
Model Compression in Object Detection

Andrey de Aguiar Salvi∗ and Rodrigo C. Barros†

Machine Learning Theory and Applications Lab (MALTA)

School of Technology, Pontifı́cia Universidade Católica do Rio Grande do Sul

Porto Alegre, RS, Brazil
∗andrey.salvi@edu.pucrs.br, †rodrigo.barros@pucrs.br

Abstract—Compressed neural-network models have a growing
relevance in the Deep Learning literature, since they allow the
deployment of AI on devices with computational constraints for
many automation purposes. Despite the amount and diversity of
work for this purpose, there is no standard benchmark in the
literature, and it is often difficult to choose the proper approach
due to the large difference between models, datasets, and training
details that are tested. Therefore, this paper proposes a standard
experimental benchmark for different model compression ap-
proaches for the object detection task, using a fixed model (the
well-known YOLOv3) and training scheme. Between Pruning,
Knowledge Distillation, and Neural Architecture Search, our
experiments reveal that the best trade-off is by using pruning,
which enables the creation of a model with 80.67% mAP of the
original model but removing 98.8% of the parameters, 96.53% of
the Multiply–Accumulate Operations, and reducing the storage
size from 235.44MB to 11.61MB.

Index Terms—Pruning, Knowledge Distillation, Neural Archi-
tecture Search, Model Compression, Object Detection

I. INTRODUCTION

Object detection is the task of recognizing objects and

retrieving their image localization, being useful for automa-

tion on scenarios requiring decision-making based on visual

contexts, such as video surveillance, self-driving cars, medical

image analysis, or robotics. After Krizhevsky et al. [1] win-

ning the ILSVRC 2012 contest with AlexNet, Deep Learning

(DL) has become the state-of-the-art in computer vision tasks

and all subsequent models that won the contest were also

Convolutional Neural Networks (CNN). Roughly speaking, the

deeper these networks are, the better their performance, albeit

at the expanse of overparameterization [2].

Theoretically, models without unimportant parameters may

provide better generalization, requiring few training samples to

learn the function that maps the input to the desired output and

have improved learning speed. The various possible ways of

combining convolutional filters with different sizes and many

other details allow the creation of models with fewer weights

and less computation, as the work of He et al. [3], Szegedy et

al. [4], and Sandler et al. [5].

The high computational cost of these models require the

use of graphics cards to accelerate the processing, which is

not available in many automation scenarios that require the

use of constrained hardware. Consequently, there is a growing

area in the literature aiming to reduce these models in different

aspects, such as reduction of the number of operations, storage

size, or energy consumption, depending on the need of the

problem at hand.

There are many different forms of model compression with

different purposes in the literature. In pruning, for example,

a large model is created and different techniques are used

to remove unnecessary parameters [6]–[9]. To optimize the

storage size reduction, it is also possible to share parameters,

grouping them with non-supervised learning [7]. In knowledge

distillation, some studies create a smaller version of a good

model and try to use the large model to augment the smaller

model performance [10]–[12]. In Neural Architecture Search

(NAS), the goal is to automate the architecture creation,

aiming at a certain number of parameters, inference time,

and latency reduction [13]–[16], allowing the deployment on

mobile devices.

Despite of the existence of several approaches for model

compression, it remains an open question which method(s)

provides reasonable trade-offs regarding model complexity and

predictive performance. The literature is not uniform in terms

of datasets, models, and data augmentation techniques, and

to the best of our knowledge, no work to date attempts at

comparing substantially different strategies, such as neural

architectural search and pruning for example, in a controlled

scenario. For that reason, this work aims to provide a thorough

comparative study over the performance, compression ratio,

storage size, and computational cost reduction of some of the

most relevant methods in the model compression literature,

focusing on the object detection task within computer vision.

II. RELATED WORK

There are many kinds of model compression methods in

the literature, each of which with its goals and peculiarities.

Based on the work of Cheng et al. [17], Wang et al. [18],

Choudhary et al. [19], Salvi et al. [20], and Agarwal et al.

[21], we group the existing model compression work into the

following categories:

• Parameter Pruning and Sharing: removal of redundant

and uncritical parameters, either in a structured manner

(e.g., removing neurons or layers), or in an unstructured

manner (removing connections);

• Quantization: reduction of the model storage size by

reducing the precision of machine parameters represen-

tation;

• Low-Rank Factorization (LRF): decomposition of ma-

trices to estimate the informative parameters of the neural

network;

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

37
92

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



• Transferred/Compact Convolutional Filters: designing

special structures of convolutional filters to reduce the

parameter space;

• Neural Architecture Search (NAS): automation of the

architecture engineering for deep neural networks. A

search strategy generates and trains a network, whose

performance guides the search strategy to create another

model. The search can be performed by a variety of

methods, such as random search, Bayesian Optimization,

Evolutionary Algorithm, gradient-based search, or even

Reinforcement Learning [22];

• Knowledge Distillation (KD): distillation of a model by

training a more compact neural network to reproduce the

output of a larger net.

