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Abstract. Recent research on Convolutional Neural Networks focuses on how to create models with a reduced
number of parameters and a smaller storage size while keeping the model’s ability to perform its task, allowing the
use of the best CNN for automating tasks in limited devices, with reduced processing power, memory, or energy
consumption constraints. There are many different approaches in the literature: removing parameters, reduction of
the floating-point precision, creating smaller models that mimic larger models, neural architecture search (NAS), etc.
With all those possibilities, it is challenging to say which approach provides a better trade-off between model reduction
and performance, due to the difference between the approaches, their respective models, the benchmark datasets, or
variations in training details. Therefore, this article contributes to the literature by comparing three state-of-the-art
model compression approaches to reduce a well-known convolutional approach for object detection, namely YOLOv3.
Our experimental analysis shows that it is possible to create a reduced version of YOLOv3 with 90% fewer parameters
and still outperform the original model by pruning parameters. We also create models that require only 0.43% of the
original model’s inference effort.

CCS Concepts: • Computing methodologies → Neural networks.

Keywords: Deep Learning, Efficient Convolutions, Model Compression, Object Detection, Pruning, YOLOv3

1. INTRODUCTION

Deep neural networks have become state-of-the-art in fields such as computer vision and natural
language processing. Commonly, the deeper these networks become, the larger their performance
is, albeit at the expanse of overparameterization [Canziani et al. 2016]. However, it also decreases
the inference speed and makes its use less viable for applications where memory or computational
power are constrained, as in mobile devices, embedded systems, CPU-only devices, energy-constrained
applications, etc. Consequently, there are different approaches and purposes in model compression,
reducing the operations per second, storage space, or energy consumption, depending on the need for
the problem to be addressed.

Although there is quite a lot of work in model compression literature, it remains inconclusive
which methods provide a good trade-off regarding model complexity and predictive performance. The
literature is not uniform in terms of datasets, models, and data augmentation techniques, and to the
best of our knowledge, no work to date attempts at comparing different strategies in a controlled
scenario. For that reason, our contribution here is in providing an initial comparative study over the
performance and the compression ratio of three model compression approaches – two different pruning
approaches and a Neural Architectural Search (NAS) approach combined with efficient convolutions –
within the task of object detection, focusing on the well-known YOLOv3 [Redmon and Farhadi 2018]
model. Our goal is to discover how these approaches impact the performance of the model in terms
of Mean Average Precision (mAP) and Multiply–Accumulate (MAC) operation when comparing to
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the original YOLOv3, and how small can those models become when comparing to YOLOv3-Tiny, a
handmade reduced version from YOLOv3.

2. RELATED WORK

Pruning is a post-processing step after training that removes non-significant/redundant connec-
tions/neurons based on gradients or other heuristics. Pruning-based approaches rely on the concept
that it is necessary to train large networks to find smaller sub-networks with a performance that tends
to be the same as the original model. For instance, Frankle et al. [Frankle et al. 2019] iteratively train
and remove the weights based on the magnitude of the values and reinitialize them to an intermediate
state of the training process. The Savarese et al. [Savarese et al. 2019] approach continuously learns
which weights to remove based on the back-propagation. Despite the pruning approaches presenting,
in general, the smallest models with the best performances, they generally generate sparse matri-
ces, which means one needs to remodel its structure to make use of the real model reduction since
operations on sparse matrices within the available frameworks/hardware are not typically optimized.

A second model compression strategy is called Efficient Convolutions. For instance, Denton et
al. [Denton et al. 2014] approximate a 3D tensor (the weights from a convolutional layer) through a
minimization process, aiming to reduce the difference between the original tensor and an outer product
between three tensors. Li et al. [Li et al. 2016] create a multi-biased activation function, changing
a convolutional layer with N channels by a convolution of N/b channels. Then, they concatenate
the obtained feature maps summed with b different biases, reducing the redundancy of parameters.
Iandola et al. [Iandola et al. 2016] propose the squeeze layer. They perform a sequence of 1 × 1
convolutional layers, and its goal is to reduce the number of input channels of the following 3 × 3
convolutional layers. These approaches surely reduce the storage space and the inference cost and can
be easily introduced in any architecture, but also decreasing the model performance.

