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A B S T R A C T   

Crack-cocaine offers a higher risk of abuse than intranasal and intravenous use of cocaine. Yet, current treat-
ments remain disappointing and our understanding of the mechanism of crack-cocaine neurotoxicity is still 
incomplete. Magnetic resonance images studies on brain changes of crack-cocaine addicts show divergent data. 
The present study investigated gray matter (GM) abnormalities in crack-cocaine dependents (n = 18) compared 
to healthy controls (n = 17). MRI data was analysed using FreeSurfer and voxel-based morphometry (VBM). 
FreeSurfer analysis showed that CD had decreased cortical thickness (CT) in the left inferior temporal cortex 
(lTC), left orbitofrontal cortex (lOFC) and left rostro frontal cortex (lRFC), enlargement in left inferior lateral 
ventricle, and smaller GM volume in right hippocampus and right ventral diencephalon. VBM analysis showed 
that CD had significantly decreased GM volume in left Putamen and left nucleus accumbens. Furthermore, we 
found a negative correlation between duration of crack-cocaine use and lTC CT. These results provide compelling 
evidence for GM abnormalities in CD and also suggest that duration of crack-cocaine use may be associated with 
CT alterations.   

1. Introduction 

Brazil presents one of the highest rates of crack-cocaine use in the 
world, with 1.5% for lifetime use and 0.8% for last year use (Abdalla 
et al., 2014). Crack-cocaine offers a higher risk of abuse due to possible 
greater intensity of effect, easier administration, and lower costs in 

comparison to intranasal and intravenous use of cocaine hydrochloride 
(Hatsukami and Fischman, 1996). In addition to the health conse-
quences caused by crack-cocaine addiction itself, users of this substance 
are exposed to several biological, physical, and social hazards that can 
contribute to comorbid illnesses (Butler et al., 2017). Out of all the 
addicting drugs, crack-cocaine addiction poses as one of the major 
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threats to the public health and social security of Brazil (Dias et al., 
2011; Madruga et al., 2017; Paim Kessler et al., 2012). Unfortunately, 
current treatments still bring disappointing results, and our under-
standing of the risk factors and of the neurobiological underpinning of 
crack-cocaine addiction still remains incomplete (Fischer et al., 2015). 
Thus, the mechanisms underlying crack-cocaine dependence, especially 
those that are clinically relevant, increase the necessity for further 
investigation. 

MRI studies have attempted to uncover macrostructural changes in 
the central nervous system of cocaine-dependent individuals, although 
findings are inconclusive (Barrós-Loscertales et al., 2011; Ersche et al., 
2012; Garza-Villarreal et al., 2017). For instance, some studies have 
observed lower gray matter (GM) volume in striatum (Barrós-Lo-
scertales et al., 2011; Moreno-López et al., 2012), larger striatal and 
thalamic GM volumes (Ersche et al., 2011; Jacobsen et al., 2001; Sim 
et al., 2007), or no volumetric differences whatsoever (Garza-Villarreal 
et al., 2017; Narayana et al., 2010) when compared to healthy subjects. 
Other studies reported lower GM volumes in prefrontal cortex, temporal 
cortex, insula and thalamus (Ersche et al., 2012; Franklin et al., 2002; 
Moreno-López et al., 2012; Weller et al., 2011). In other regions 
including amygdala and hippocampus, findings are contradictory 
(Ersche et al., 2012; Mackey and Paulus, 2013; Makris et al., 2004; Mei 
et al., 2015). Longer cocaine use was associated with reductions in the 
right hippocampal region, while increases in GM were observed in the 
left hippocampal region (Ersche et al., 2013). Nevertheless, in addition 
to these regions, duration of cocaine use was also associated with GM 
abnormalities in the right insula, right gyrus rectus, left middle temporal 
gyrus, right middle temporal gyrus and right inferior frontal gyrus (Hall 
et al., 2015). The picture is similarly unclear regarding cortical thickness 
(CT), as different areas have been associated to cocaine use. There is 
evidence of lower CT in bilateral insula (Geng et al., 2017), lateral 
frontal regions (Hirsiger et al., 2019) and dorsolateral prefrontal cortex 
(Makris et al., 2008), and higher thickness in bilateral temporal pole 
(Geng et al., 2017). 

In addition, most of these findings come from studies dedicated to 
intranasal use of cocaine hydrochloride, and only very few of them are 
dedicated exclusively to crack-cocaine addiction (Schuch-Goi et al., 
2017). Despite that, it is possible that crack-cocaine impacts differently 
on brain tissue, since a growing body of evidences is displaying different 
consequences between these two routes of use (Kiluk et al., 2013; Paim 
Kessler et al., 2012; Voon et al., 2016). Crack-cocaine is associated with 
shorter periods of sustained abstinence within treatment, greater pro-
pensity for dependence and higher cocaine plasmatic levels. Moreover, 
pharmacokinetic differences between crack-cocaine and intranasal use 
of cocaine hydrochloride further support that GM abnormalities related 
to different routes of cocaine use may be different. (Kiluk et al., 2013; 
Strang and Edwards, 1989). 