The studies from Cheng et al. [17] and Shiming [23]

bring theoretical explanations and discussions on pruning,

quantization, LRF, transferred convolutional filters, and KD,

but do not provide an experimental analysis involving the

approaches. Shiming [23] concludes that there is little work

on object detection, tracking, and other computer vision tasks.

Neither of them approach NAS as a tool for model com-

pression. In [24], the authors relate general constraints and

trade-offs in embedded ML and DL, such as reducing latency,

increasing reliability, power versus cost, privacy, and security.

They explain and recommend which scenarios to use CPU

based on RISC or CISC architectures, but they also lack any

experimental comparison among the methods.

In [19], the authors survey over LRF, KD, quantization,

pruning, and efficient architectures. They bring some practical

comparisons between the approaches in isolated cases. E.g.,

first, there is an analysis showing the parameter reduction,

the top-1 and top-5 classification errors of an AlexNet, in

a comparison of pruning, pruning with quantization, and

LRF, and with a VGG-16, comparing pruning, pruning with

quantization, quantization, and LRF. In both cases, they do

not analyze neither KD nor efficient architectures. Moreover,

their comparison only reported the results of the referenced

authors. Thus, there is no way of ensuring that the same

training scheme was actually performed, damaging the con-

fidence on the results. Next, they compared the number of

parameters, latency, and top-1 classification error on ImageNet

of models with efficient architectures, such as SqueezeNet

and MobileNet, but without mentioning approaches such as

pruning or LRF. Finally, the authors presented a comparison

of their own results with an AlexNet on CIFAR10 and MNIST,

but they only evaluated pruning and quantization. Hence, the

reader cannot tell which method (or set of methods) provides

the best trade-off between compression and accuracy.

Wang et al. [18] surveyed the following model compression

approaches over hardware specific for DL: quantization, prun-

ing, parameter sharing, LRF, and activation approximation.

One of the experiments show the throughput (classifications

produced per second or classification rate) of an AlexNet over

ImageNet versus weight precision versus activation precision

in two different hardware with fixed-point representation for

the weights and activation function. This is an interesting

comparison to evaluate the trade-off between precision and

throughput. However, it is only useful for quantization ap-

proaches. Another comparison shows the top-1 error rates ver-

sus compression rate for implementations of AlexNet trained

over ImageNet. Once again, the results that are reported are

those of the original references, which do not implement the

same training protocol and data augmentation. This compari-

son analyzes quantization, pruning, weight sharing, and LRF,

and thus does not analyze approaches such as NAS or KD.

Finally, there is a trade-off comparison between compression

and accuracy, but only for quantization approaches in the

classification task.

III. MATERIALS AND METHODS

In this section, we describe in detail the methodology we

employ for a fair comparison among different model compres-

sion techniques in reducing models for object detection.

A. Models, Datasets, and Training Scheme

We make use of two models as a baselines. The first one,

YOLOv3, is the third improvement of YOLO created by

Redmon and Farhadi [25], which is a one-shot object detector

that performs the entire inference in a single step, up-sampling

features and then predicting at three scales, using nine anchor

boxes. We use this model as our performance baseline — a

compressed model should ideally achieve performance as sim-

ilar as possible to YOLOv3. The second baseline is YOLOv3-

Tiny, which is a handmade reduced version from YOLOv3
that we use as our baseline in terms of compression.

Due to time and hardware constraints, we evaluate all

models in two medium-sized datasets. The first dataset

is PASCAL VOC 2012 for training/validation and PAS-

CAL VOC 2007 for test [26], which contains 20 classes and

5, 717, 5, 823, and 4, 952 images for training, validation, and

test, respectively. The second dataset is ExDark [27], a dataset

with exclusively low-light images captured in visible light

only, containing 3, 000, 1, 800, and 2, 563 images for training,

validation, and test, respectively.

All models we train are based on the YOLOv3 implemen-

tation from Jocher et al. [28], which performs a smart bias

initialization [29] and uses a cosine learning rate decay [30],

both for training stability. The GIoU [31] is used for bounding

box regression loss, while the remaining loss functions are

the same from Redmon and Farhadi [25]. Regarding data

augmentation, the images have a shape ranging from 288×288
up to 640× 640, and they are built as a mosaic with random

crops of four random images with random HSV color jitter,

and random horizontal flips. In general, we use SGD with a

learning rate η = 0.01 for YOLOv3 and YOLOv3-Tiny, and

η = 0.001 for YOLO Nano and YOLOv3-Mobile, with mo-

mentum α = 0.937, and ℓ2 weight decay with λ = 4.84e− 4,

training for 300 epochs with batch size = 64.

B. Compression Methods

In the Parameter Pruning category, we evaluate two tech-

niques. The first one is Lottery Tickets Hypothesis (LTH) from

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



Frankle et al. [32], which is an iterative non-structured prun-

ing strategy based on the magnitude of the parameter values. In

LTH, a layer/model inference is written as Ŷ← φ(W⊙M,X),
where X is the input vector, W is the weight matrix, φ() is

the activation function, and M is a binary mask, with same

shape asW , that decides whether keeping or pruning weights.