In quantization, the goal is to reduce weight storage. For instance, Han et al. [Han et al. 2015] use
an 8-bit floating-point representation. Courbariaux et al. [Courbariaux et al. 2015], Courbariaux et
al. [Courbariaux et al. 2016] and Rastegari et al. [Rastegari et al. 2016] attempt at using a 1-bit repre-
sentation of weights. Although quantization approaches can considerably reduce the storage space of
the neural network, the accuracy is often considerably reduced when applied on large CNNs [Cheng
et al. 2017]; thus, it is common to find studies using quantization combined with other approaches,
as in Han et al. [Han et al. 2015], Gong et al. [Gong et al. 2014] and Tung and Mori [Tung and Mori
2018].

Designing tiny networks from scratch is not a good strategy for achieving performance comparable
to larger/wider networks. Knowledge Distillation (KD) aims at reducing the gap between tiny
and large models. Bucilă et al. [Bucilă et al. 2006] propose a shallow network trying to imitate the
output of an ensemble of teachers. Hinton et al. [Hinton et al. 2015] propose a hint layer to guide the
intermediate student feature maps. Romero et al. [Romero et al. 2014] propose to distill the knowledge
of ensemble composed by manny specialist models. Guobin et al. [Chen et al. 2017] create a student
of object detection model who has no bounding box regression loss when its outputs outperform the
teacher. Although KD approaches can reduce the discrepancy between student and teacher models,
sometimes both models must have the same architecture family, since the two models represent the
features maps in different domains and sometimes learn very different features [Cheng et al. 2017].

3. MATERIALS AND METHODS

The Lottery Tickets Hypothesis (LTH) is a state-of-the-art Iterative Magnitude Pruning (IMP)
method from Frankle and Carbin [Frankle and Carbin 2018], which removes the connections be-
tween neurons based on their magnitude values. The method was improved by Frankle et al. [Frankle
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et al. 2019], reinitializing the model to an intermediate state of training. In LTH, we need to cre-
ate a binary mask M ∈ {0, 1}D initialized with ones, for each weight matrix W in the model. The
Hadamard product W�M before each forward pass will control which connections are alive or dead.

In LTH, we train the model until convergence and execute the pruning. With a pruning rate of
p%, we prune the p% remaining weights with the smallest magnitude, meaning that in the same
index, we set the mask M to 0. After pruning, the weights W need to be reinitialized to a backup,
generated at the k-th epoch, where k needs to be a small value between 0.1% and 7% of the total
epochs of a execution. This process is repeated iteratively until the number of killed weights achieve
the desired compression rate of c. We can prune in a one-shot manner (p = c), or iteratively (p 6= c).

Algorithm 1 Iterative Magnitude Pruning
(IMP) with rewinding to iteration k
Require: inputs X, labels Y , weight ma-

trix W, mask W, backup epoch k, total
of epochs n_epochs, compression rate c,
pruning rate p

1: random_initialization(W)
2: initialize_with_ones(M)
3: n_alive_weights← count(M)
4: while n_alive_weights > c do
5: for epoch ∈ n_epochs do
6: if epoch = k then
7: Wk ←W
8: end if
9: W ←W �M

10: Ŷ ← φ(W(X))
11: minW L(Y, Ŷ )
12: end for
13: indexes← smallest_values(|W| , p)
14: M[indexes]← 0
15: W ←Wk

16: n_alive_weights← count(M)
17: end while
18: W ←W �M
19: train()

Algorithm 2 Continuous Sparsification (CS)
with rewinding to iteration k
Require: inputs X, labels Y , weight ma-

trix W, soft-mask S, initial value S0, ini-
tial temperature β0, backup epoch k, to-
tal of epochs n_epochs, total of iterations
n_iterations

