metric. Comparing the Normal Consistency, our model’s
performance is better in most categories, except in cabinet
and lamp. We achieve the most significant results comparing
the methods with the Chamfer-L1 distance measure. On
average, our approach improves ONet’s IoU by 5.05%, the
Chamfer-L1 decreases more than 10 times, and the Normal
Consistency improves in 0.83%. Figure 3 shows some 3D
reconstruction results on different ShapeNet categories. The
most significant difference that we observed was in the rifle
category, in which our method generates images with fewer
deformations and more accurate fine details. The airplane
category also show more detailed structural components.

In Table II, we show the results of training three ONets
per category. The first ONet does not have self-attention, the
second has self-attention after inital ResNet layers, and the
third ONet has self-attention after final ResNet layers. All
the models achieve a mean IoU, Chamfer-L1, and Normal
Consistency higher than the original ONet. In general, the
models with attention on final layers achieve better results,
resulting in higher IoU and Normal Consistency and similar
Chamfer-L1 to the model without attention.

B. Qualitative Results

In this experiment, we perform single image 3D
reconstruction using the models trained on the ShapeNet
train set and evaluate these models both on ShapeNet test
set and a subset of Stanford Online Products to validate the
models’ generalization power.

As opposed to Mescheder et al. [18], we do not segment
object regions in our qualitative results, and we do not retrain
the model in other view angles. As Online Products contains
images with background, we also it to evaluate the results
in a more realistic scenario.
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Table II
QUANTITATIVE RESULTS OF THE ONETS TRAINED PER CATEGORY. W.O. ATTN, ATTN 1-2, ATTN 3-4.

IoU Chamfer − L1 Normal Concistency
category w.o. attn attn 1-2 attn 3-4 w.o. attn attn 1-2 attn 3-4 w.o. attn attn 1-2 attn 3-4

airplane 0.649 0.645 0.637 0.010 0.011 0.011 0.868 0.868 0.865
bench 0.434 0.461 0.493 0.017 0.016 0.016 0.806 0.813 0.813
cabinet 0.736 0.737 0.732 0.017 0.017 0.016 0.873 0.876 0.873

car 0.761 0.761 0.756 0.013 0.014 0.014 0.854 0.856 0.855
chair 0.531 0.534 0.530 0.021 0.021 0.022 0.828 0.829 0.828

display 0.515 0.516 0.520 0.026 0.027 0.026 0.857 0.864 0.863
lamp 0.384 0.377 0.379 0.040 0.038 0.045 0.734 0.739 0.722

loudspeaker 0.657 0.660 0.647 0.027 0.028 0.030 0.835 0.839 0.836
rifle 0.520 0.527 0.518 0.012 0.012 0.012 0.802 0.804 0.800
sofa 0.684 0.689 0.687 0.019 0.019 0.019 0.862 0.866 0.865
table 0.530 0.535 0.532 0.018 0.019 0.019 0.860 0.861 0.860

telephone 0.743 0.754 0.745 0.013 0.012 0.013 0.937 0.939 0.937
vessel 0.565 0.568 0.564 0.019 0.018 0.019 0.800 0.801 0.802

mean 0.593 0.597 0.595 0.019 0.019 0.020 0.840 0.843 0.840

To evaluate qualitatively, we created an online survey 1

with the question: "Which image makes a more accurate 3D
representation of the original image?". The form shows the
input image and the two outputs generated by ONet and by
our proposed method to the user, with two radio buttons to
user answer the question. There are a total of 25 images,
five per category. We block the users from making multiple
answers and we shuffle the alternatives to prevent bias.

At the time of this writing, 130 people answered our form.
Our method achieves a mean of 117.68 votes as the most
consistent output with the input against a mean of 12.32 of
the ONet approach (the standard deviation was 15.49). In
general, our approach achieved more than 90% of the votes.

We can see some exceptional cases in Figure 4. In
the Input A, our mesh achieved 100% of the votes. The
self-attention module allows our model to generate the sofa
arms and the L-shape, unlike the original ONet. In the Input
E, our approach achieved 79 votes against 43 from ONet.
ONet predicts a more filled mesh, however, with a squared
shape. Our approach can not fill the mesh but generates in
a more cylindrical shape, like the lamps in the input. It is
important to note that this picture contains three objects, and
all the images from ShapeNet contain just one object per
image. In Input F, our approach achieved 78 votes against
54 from ONet. ONet generates a solid block with some
deformations, more similar to a chair. However, the input
is an end table, which haves a space between the upper
and lower structures. Out method partially generate these
structures, but it missed to connect them. In the Input G,
our approach achieves 84 votes against 48. Both models
generate the table top, and ONet even generates pieces from
a table leg. Our approach missed the table leg, but generated
the table in a rounder and smoother shape as the input. In
the Input H, our approach achieved 103 votes against 29
from ONet. Both models generate meshes consistent with
the input. ONet generates the chair feet more similar to the
input, and the mesh is smoother than ours. In our approach,
the self-attention allows generating thicker sofa arms, square

1The form is available at https://forms.gle/mGmwJ3vuTFLpFPcT8

shape, and the chair rests lower, as it is in the input.
In general, we can see in Figure 4 that both meshes are

similar to the inputs A, C, G, and H. Our approach generates
meshes clearly more consistent with the inputs B, C, and
D, cases where the images have a background, showing that
our approach managed to generalize comparably well in real
data.