Some of these structural abnormalities have been hypothesized to 
play a central role in addiction-related behaviors including impulsivity 
and compulsivity (Ersche et al., 2011; Everitt and Robbins, 2013). 
Addiction-related behaviors are thought to be mediated by modifica-
tions in the mesolimbic dopamine system and by a cascade of neuro-
adaptations taking place from the ventral striatum to dorsal striatum 
and orbitofrontal cortex. Such alterations in brain chemistry and func-
tion affect neuronal circuits involved in reward, incentive motivation 
and inhibitory control (Koob and Volkow, 2016; G.F. 2010; Volkow 
et al., 2012). 

In this study, we examined CT and GM volumes in crack-cocaine 
addicts compared to healthy subjects in a male population sample. 
The GM volume is defined as the amount of GM that lies between the 
gray-white interface and the pia mater. (Winkler et al., 2010). In addi-
tion, GM volume is, by geometric definition, the product of cortical 
surface area (CSA) and thickness. The estimation of CT represents a 
methodological alternative to volume measurements for the investiga-
tion of subtle cortical changes. Disentangling these two parameters is 
important, as different biological factors may contribute to the changes 

in CT and GM volume (Fischl and Dale, 2000; Makris et al., 2008, 2007; 
Rakic, 2007). GM volume and CSA bear a nearly linear relation (Makris 
et al., 2008). Furthermore, GM volume was genetically and environ-
mentally correlated with CSA and, to a much lesser extent, with CT 
(Winkler et al., 2010). For this reason, CSA is not included as an outcome 
measure in the current study. 

It is not fully understood whether GM abnormalities found in crack- 
cocaine dependent individuals are predisposed or cocaine-induced (or 
both) (Makris et al., 2008). Cross-sectional neurobiological abnormal-
ities seen in cocaine dependents are usually interpreted as drug-induced 
consequences as studies reported associations between duration of 
cocaine intake and GM alterations (Ersche et al., 2013; Hall et al., 2015). 
This claim is supported by a recent longitudinal study showing that 
reduced or ceased cocaine intake was associated with CT recovery in 
lateral frontal regions whereas CT within the same regions tended to 
further decrease in sustained cocaine users (Hirsiger et al., 2019). 

While GM abnormalities have been reported in cocaine hydrochlo-
ride addiction, evidence from cortical thinning and affected volumes in 
crack-cocaine addiction are yet to be fully understood. Therefore, in this 
study we aimed to gain more insight into the possible neuroanatomical 
underpinnings of crack-cocaine addiction. A secondary objective related 
to the exploratory investigation of differential associations between GM 
alterations and some core variables: Age of crack-cocaine use onset, 
years of crack-cocaine use, abstinence symptoms, and drug use severity. 
We hypothesized that CD would have GM abnormalities in striatum, 
hippocampus, orbitofrontal cortex, dorsolateral prefrontal cortex, infe-
rior frontal cortices, temporal lobe, cingulate gyrus, insula, dienceph-
alon and amygdala, which are structures associated with the 
development of addiction (G.F. Koob and Volkow, 2010). Moreover, 
cortical and subcortical variables were also expected to be negatively 
associated with years of crack-cocaine exposure, drug use severity and 
abstinence symptoms, and positively associated with age of 
crack-cocaine use onset. 

2. Materials and methods 

We conducted a case-control observational study and included 30 
male crack-cocaine dependents (CD) and 20 male healthy controls (HC) 
for comparison. All T1 images were visually inspected for quality of the 
image and for absence of apparent motion artifacts. The contrast of the 
structures was very poor in 5 scans from CD group, so they were 
removed due to these motion artifacts. Images of the scans that were 
excluded due to motion artifacts are showed in Supplementary Data 1. 
Moreover, neuroimaging data from 4 subjects (2 CD and 2 HC) was 
discarded due to segmentation failure with FreeSurfer and another 3 
scans from CD group were removed due to co-registration issues when 
using FSL. Furthermore, 3 participants (2 CD and 1 HC) decided to opt 
out of the study, finally remaining 18 subjects in CD group and 17 in HC 
group. All the procedures were approved and carried out according to 
the Ethics Committee from Pontifical Catholic University of Rio Grande 
do Sul (PUCRS) under protocol code 15,674,013.3.0000.5336. After 
complete description of the study, written informed consent was ob-
tained from all subjects. 