1: random_initialization(W)
2: initialize_with_constant(S,S0)
3: for iteration ∈ n_iterations do
4: for epoch ∈ n_epochs do
5: if epoch = kanditeration = 0 then
6: Wk ←W
7: end if
8: M̂ ← σ(β × S)
9: W ←W �M̂

10: Ŷ ← φ(W(X))
11: minW

S
L(Y, Ŷ ) + λ · ‖σ(βS)‖1

12: β ← β + i
13: end for
14: S ← min(βS,S0);β ← β0;W ←Wk

15: end for
16: W ←W � binarize(S)
17: train()

In Algorithm 1, φ(W(X)) represent the model inference with φ activation function, X input and Ŷ
predicted output. L is the loss function, and the min() function will perform the back-propagation.
The smallest_values() function returns the smallest weights and can search locally, returning the
smallest values layer by layer, or globally, analyzing the entire model. The train() function performs
a normal train after the last pruning, only with the remaining weights.

The Continuous Sparsification (CS) is an alternative approach to the LTH from Savarese et al. [Savarese
et al. 2019]. In this method, the SGD continuously learns a deterministic mask as a `1 regularization
problem. As the gradient descendent does not create binary values, the maskM is re-parameterized
over the soft-mask S : RD with σ(β × S), where σ is the sigmoid function and β is a temperature
value. The higher the β, the steeper is the sigmoid function and closer to binary values when β →∞,
however vanishing the gradient and not learning. Thus, β is incremented slowly during training to
mitigate the vanishing, and the approach reinitialize it after each iteration. Additionally, we reset the
soft-mask on the remaining weights with S ← min(βS,S0), which not interferes in the removed ones.
In Algorithm 2, the soft-mask is initialized at S0, which controls the sparsity. The min() function
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apply the back-propagation in the weights W and the `1 regularization over the approximated mask,
symbolized by ‖σ(βS)‖1. After learning the soft-mask, the binarize() function sets to 1 the positive
values and 0 otherwise. The final train() will fine-tune the model, freezing the soft-mask S.

Wong et al. [Wong et al. 2019] propose YOLO Nano, a reduced version of YOLOv3 as a compressed
model for object detection in constrained scenarios such as embedded devices. They create YOLO
Nano with NAS over human design prototyping and YOLO-family design. YOLO Nano has a macro-
architecture similar to YOLOv3, detecting objects at three different scales. The main differences of
YOLO Nano from YOLOv3 are the change of the traditional sequential of convolutions with batch-
normalization, Leaky-ReLU function, and residual connections by the Projection-Expansion (PE)
module and the Projection-Expansion-Projection (PEP) module. Both modules start and end with a
1× 1 convolution. These modules internally augment the number of feature channels, and in the last
convolution, it reduces the number of output channels, as in the Squeeze Layer [Iandola et al. 2016],
reducing the number of parameters. Another trick used in these modules to reduce the number of
parameters is that all 3 × 3 convolutions are of the Depth-Wise type. For instance, in a traditional
convolution over an RGB image, a single convolutional filter has three channels, each convolving its
respective input channel, and the outputs are summed, resulting in a feature map with one channel.
The depth-wise convolution stacks the outputs, resulting in a feature map with three channels and
having only 1

3 of parameters. In PE and PEP modules, a Batch-Normalization layer and a ReLU6
activation function follow each convolution.

Briefly speaking, Multiply–Accumulate (MAC) is an operation when a machine computes the prod-
uct of two numbers and adds that product to an accumulator as a linear transformation. We can
count, e.g.,, N MACs when a convolution operation of N channels performs one step of the con-
volving operation. Counting MAC operations is a way of measuring computational effort to make
an inference from a convolutional network. The higher the number of MACs, the higher the power
consumption to carry out a forward, which is undesirable mainly in devices powered by a battery.