The mask is initialized with ones and the training is fully-

performed, in a cycle known as iteration. In the end, the

ρ-th smallest magnitude parameters — either layer-wise or

globally — are removed, setting as zero on the mask. The

parameters are re-initialized at a back-up generated during

training and a new iteration is performed, and it goes on

iteratively until the number of remaining parameters reach a

desirable compression ratio c, as presented in Algorithm 1.

Algorithm 1 Iterative Magnitude Pruning (IMP) with rewind-

ing to iteration k. Adapted from [32].

Require: weight matrix W , maskM, pruning rate ρ, backup

epoch k, total of epochs n epochs, desired compression

c, input X, labels Y

1: random initialization(W)
2: initialize with ones(M)
3: remaining weights← count parameters(M)
4: while remaining weights > c do

5: for epoch ∈ n epochs do

6: if epoch = k then

7: Wk ←W
8: end if

9: W ←W ⊙M
10: Ŷ← ϕ(W,X)
11: minW L(Y, Ŷ)
12: end for

13: indexes← find smallest values(|W| , ρ)
14: M[indexes]← 0
15: W ←Wk

16: remaining weights← count parameters(M)
17: end while

18: W ←W ⊙M
19: train()

The second pruning technique we evaluate is called Con-

tinuous Sparsification (CS) from Savarese et al. [33]. In this

method, the mask M is re-parameterized over the soft-mask

S : RD with M̂ ← σ(βS), and SGD is used to continuously

learn it as an ℓ1 regularization problem, where σ is the sigmoid

function and β is a temperature value. The higher the β, the

steeper is the sigmoid function, closer to binary values. β is

increased in equal steps during training from 1 to 200 and is

reinitialized after each iteration [33]. After the last iteration,

the function binarize() sets all positive S values to 1, and

0 the remaining. The last training iteration is performed to

fine-tune only the model weights, freezing the soft-mask S ,

as presented in Algorithm 2.

Due to time constraints, we perform LTH both globally and

locally using Algorithm 1 with one iteration and a pruning

rate ρ of 90%. In CS, we use one iteration of 300 epochs and

Algorithm 2 Continuous Sparsification. Source: Adapted from

[33]

Require: weight matrix W , soft-mask S , initial value S0, β

increment,initial temperature β0, backup epoch k, total of

epochs n epochs, total of iterations n iterations, input

X, labels Y

1: random initialization(W)
2: initialize with constant(S,S0)
3: for iteration ∈ n iterations do

4: for epoch ∈ n epochs do

5: if epoch = k and iteration = 0 then

6: Wk ←W
7: end if

8: M̂ ← σ(β × S)
9: W ←W ⊙ M̂

10: Ŷ← ϕ(W,X)
11: minW

S

L(Y, Ŷ) + λ · ‖M̂‖1

12: β ← β + i

13: end for

14: S ← min(βS,S0);β ← β0;W ←Wk

15: end for

16: W ←W ⊙ binarize(S)
17: train()

another approach with three iterations of 100 epochs, with the

last training iteration of 300 epochs for both. Thus, there are a

total of 300 epochs to build the mask in both cases, as in LTH.

We initialize S0 = −0.1, trying to perform the same pruning

rate ρ as in LTH, using λ = 1e− 5 and a mask learning rate

of 0.1 as in Savarese et al. [33]. For both LTH and CS, the

models are re-initialized to epoch 10.

Current DL frameworks allow sparse tensors, storing a list

containing the floating-point values and another list containing

the respective indexes as unsigned long values. However,

they do not allow sparse convolutional operations. Thus, for

computing the real storage size and MACs reduction of the

pruning approaches, we save the pruned parameters as a 2D
sparse tensor and forward it as a matrix multiplication between

a sparse tensor (the weights) and a dense (the input reshaped

to a 2D matrix). Hence, we can achieve an effective model

reduction, which is not only theoretical. Figure 1 shows an

example of the forward pass of a convolutional filter as a

matrix multiplication.

In terms of the Neural Architecture Search (NAS) ap-

proach, we use the YOLO Nano model from Wong et al.

[13], a reduced version of YOLOv3 based on machine-driven

exploration over human design prototyping and the YOLO-

family design. It was created as a compressed model for object

detection in constrained scenarios such as embedded devices.

The main differences between YOLO Nano and YOLOv3 are:

the activation functions, which in YOLO Nano are ReLU6
and on YOLOv3 are LeakyReLU ; the reduced number of

layers; the replacing of the basic blocks from YOLOv3 by

efficient blocks using 1×1 convolutions to reduce or increase

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

.1

-.1

.1

.1 -.1

1 -1

1 1 -1

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

9 8 6 5

8 7 5 4

6 5 3 2

5 4 2 1

-.4 -.2

.2 .4

.6 .7

.9 .1

-.4 -.2 .2 .4

.6 .7 .9 1

Input Image

Convolution

in_ch=2, out_ch=2, kernel=2, stride=1

Flattened Convolution Flattened Output

Reshaped Input

Output

Fig. 1. Example of the forward pass of a convolutional filter as matrix multiplication between a sparse and a dense matrix, with zero padding.

the number of channels and Depth-Wise 3 × 3 convolutions

to reduce the number of parameters; and a fully-connected

attention layer.