2.1. Participants 

Eligible subjects for CD group were male crack-cocaine dependent 
enrolled in long-term rehab program from a non-profit organization 
from Porto Alegre (RS) – Brazil. Inclusion criteria for cases were: (1) 
should have a primary mental-disorder diagnosis of crack-cocaine use 
disorder (2) smoking route as preferred means of cocaine consumption, 
(3) 18–45 years old, (4) right handedness, (5) having between 7 and 14 
days of inpatient, and (6) have an IQ > 80. Handedness was checked 
individually using the Handedness Inventory, considering individuals 
with scores above nine as right-handed (Briggs and Nebes, 1975). Only 
crack-cocaine dependents with history of alcohol and tobacco 
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dependence not requiring medical detoxification were accepted. Par-
ticipants were excluded if they had potential contraindications to MRI 
scanning (metallic implants, recent tattoos, claustrophobia), any acute 
or unstable clinical illness including untreated psychotic disorder and 
abuse of other substance during the last 14 days. 

HC were matched for age, ethnicity, and education. This sample was 
recruited by word of mouth advertising and screened for major psy-
chiatric disorders using the non-patient version of Structured Clinical 
Interview for DSM-5 (SCID) and administered by a trained member of 
the research staff, before the date of the MRI exam. HC subjects were 
required to have no history of drug and alcohol dependence/abuse and 
no psychiatric or neurological disorder. Additional exclusionary criteria 
included left-handedness, unstable medical disorder, IQ< 80 and con-
traindications to MRI scanning. HC should not have used any psycho-
tropic medications in the last six months. 

All participants were negative for cocaine, cannabis, amphetamines, 
opioids, and benzodiazepines in a urine screening test on the date of the 
MRI exam. For HIV and syphilis, the participants took a fast-track blood 
exam prior to MRI scan. 

2.2. Assessments 

Sociodemographic characteristics and drug abuse pattern were ob-
tained by using the Addiction Severity Index – 6th version (ASI-6). This 
instrument is semi-structured interview that gathers information on 
recent and lifetime problems related to substance misuse. A validated 
version of ASI-6 translated into Brazilian Portuguese was used in this 
study (Kessler et al., 2012). The ASI-6 allows for the computation of 
composite scores of negative impact in nine domains: drugs, alcohol, 
family/children, psychiatric symptoms, medical issues, legal problems, 
employment, social support, and social problems. Higher scores mean 
more severe problems (Cacciola et al., 2011; McLellan et al., 2006). 

We investigated symptoms related to crack-cocaine abstinence with 
the Cocaine Selective Scale Assessment (CSSA), (Kampman et al., 1998) 
which considers various symptoms related to abstinence of at least 24 h. 
It uses a 0–7 visual analogue scale, and the sum of all items returns a 
total score. Participants took the CSSA on the date of the MRI exam. 

2.3. MRI acquisition 

All magnetic resonance images (MRI) scans were acquired on a 3.0T 
whole body scanner (Signa, GE Healthcare, Milwaukee, USA) A three- 
dimensional T1-weighted images with the following parameters: repe-
tition time (TR) = 2400 ms, echo time (TE) = 15 ms, slice thickness = 16 
mm, scan matrix = 512 × 512 and voxel size = 1mm3. All subjects were 
invited to experience the experiment on a fake MRI machine prior to 
MRI scan. The objective was to allow familiarization with the charac-
teristics of this study. 

2.4. FreeSurfer pre-processing and evaluation 

In order to evaluate CT and GM cortical and subcortical volumes, 
cortical reconstruction and volumetric segmentation were performed with 
the FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard. 
edu/). The technical details of these procedures are described in prior 
publications (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 2004a, 
2004b, 2002, 2001, 1999a, 1999b; Fischl and Dale, 2000; Han et al., 2006; 
Jovicich et al., 2006; Reuter et al., 2012; M. 2010; Ségonne et al., 2004). 
Briefly, this processing includes motion correction and averaging (M. 
Reuter et al., 2010) of volumetric T1 weighted images, removal of 
non-brain tissue using a hybrid watershed/surface deformation procedure 
(Ségonne et al., 2004), automated Talairach transformation, segmentation 
of the subcortical white matter and deep subcortical structures (Fischl 
et al., 2004a, 2002) intensity normalization (Sled et al., 1998), tessellation 
of the GM white matter boundary, automated topology correction (Fischl 
et al., 2001; Ségonne et al., 2007), and surface deformation following 