Despite the pruning approaches reducing many parameters, it produces sparse matrices, which in
practice are the same as standard matrices, but with several zeroed elements. Frameworks support
storage optimized for sparse matrices, storing only the alive weights in an array and the corresponding
indexes. However, to perform a forward, it is necessary to inflate this structure with zeros creating
the non-optimized sparse convolution, which does not reduce the MACs. Since Frankle et al. [Frankle
et al. 2019] and Savarese et al. [Savarese et al. 2019] does not deal with this problem, we propose
to reconstruct each convolutional pruned layer trying to reduce the number of MACs. We split each
convolution each time we find a convolution filter completely pruned, removing the completely pruned
one. Thus, to perform a forward, we forward with each sub-convolution and stack the output features,
filling with zeros in the holes so that the generated output feature map is equal to the one generated
by the original convolution.

4. EXPERIMENTS AND RESULTS

We use the YOLOv3 implementation from Jocher et al. [Jocher et al. 2019]. There is a manual bias
initialization as in Lin et al. [Lin et al. 2017] and a cosine learning rate decay as in He et al. [He
et al. 2019] to deal with the background prevalence and class imbalance. We train using Stochastic
Gradient Descendent (SGD) with a learning rate of 0.01 for YOLOv3 and Tiny, and 0.001 for YOLO
Nano, a momentum of 0.937, weight decay of 4.84e − 4, and a batch size of 64 (default values from
Jocher et al. [Jocher et al. 2019]). We train with images across multiple scales, from 320 × 320 until
640× 640, building as a mosaic (building an image over random crops over four random images) with
random HSV color jitter and random horizontal flips.

We train the models by 300 epochs. In pruning, we use the YOLOv3. We train by 300 epochs for
the LTH and perform both global pruning and local pruning in a one-shot of 90% (p = c = 0.9) and
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then the final training of 300 epochs. For the CS, we use S0 = −0.1 (trying to perform the same
pruning rate as in LTH), a mask learning rate of 0.1 with our cosine learning rate decay, β ranging
from 0.1 to 200, and a λ weight regularization of 1e − 8 (default values in Savarese et al. [Savarese
et al. 2019]). We perform the CS both training 1 iteration of 300 epochs to learn the soft-mask S as
3 iterations of 100 epochs, totalizing 300 epochs to learn the soft-mask in both cases, and after a final
training of 300. Both in LTH as in CS, after the iteration end, we rewind the weights to epoch 10.

Like Redmon and Farhadi [Redmon and Farhadi 2018], we create our anchor boxes with k−Means
using as distance metric the Intersection Over Union (IOU). With train/val splits from PASCAL
VOC 2012 and k = 9, the anchor boxes for YOLOv3 and YOLO Nano are:(26; 31), (43; 84), (81; 171),
(103; 68), (145; 267), (180; 135), (247; 325), (362; 178), (412; 346). With k = 6, the anchor boxes for
YOLOv3-Tiny are: (26; 31), (43; 84), (81; 171), (103; 68), (145; 267), (180; 135), (247; 325), (362; 178),
(412; 346). We train for 5 times with train/val splits from PASCAL VOC 2012 [Everingham et al.
2012] and evaluate on PASCAL VOC 2007 [Everingham et al. 2007] test split, which contains 4, 952
images. We evaluate the models computing the mAP 0.5, counting the number of parameters, and
counting the MAC operations over a image with size 416× 416× 3.

In Table I, we can see the results of all the experiments. The best mAP results are from the original
YOLOv3, and the respective model pruned with LTH both by local pruning and global pruning. The
pruned YOLOv3 with LTH global has a mean mAP higher than the unpruned model, and it has
approximately 9.99% of the unpruned YOLOv3 parameters and 70.71% of the YOLOv3-Tiny.

Table I. Values of mAP at PASCAL VOC 2007 test set and the corresponding number of parameters
and MACs.