For the approach in the Efficient Convolution category,

we built the YOLOv3-Mobile model, replacing all the basic

blocks from YOLOv3 by the blocks of MobileNetV3 from

Howard et al. [14]. MobileNets are a family of CNN

architectures built to focus on parameter and latency reduc-

tions and speed up the inference time. Its basic blocks are

used also in other architectures, such on MnasNet [15] and

EfficientNet [16], and its basic blocks also use Depth-Wise

convolutions and 1 × 1 convolutions to reduce the number

of channels, as in YOLO Nano. There are two variants of

this basic block, using ReLU or HardSwish as activation

functions and using or not the Squeeze-and-Excite module.

Generally, these variations on MobileNetV3 occur based on

the stride, and we keep the same logic in our YOLOv3-Mobile

model, whose basic blocks are presented in Figure 2.

In the Knowledge Distillation category, we evaluate two

techniques. The first one is a classical KD method from

1x1 Conv, HardSwish

Input

3x3 DW-Conv, Linear

S
qu

ee
ze

 a
nd

 E
xc

ite

Avg Pool

MLP, ReLU

MLP, 
Sigmoid

x

HardSwish

1x1 Conv, Linear

Output

Basic Block with 
Squeeze and Excite

+

1x1 Conv, HardSwish

3x3 DW-Conv, 
HardSwish

1x1 Conv, Linear

Input

Output

Basic Block without 
Squeeze and Excite

Fig. 2. MobileNetV3 basic blocks. DW-Conv means Depth-Wise Convolution.

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Interpolation

Interpolation

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Te
ac

he
r

S
tu

de
nt

YOLO HeadYOLO HeadYOLO Head YOLO HeadYOLO HeadYOLO Head

Hint Layer

Fig. 3. Classical KD Approach. Both models are YOLO architectures

Guobin et al. [10], which trains a student model to learn

with the ground-truth and to mimic the teacher outputs and

intermediate features. In this approach, the classification loss

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



is rewritten as Lcls = µLhard(Y, Ŷs)+(1−µ)Lsoft(Ŷt, Ŷs),
where Lhard is the default classification loss between the

student inference and the ground-truth, Lsoft is a classification

loss between the student inference and teacher inference, with

µ balancing the two losses. With preliminary experiments,

we set µ = 0.7. The regression loss is rewritten as Lreg =
ℓ1(Y, Ŷs) + νLtb(Y, Ŷt, Ŷs), where ν balances the second

term, with ν = 0.5 as default value in Guobing et al. [10]

and Ltb is the teacher-bounded regression loss, which means

the default regression loss between the student inference and

ground-truth if this value plus a margin is higher than the loss

between the teacher inference and the ground-truth. Finally,

there is the hint loss Lhint = ℓ1 |V,Z|, where V and Z are

hidden-layer features from teacher and student, respectively.

To match the number of channels, there is the Hint Layer,

a 1 × 1 convolutional layer that receives the features from

the student and outputs with the same channels as the teacher

features. Figure 3 shows that approach adapted to YOLOv3.

We create a sub-set and perform preliminary experiments to

define the best hint layers combination.

The second KD technique is based on Generative Adversar-

ial Networks (GANs) from the work of Wang et al. [12]. Their

approach trains the student model in the first 2

3
of epochs as a

generator G from a GAN, and the last 1

3
of epochs as an object

detector. The features generated by the teacher is the real input

set X, and the features generated by the student layer is the

fake input set X̂. There are discriminator models D trying to

distinguish between X and X̂. Thus, via adversarial training,

the student learns to generate features by imitating the teacher

features. For KD GAN, hint layers are not allowed, thus the

teacher and student features need to have the same volume. In

our scenario, this happens with the features from the last layer

of each branch. There is one D for each pair of teacher/student

features, trained with SGD using η = 0.01 and a Binary Cross

Entropy Loss. The KD GAN is presented in Figure 4.

For both KD techniques, we replace the student activation

functions (ReLU6, ReLU, and Hard-Swish) by LeakyReLU,

which is the teacher activation function. As the student task is

to imitate the teacher, including its intermediate features, these

features need to be in the same domain that the teacher’s fea-

tures. This replacement is necessary since ReLU and ReLU6

output only positive values. Hard-Swish outputs some negative

values, but only while x ∈ (−0.3, 0). In contrast, LeakyReLU

outputs negative values for any negative input value. For

the teacher, we use the best YOLOv3 model, based on its

validation mAP.