C. Ablations

In this section, we briefly discuss some different
approaches results and their performance (shown in Table
III).

1) Specialization: ONet method consists of training the
model with all images at once. We use the same approach
to test whether using a self-attention module for all classes
would help our model as it benefits the original method.
However, training our method with all classes wield inferior
results. When using the self-attention module in earlier
layers, our model achieves IoU of 0.575, when using it in
the later layers 0.587, and after all ResNet blocks 0.568. We
believe that those results are consequences of high variability
between objects structures, which makes it harder to learn
weights that properly weight all the different ShapeNet
categories.

By creating a model for all classes, ONet enables the
learning phase to be executed only once and a single model
to be responsible for all meshes. Nevertheless, by trying to
fit all model’s weights for all objects, the original method
lacks representing fine details, as observed in Figure 3. For
that reason, we split all possible classes in different models,
reducing the complexity of the learning curve by enabling
the model to specialize in one single type of object.

We compare our results with both the ONet baseline and
by retraining the original method for a single object as
well. When training ONet for each category (w.o. attn),
the model achieves better results than the original, due
to the specialization as we expect. The specialized model
increases IoU in 0.022 and Normal Consistency in 0.006,
and decreases Chamfer-L1 in 0, 196. As for the model with
the self-attention modules in the earlier layers (attn 1-2),
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Figure 4. Examples of 3D reconstruction on Stanford’s Online Products [33]

we observed an increase of 0.029 in IoU , 0.009 in Normal
Consistency, and the same result as the specialized model on
Chamfer-L1. We believe that this improvement is due to the
structural importance of the classes that the self-attention
module provides. Cars, chairs, loudspeakers, sofas, tables,
telephones, and vessels do have meshes with much harder
structural information to learn. In cases where an object
presents an unusual shape, e.g., the "L" shaped sofa in
Figure 4, our model has a much easier time reproducing its
mesh than the one without attention. Meanwhile, displays
and benches do have smaller details that the later attention
modules tend to pay attention to. The later attention modules
(attn 3-4) help the model create more detailed meshes, e.g.,
the bezels of the displays. Using the attention in the later
layers increases IoU in 0.020 and Normal Consistency in
0.005, and decreases Chamfer-L1 in 0, 193.

We understand that even though having more than one
model might not be ideal since it depends on the model to
know from which class the original image belongs. However,
we believe that the trade-off given the qualitative results
is worth it, since we can solve this problem on inference
time with an image classification neural network, classifying
input images and selecting the best model for each input.

2) Normalization: We changed the Conditional Batch
Normalization used by Mescheder et al. [18] with the
Adaptive Instance Normalization (AdaIN) from Zhang et al.
[24]. We were motivated to do that since Zhang et al. [24]
uses AdaIN and self-attention to improve their experiments
and their encoder ONet’s encoder have a similar structure.
This model achieves a mean of 0.579 in mesh IoU, and
despite outperforming the original ONet in mesh IoU by
0.009, the model achieves a normal consistency of 0.622,
underperforming the original ONet by 0.212. We observed
that the model performed very well in cars and tables,
but deforms objects from the class monitor and consumed
pieces from lamp objects. Despite this behavior, these results
indicate that AdaIN might be useful in this scenario and
could be further investigated in future work.

Table III
INFLUENCE OF ADAIN AND ANOTHER SELF-ATTENTIONS.

Category IoU

AdaIN 0.579
single attn 1-2 0.574
single attn 3-4 0.587
single attn 1-2-3-4 0.567

3) Feature Extraction: We also tried changing the
Resnet-18 encoder from ONet by the generator network of
HoloGAN from the work of Thu et al. [36] as a feature
extractor from the input images. Our motivation for this
experiment was the ability of HoloGAN to generate images
of an object from angles never seen by the model before.
Thu et al. [36] train HoloGAN also on ShapeNet, bringing
us the idea that the generator network from HoloGAN has a
better power of imagination from the not seen sides of object
that can help the ONet. Since Thu et al. train HoloGAN
in a not supervised manner, they generate the images from
a latent space feature, randomly sampled from a uniform
distribution. To use the generator from HoloGAN to extract
features from the objects, we also need to train a third
model to learn the latent space features. This model was a
VGG-19 that receives the input image, creates the features
of the latent space. HoloGAN receives as input these latent
space features and generates the features from the object that
finally feeds on the ONet. In these experiments, the model
does not learn correctly, generating meaningless meshes.

VI. CONCLUSIONS

In this paper, we introduce a new approach employing
the self-attention mechanism to improve ONet performance
on single image 3D object reconstruction. Our experiments
show that the self-attention mechanism has better results if
trained separately for each object category. This approach
allows the model to generate more consistent meshes in
images of real objects and images with varying backgrounds,
showing that the attention mechanism helped the model to
ignore the irrelevant details of the image. Our approach
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improves previous approaches results, both quantitatively
and qualitatively. Our method was able to generate more
consistent meshes in real data, even though we trained
it using synthetic data, showing that our approach can
generalize to other domains.

We believe that applying the self-attention mechanism
also in the decoder will significantly increase our model
performance. However, this experiment is computationally
impractical, since it generates a tensor with 323 GB of
memory in the self-attention execution. Investing a way to
work around this problem is a challenge for future work.
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