Model Pruning mAP 0.5 Nº of parameters MACs(G)

YOLOv3-Tiny No 0.393± 0.004 8, 707, 248 2.75
YOLOv3 No 0.560± 0.007 61, 573, 216 32.83
YOLOv3 LTH - Local 0.552± 0.013 6, 157, 357 32.614± 0.066
YOLOv3 LTH- Global 0.567± 0.009 6, 157, 321 32.264± 0.066

YOLO Nano No 0.369± 0.01 2, 873, 026 2.08
YOLOv3 CS - 1 It 0.457± 0.013 268,800 0.21
YOLOv3 CS - 3 It 0.335± 0.011 268,800 0.21

The LTH create models at least 0.139 mAP points higher than YOLOv3-Tiny, 0.154 mAP points
higher than YOLO Nano, and 0.067 mAP points higher than the pruned models with CS. However, it
is important to note that the models pruned by LTH have around 10% of parameters of the original
YOLOv3, YOLO-Tiny has 14.14%, YOLO Nano has 4.66%, and the models pruned by CS have
0.43%. The pruned models with LTH are superior in mAP and are smaller than YOLOv3-Tiny. This
behavior shows that it is better to prune with LTH a large model than reduce the number of layers
and simplifying the output with fewer anchor boxes as in YOLOv3-Tiny.

Table I shows a previously expected behavior: LTH with global pruning performs better than with
local pruning. This behavior happens because local pruning forces model pruning at each network
layer, while global pruning forces the pruning procedure on network locations that are less sensitive
to the network performance. For instance, in one of the three final layers (which performs the classifi-
cation and bounding box regression), the network performs a convolution with shape 75× 256× 1× 1
with 19, 200 parameters. While the local pruning procedure left only 1, 920 parameters alive, each
iteration with global pruning leaves a different value, having an average of 14, 210 parameters, or
74.01% the original size, against 10% from local pruning.

To a better analysis, we perform an Analysis of Variance (AOV). Table II shows the results from
YOLOv3 with and without LTH. Variation Source is the factor analyzed (LTH local, LTH global and
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Table II. Analysis of Variance (AOV) among YOLOv3 models with and without LTH pruning.

Variation
Source

Degrees of
Freedom

Sum of
Squares

Mean
Square F Test

Prune 2 5.665e− 4 2.833e− 4 2.783

Residuals 12 1.2212e− 3 1.018e− 4 -
Total 14 1.7877e− 3 3.851e− 4 -

without LTH), Sum of Squares measures data variation, and Mean Square is the ratio between the
Sum of Squares and the Degrees of Freedom.

According to the variance analysis, comparing the values obtained with the values of the F-
distribution table of Snedecor, the computed values of the F Test do not show significant variance.
These results show us that the variations obtained between the executions were consistent among
themselves, and the use of both local and global pruning did not impact this behavior. Besides that,
these results show us that the difference between the models with and without LTH was not signif-
icant, clearly showing that it is preferable to use models with LTH over models without pruning.
However, the reduction in MACs of the pruned models by the LTH was minimal. In the best case, the
pruned model has 0.124 Giga MACs fewer than the original model. Thus, using these models with
our convolution reconstruction approach in cases of battery dependent or CPU-only devices is just as
unlikely to the model without pruning.

Looking for Table I we can see that YOLO Nano has not only fewer parameters, with approximately
4.66% of the number of parameters of YOLOv3 and 32.89% of the number of parameters of YOLOv3-
Tiny, but also requires fewer effort to make an inference, requiring approximately 6.34% of Giga MACs
of the YOLOv3 and 75.73% of the YOLOv3-Tiny. YOLOv3 pruned with CS achieved more impressive
results in size and computational effort: these models approximately have just 0.43% of the number
of parameters of the unpruned model and 3.09% of parameters of the YOLOv3-Tiny, and requires
approximately 0.64% of the Giga MACs of the unpruned model and 7.63% of the YOLOv3-Tiny.

In Table 4, we can see that the pruned models with CS using one iteration have a higher mAP than
with three iterations. These models are at least 0.042 mAP points higher than YOLOv3-Tiny, 0.057
higher than YOLO Nano, and 0.097 higher than the YOLOv3 pruned with CS using three iterations.
As in the three-iteration approach, each iteration has 100 epochs, β increases quickly from the first to
the last step, going from 1 until reaching the ceiling value of 200, as in Savarese et al. [Savarese et al.
2019]. Thus, the derivative of the sigmoidal function vanishes fast, and the model learns less.