C. Evaluation Metrics

We evaluate all models according to the following metrics:

• Mean Average Precision (mAP): it is the default metric

to evaluate the performance of an object detector;

• Number of parameters;

• Storage size: recall that pruned models are saved as sparse

tensors so we can have an effective storage size reduction.

For each parameter, there is a list containing the indexes

of the parameter location in the original tensor. Thus, the

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Interpolation

Interpolation

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Fe
at

ur
e 

E
xt

ra
ct

io
n

Te
ac

he
r

S
tu

de
nt

, o
r G

en
er

at
or

R
ea

l/F
ak

e?

R
ea

l/F
ak

e?

R
ea

l/F
ak

e?
Fig. 4. KD based on GAN

storage size for pruned models is not proportional to the

parameter reduction;

• Multiply–Accumulate Operation (MAC): similarly to

FLOPS, it gives a sense on the inference effort. E.g., a

convolutional layer with a 3 × 3 kernel (K = 32), with

3 input channels (Cin = 3) and 1 output (Cout = 1)

with stride 1 and no padding, when receiving a 5× 5× 3
input volume, convolves 9 times (steps = 9), since the

output will have a 3 × 3 resolution. Thus, there are 9
steps multiplying kernel at the 3 channels, resulting on

steps ×K × Cin × Cout = 243 MACs. For the pruned

models, the number of MACs is equal to the number of

alive parameters times the number of columns from the

image reshaped as a 2D matrix.

IV. RESULTS

Looking at Tables I and II, the best models regarding mAP

are the original YOLOv3 and the models pruned by LTH. Both

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



LTH with global and local pruning outperforms the original

model, with a virtual tie between YOLOv3 default training

and LTH local. These results show the effectiveness of both

global and local LTH on removing unnecessary parameters,

with 2.45% and 0.26% more mAP than default training on

PASCAL VOC, and 4.18% and 1.79% more mAP on ExDark.

Global pruning of LTH outperforms local pruning because

the latter forces an equal pruning at each layer, while global

pruning is more flexible in which locations to remove the

parameters. Thus, local pruning has a higher probability of

removing more sensitive parameters. On the other hand, layer-

wise equal pruning generates, in general, more sparse layers

than in global pruning, which favors MAC reduction. Local

pruning on PASCAL VOC results in 10.57% of MACs of the

original model against 26.79% from global pruning, which is

more than double. On Exdark, there are 10.49% of MACs

for local pruning and 29.47% for global pruning. Since the

storage size between them is the same, 128.26 MB or 50.23%
of the original model on PASCAL, and 118.1 MB or 50.20%
on ExDark, and the difference in mAP is minimal, it seems

local pruning presents the best trade-off overall.

CS generates a more aggressive pruning, being the fourth-

best mAP model on PASCAL VOC (one iteration approach),

with 0.442 mAP or 80.67% of the original YOLOv3, and the

fifth-best mAP model on ExDark with 0.294 mAP or 64.93%
of the original model. There is a larger difference between

CS with one and three iterations in all metrics and on both

datasets. Since the three-iterations approach has 100 epochs

per iteration, β increases quickly from the first to the last

step, going from 1 until 200, as in Savarese et al. [33]. Thus,

the derivative of the sigmoidal function vanishes fast, and the

model is less capable of learning.

It is important to highlight that in both CS methods, the

pruning was more aggressive than in LTH, and consequently,

the MACs reduction is greater and storage size is smaller.

On PASCAL VOC, it kept only 1.20% of the parameters,

3.47% of MACs, and 4.93% of storage size in the one-iteration

approach, against 0.68% of parameters, 1.88% of MACs, and

2.35% of storage size in the three-iterations approach. On

ExDark, it kept 0.85% of parameters, 2.87% of MACs, and

3.48% of storage size in the one-iteration approach, against

0.47% of parameters, 1.54% of MACs, and 1.57% of storage

size in the three-iterations approach. Both CS approaches

present the best reduction of parameters and MACs on both

datasets. The three-iterations also provides the smallest storage

size on PASCAL, and both provide the smallest storage size

on ExDark.

Between the lightweight models, YOLO Nano, YOLOv3-

Mobile, and YOLOv3-Tiny, we can see that YOLO Nano

generally is the best choice: on PASCAL VOC, it slightly

outperforms YOLOv3-Tiny, having 0.385 and 0.379 of mAP,

respectively. On ExDark, it has a considerably smaller mAP,

with 0.242 and 0.287, respectively. On PASCAL VOC, it

has 4.69% of the YOLOv3 parameters, against 14.14% from

YOLOv3-Tiny, and on ExDark, 4.66% of parameters against

4.12%; it is the lightest model, requiring 11.38% MB on

PASCAL VOC and 11.31 MB on ExDark; and it is the second

model with smallest number of MACs. On PASCAL VOC,

it has 6.34% of the YOLOv3 MACs against 4.33% from

YOLOv3-Mobile, who failed to learn in both datasets and

provided insignificant mAP. On Exdark, there are 6.32% of

MACs for YOLO Nano and 4.32% for YOLOv3-Mobile.

In Tables I and I, KD fts means the classical KD approach

from Guobin et al. [10], where the following number indicates

the i-th teacher layer used to hint; and KD GAN means the

KD GAN-based approach from Wang et al. [12]. These

tables show that both KD approaches have improved the

student’s mAP performance. On PASCAL VOC, YOLO Nano

on default training achieves 0.385 of mAP or 70.33% of

YOLOv3 performance. With KD, it improves to 0.395 — with

a technical tie against the default training — (or 72.16%),

0.408 (or 74.50%), and 0.421 (or 76.87%) using KD GAN,

KD fts 36, 61, and KD fts 79, respectively. On ExDark, YOLO

Nano with default training achieves 0.242 mAP or 53.57%
of the YOLOv3 mAP performance. With KD, it improves to

0.254 (or 56.13%), 0.295 (or 65.10%), and 0.303 (or 67.01%),

TABLE I
RESULTS REGARDING MAP, NUMBER OF PARAMETERS, MACS, AND STORAGE SIZE OF MODELS EVALUATED IN THE PASCAL VOC 2007 TEST SET.

Model Training mAP Final Params MACs Storage (MB)

YOLOv3-Tiny Default 0.379± 0.003 8, 713, 766 2, 753, 665, 551 33.29

YOLOv3 Default 0.547± 0.012 61, 626, 049 32, 829, 119, 167 235.44

YOLO Nano Default 0.385± 0.007 2, 890, 527 2, 082, 423, 381 11.38

YOLOv3-Mobile Default 0.009± 0.008 4, 395, 985 1, 419, 864, 487 17.59

YOLOv3 LTH Local 0.549± 0.009 6, 331, 150± 1 3, 468, 547, 347± 278 118.26

YOLOv3 LTH Global 0.561± 0.009 6, 331, 114± 1 8, 796, 051, 025± 225, 877, 824 118.26

YOLOv3 CS 1 It 0.442± 0.010 740, 072± 12, 161 1, 137, 839, 381± 44, 191, 983 11.62± 0.23

YOLOv3 CS 3 It 0.316± 0.015 421,721± 3,544 618,724,616± 20,611,379 5.54± 0.07

YOLO Nanoleaky KD fts 79 0.421± 0.007 2, 890, 527 2, 098, 305, 681 11.38

YOLO Nanoleaky KD fts 36, 61 0.408± 0.008 2, 890, 527 2, 098, 305, 681 11.38

YOLO Mobileleaky KD fts 91 0.253± 0.023 4, 395, 985 1, 458, 910, 247 17.59

YOLO Mobileleaky KD fts 36, 91 0.244± 0.010 4, 395, 985 1, 458, 910, 247 17.59

YOLO Nanoleaky KD GAN 0.395± 0.012 2, 890, 527 2, 098, 305, 681 11.38

YOLO Mobileleaky KD GAN 0.311± 0.006 4, 395, 985 1, 458, 910, 247 17.59

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RESULTS REGARDING MAP, NUMBER OF PARAMETERS, MACS, AND STORAGE SIZE OF MODELS EVALUATED IN THE EXDARK TEST SET.

Model Training mAP Final Params MAC Storage (MB)

YOLOv3-Tiny Default 0.287± 0.020 8, 695, 286 2, 747, 415, 255 33.22

YOLOv3 Default 0.453± 0.017 61, 582, 969 32, 799, 960, 583 235.27

YOLO Nano Default 0.242± 0.013 2, 872, 743 2, 071, 460, 013 11.31

YOLOv3-Mobile Default 0.0003± 0.0001 4, 390, 537 1, 416, 145, 135 17.57

YOLOv3 LTH Local 0.461± 0.012 6, 288, 070± 1 3, 439, 388, 763± 278 118.1

YOLOv3 LTH Global 0.471± 0.018 6, 288, 035± 1 9, 665, 082, 014± 288, 425, 550 118.09

YOLOv3 CS 1 It 0.294± 0.012 525, 823± 7, 684 941, 520, 024± 58, 158, 009 8.19± 0.15

YOLOv3 CS 3 It 0.139± 0.004 290,746± 1,638 505,248,788± 15,650,702 3.70± 0.03

YOLO Nanoleaky KD fts 79 0.303± 0.008 2, 872, 743 2, 087, 342, 313 11.31

YOLO Nanoleaky KD fts 61, 91 0.295± 0.010 2, 872, 743 2, 087, 342, 313 11.31

YOLO Mobileleaky KD fts 91 0.113± 0.021 4, 390, 537 1, 455, 190, 895 17.57

YOLO Mobileleaky KD fts 36, 91 0.107± 0.005 4, 390, 537 1, 455, 190, 895 17.57

YOLO Nanoleaky KD GAN 0.254± 0.007 2, 872, 743 2, 087, 342, 313 11.31

YOLO Mobileleaky KD GAN 0.157± 0.005 4, 390, 537 1, 455, 190, 895 17.57

with KD GAN, KD fts 61, 91, and KD fts 79, respectively.