We also analyze the results between YOLOv3-Tiny, YOLO Nano, and the pruned models with
CS in terms of analysis of variance, as we can see in Table III. Here, the Variation Source Model
means YOLOv3-Tiny, YOLO-Nano, CS with one iteration and three iterations. Comparing the values
obtained with the values of the F-distribution table of Snedecor, the computed values of the F Test
show a significant variance, that is, the difference between the averages obtained is significant. To
ensure the comparison and be sure about which average stands out from the others, we performed the
Tukey Test using the same data used to compute the Table III.

Table III. Analysis of Variance (AOV) among the least
expensive models.
Variation
Source

Degrees of
Freedom

Sum of
Squares

Mean
Square F Test

Model 3 0.03986 0.013288 129.3
Residuals 16 0.00164 0.000103 -
Total 19 0.0415 0.013391 -

Table IV. Tukey Test among the least expensive models.
Comparison Difference Lwr Upr P Adj

Nano - CS 3It 0.0342 0.0158 0.0525 0.0003

Tiny - CS 3It 0.0578 0.0394 0.0761 6e− 7

CS 1It - CS 3It 0.1222 0.1038 0.1405 0.0
Tiny - Nano 0.0236 0.0052 0.0419 0.0098

CS 1It - Nano 0.0880 0.0696 0.1063 0.0

CS 1It - Tiny 0.0644 0.0460 0.0827 1e− 7
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In the Table IV, Comparison shows the two factors compared, Difference shows that the first factor
averages N points higher (or lower if negative) than the second factor, Lower and Upper shows the
lower and upper difference between the two factors at 95% of the confidence interval, and P Adj means
the p− value adjusted for multiple comparisons. Nano and Tiny refer to YOLO Nano and YOLOv3-
Tiny, and CS 1It and CS 3It refer to models pruned with CS using 1 and 3 iterations, respectively.
As we can see, there is a statistical difference in all the means, once time all the P Adj values are
less than 0.05. Thus, we can ensure that the pruned models with CS using three iterations have a
significantly higher mAP than the other tested models.

5. CONCLUSION AND FUTURE WORK

This article evaluates some approaches for model compression on YOLOv3 trained at PASCAL VOC
2012 train/val sets and evaluated at PASCAL VOC 2007 test set. We can found models with similar
mAP to YOLOv3 and 90% fewer parameters using pruning from Frankle et al. [Frankle et al. 2019]
and outperforming the unpruned model on average by 0.007 mAP points. We also found models less
expensive than YOLOv3 and YOLOv3-Tiny, with YOLO Nano from Wong et al. [Wong et al. 2019]
- having 6.34% and 75.73% of the Giga MACs of YOLOv3 and YOLOv3-Tiny, respectively - and
using pruning from Savarese et al. [Savarese et al. 2019] - with 0.43% and 3.09% of the Giga MACs of
YOLOv3 and YOLOv3-Tiny, respectively. However, these approaches cannot generate a model with
performance (mAP) similar to YOLOv3 and with an inference effort (MAC) similar to YOLOv3-Tiny.

Now, we intend to train YOLO Nano with Knowledge Distillation approaches, such as KD adapted
for object detection by Guobin et al. [Chen et al. 2017], which trains a shallower version of Faster
R-CNN. Another option is the latest versions of KD as a Generative Adversarial Network (GAN),
such as adapting the work of Wang et al. [Wang et al. 2018], which uses KD in a GAN framework
to train shallow networks for Image Captioning. Another example is the work of Wang et al. [Wang
et al. 2020], which uses KD in a GAN framework to train SSD, a one-shot object detector competitor
of YOLO. These experiments are to find if there is possible to improve YOLO Nano performance
(mAP) to a value similar to YOLOv3.
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