KD on YOLOv3-Mobile brings the most impressive re-

sults: it changed the performance on PASCAL VOC from

default training from 0.0009 mAP or 1.64% of the YOLOv3
peformance to 0.244 (or 44.50%), 0.253 (or 46.29%), and

0.311 (or 56.86%) with KD fts 36, 91, KD fts 91, and KD

GAN, respectively. On ExDark, it improves the default training

from 0.0003 mAP or 0.07% of the YOLOv3 peformance to

0.107 (or 23.62%), 0.113 (or 24.95%), and 0.157 (or 34.66%)

with KD fts 36, 91, KD fts 91, and KD GAN, respectively.

However, note that none of the methods was sufficient to

outperform YOLO Nano. Moreover, none of the methods was

sufficient for YOLOv3-Mobile to outperform YOLOv3-Tiny,

which is a manually reduced version from YOLOv3.

For YOLO Nano, the classical KD approach performs better,

while for YOLOv3-Mobile, KD GAN performs better. We

argue that this difference is due to the domain of the generated

features: although the activation functions between student

and teacher are the same, there is a big macro-architectural

difference between YOLOv3 and YOLO Nano. Although

YOLO Nano is a NAS model inspired in the YOLO family,

detecting at three scales, branching the generated features in

three paths, and classifying the objects using YOLO Head,

YOLO Nano contains significantly fewer layers than YOLOv3,

in addition to not containing skip connections. On the other

hand, YOLOv3-Mobile contains the same macro-architecture.

Its difference relies only in the micro-architecture, as the layers

are different, but the connections between each other, the

amount of layers, and their order are the same from YOLOv3.

V. CONCLUSIONS

In this work, we perform a thorough empirical analysis

among several model compression techniques, including Pa-

rameter Pruning, Neural Architecture Search, and Knowledge

Distillation, for the object detection task. We fix the evaluated

model, datasets, and training scheme for a fairer assessment

of the performance obtained by each method and the gain in

resources they achieve. To the best of our knowledge, this

is the first work that compares these three macro approaches,

evaluating all of them on all proposed metrics of the literature.

We also propose a model reconstruction approach for pruned

models that is easy to implement, is independent of the Deep

Learning framework or hardware, and allows real computing

saving for pruning approaches.

Our results show that pruning approaches provide the

highest mAP values among the compression approaches: on

PASCAL VOC, LTH can generate models with almost 90%
fewer parameters while also outperforming the mAP of the

original model by more than 2.45%, while NAS generates

a model with 70.33% of the original model performance.

On ExDark, LTH outperforms the original model in 4.18%,

while YOLO Nano (from NAS) provides only 53.57% of

the original performance. Looking for the best trade-off be-

tween performance and effectively saved resources, pruning

approaches also provide the best results. Using CS with

aggressive pruning results in a model with 80.67% of the

original model performance in PASCAL VOC but with 98.8%
fewer parameters, 96.53% fewer MACs, and 95.07% fewer

megabytes to store, while its best competitor, YOLO Nano

with KD, has 76.87% of the original model performance,

with 95.31% fewer parameters, 93.61% fewer MACs, and

95.17% fewer megabytes. On ExDark, YOLO Nano slightly

outperforms CS regarding mAP, with 67.01% and 64.93%
respectively, but CS has the advantage on parameters, MACs,

and storage size.

As future work, we believe it would be enriching to use

these model compression methods over other models, like two-

step object detectors. Furthermore, we plan on experimenting

with new pruning and KD approaches, e.g., the work of

Tanaka et al. [9], which performs pruning that does not require

prior training to find out which parameters need to be removed.

Another example is the work of Wu and Gong [11], which

performs a collaborative KD, that is, both teacher and student

are trained from scratch together. We also have several ideas to

improve the evaluated approaches. For instance, the KD GAN

approach can be improved with the Kullback-Leibler (KL)

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 



Divergence, so we can force the student feature generation

to be more similar to the teacher, similarly as what happens

when the KL Divergence is used in GAN studies for image

generation. For YOLOv3-Mobile, maybe a restricted NAS will

be capable of improving its performance, freezing the macro-

architecture and using the NAS to only decide the number of

channels of each block and the use or not of the Squeeze and

Excite module.

VI. ACKNOWLEDGEMENTS

This work was achieved in an project supported by the

Brazilian Informatics Law (Law nº 8.248 of 1991) and was

developed over Agreement 001/2015 between Pontifı́cia Uni-

versidade Católica do Rio Grande do Sul and the HP Brasil

Indústria e Comércio de Equipamentos Eletrônicos Ltda.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[2] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” 2016. [Online]. Available:
https://arxiv.org/abs/1605.07678

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Conference on Computer Vision and Pattern

Recognition, June 2016, pp. 770–778.

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
AAAI Conference On Artificial Intelligence, Feb 2017, pp. 4278–4284.
[Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14806/14311

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Conference

on Computer Vision and Pattern Recognition (CVPR), Jun 2018, pp.
4510–4520.

[6] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell,
and K. Keutzer, “Densenet: Implementing efficient convnet descriptor
pyramids,” 2014. [Online]. Available: https://arxiv.org/pdf/1404.1869.
pdf

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015. [Online]. Available: https://arxiv.org/abs/1510.00149

[8] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” 2018. [Online]. Available: https:
//arxiv.org/abs/1803.03635

[9] H. Tanaka, D. Kunin, D. L. K. Yamins, and S. Ganguli, “Pruning
neural networks without any data by iteratively conserving synaptic
flow,” 2020. [Online]. Available: https://arxiv.org/pdf/2006.05467.pdf

[10] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Proceedings

of the 31st International Conference on Neural Information Processing

Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, pp. 742–751.

[11] G. Wu and S. Gong, “Peer collaborative learning for online knowledge
distillation,” 2020. [Online]. Available: https://arxiv.org/pdf/2006.04147.
pdf

[12] W. Wang, W. Hong, F. Wang, and J. Yu, “Gan-knowledge distillation
for one-stage object detection,” IEEE Access, vol. 8, pp. 60 719–60 727,
Mar 2020.

[13] A. Wong, M. Famuori, M. J. Shafiee, F. Li, B. Chwyl, and J. Chung,
“Yolo nano: a highly compact you only look once convolutional
neural network for object detection,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.01271

[14] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
mobilenetv3,” in International Conference on Computer Vision (ICCV),
Oct 2019, pp. 1314–1324.

[15] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019, pp. 2820–2828.
[16] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling

for convolutional neural networks,” 2020. [Online]. Available: https:
//arxiv.org/pdf/1905.11946.pdf

[17] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017. [Online].
Available: https://arxiv.org/abs/1710.09282

[18] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K.
Cheung, and G. A. Constantinides, “Deep neural network approximation
for custom hardware: Where we’ve been, where we’re going,” ACM

Comput. Surv., vol. 52, no. 2, pp. 1–39, May 2019. [Online]. Available:
https://doi.org/10.1145/3309551

[19] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A
comprehensive survey on model compression and acceleration,”
Artificial Intelligence Review, vol. 53, no. 7, pp. 5113–5155, Oct 2020.
[Online]. Available: https://doi.org/10.1007/s10462-020-09816-7

[20] A. A. Salvi and R. C. Barros, “An experimental analysis of model com-
pression techniques for object detection,” in Symposium on Knowledge

Discovery, Mining and Learning (KDMiLe), Oct 2020, pp. 49–56.
[21] S. Agarwal, J. O. D. Terrail, and F. Jurie, “Recent advances in object

detection in the age of deep convolutional neural networks,” 2019.
[Online]. Available: https://arxiv.org/pdf/1809.03193.pdf

[22] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural architecture search:
A survey.” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, Mar 2019.

[23] S. Ge, “Efficient deep learning in network compression and accelera-
tion,” in Digital Systems. IntechOpen, Nov 2018.

[24] M.-A. A’râbi and V. Schwarz, “General constraints in embedded machine
learning and how to overcome them—a survey paper,” 2019.

[25] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
2018. [Online]. Available: https://arxiv.org/abs/1804.02767

[26] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International

Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, Jun 2010.
[27] Y. P. Loh and C. S. Chan, “Getting to know low-light images with the

exclusively dark dataset,” Computer Vision and Image Understanding,
vol. 178, pp. 30–42, Jan 2019.

[28] G. Jocher, guigarfr, perry0418, Ttayu, J. Veitch-Michaelis, G. Bianconi,
F. Baltacı, D. Suess, and WannaSeaU, “ultralytics/yolov3: Video
Inference, Transfer Learning Improvements,” Apr. 2019. [Online].
Available: https://doi.org/10.5281/zenodo.2624708

[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in The IEEE International Conference on

Computer Vision, Oct 2017, pp. 2980–2988.
[30] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of

tricks for image classification with convolutional neural networks,” in
Conference on Computer Vision and Pattern Recognition, Jun 2019, pp.
558–567.

[31] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and a
loss for bounding box regression,” in Conference on Computer Vision

and Pattern Recognition (CVPR). Long Beach, California, USA:
Computer Vision Foundation, June 2019, pp. 658–666. [Online].
Available: https://openaccess.thecvf.com/content CVPR 2019/papers/
Rezatofighi Generalized Intersection Over Union A Metric and a
Loss for CVPR 2019 paper.pdf

[32] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Stabilizing
the lottery ticket hypothesis,” 2019. [Online]. Available: https:
//arxiv.org/abs/1903.01611

[33] P. Savarese, H. Silva, and M. Maire, “Winning the lottery
with continuous sparsification,” 2019. [Online]. Available: https:
//arxiv.org/abs/1912.04427

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 14,2021 at 13:46:11 UTC from IEEE Xplore.  Restrictions apply. 