intensity gradients to optimally place the gray/white and gray/cere-
brospinal fluid borders at the location where the greatest shift in intensity 
defines the transition to the other tissue class (Dale et al., 1999; Dale and 
Sereno, 1993; Fischl and Dale, 2000). Regions of interest (ROIs) were 
extracted by parcellating the cortex using the Desikan–Killiany Atlas32 
(Desikan et al., 2006). For each of the 68 cortical parcellations, FreeSurfer 
calculates the average CT and the cortical GM volume. Subcortical vol-
umes were calculated with FreeSurfer’s automated procedure for volu-
metric measures. Each voxel in the normalized brain volume was assigned 
to one of 40 labels, using a probabilistic atlas obtained from a manually 
labelled training set (Fischl et al., 2002). Reconstructed images were 
visually inspected and manually corrected for segmentation or processing 
mistakes according to FreeSurfer’s troubleshooting guidelines. The edited 
exams were then reprocessed, and CT and GM volumes data was extracted 
from the corrected images. Eventually, general Linear Model (GLM) was 
performed to estimate differences between HC and CD at each vertex of 
the surfaces, using FreeSurfer’’s QDEC tool version 5.0 cross-sectional 
pipeline (surfer.nmr.mgh.harvard.edu/). Monte Carlo Null-Z simulation 
was used for multiple comparisons correction, considering a significant 
value of p < 0.05. 

2.5. Voxel-based morphometry pre-processing and evaluation 

Since many of the published studies on drug abuse have employed 
Voxel-based Morphometry (VBM) analysis for determining changes in 
regional brain volumes, we have also conducted Optimized VBM to 
investigate GM volumes differences between CD and HC. All brain im-
ages were analyzed with the FMRIB Software Library v5.0 (https://fsl. 
fmrib.ox.ac.uk/fsl/fslwiki/FSL) using FSL-VBM (Douaud et al., 2007) 
to investigate changes in GM volumes. Briefly, data processing was 
divided into five following major steps: (1) brain extraction and manual 
correction if needed, (2) segmentation of images in white matter, GM 
and cerebrospinal fluid volume using FAST (Zhang et al., 2001), (3) 
creation of a GM template by registering a subset of subjects randomly 
chosen from both CD and HC, (4) non-linearly registration (Andersson 
et al., 2007) of native GM images and Jacobian modulation and, (5) 
image smoothing with an isotropic Gaussian kernel of 3 mm with a 
full-width half-maximum (FWHM) of ~ 7 mm. Eventually, voxelwise 
general linear model (GLM) was applied using permutation-based 
non-parametric testing (5000 permutations), threshold-free cluster 
enhancement (TFCE) was used for multiple comparison correction 
considering a significant p-value of < 0.05. 

2.6. Statistical analyses 

Descriptive analyses are presented as mean and standard deviation or 
absolute and relative frequencies. Differences involving continuous and cat-
egorical in sociodemographic clinical data were evaluated using independent 
t-test, Yate’s correction chi-squared or Fisheŕs exact test, respectively. 

A Covariance Analysis (ANCOVA) was performed to estimate GM dif-
ferences (Freesurfer and VBM analyses) between HC and CD adjusted by 
years of study. Among the CD group, Pearsońs or Spearmańs correlation 
coefficient was used to estimate the associations between crack-cocaine, 
alcohol and cigarettes years of use, age of crack-cocaine use onset, CSSA 
score, drug use severity, ASI-6 alcohol composite score and GM brain indices. 
The partial correlation coefficient adjusted by age was used to analyze the 
relationship between duration of crack-cocaine use and GM brain indices. 
We conducted these analyses with SPSS statistic software (IBM Corp. 
Released 2015. IBM SPSS Statistics for Macintosh, Version 23.0. Armonk, 
NY: IMB Corp.) and threshold for statistical significance was set at p < 0.05. 

3. Results 

3.1. Sample characteristics 

Sociodemographic characteristics of the sample and substance use 
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patterns are summarized below and in Table 1. 
Differences in age, marital status and ethnicity were not statistically 

significant between the two groups. CD had received fewer years of 
education (t = 4.00, df= 34, p < 0.001) and were more unemployed (p <
0.01) than HC. Due to these differences, we included education as co-
variate in all comparative analyses of brain morphometric indices. The 
mean time of crack-cocaine use in CD group was 9.5 ± 5.8 years and the 
mean age of crack-cocaine use onset was 19.6 ± 5.9 years. There was a 
clear concomitant use of alcohol and nicotine in all subjects of CD group 
whereas HC had no history of alcohol and nicotine regular use. In CD 
group, all subjects presented alcohol abuse and had no history of another 
illicit drug dependence. The mean time in life that CD group drank 
alcohol regularly was 7.9 ± 6.4 years and they drank at least 5 drinks in 
5.7 ± 5.4 years. Furthermore, the mean time in life that CD group 
smoked cigarettes was 10.4 ± 7.6. In addition, among the CSSA and ASI- 
6 scores, CSSA score was 29.9 ± 17.9 drug use severity score was 0.49 ±
0.21, and alcohol composite score was 51.4 ± 8.1. 

3.2. Gray matter volumes 

FreeSurfer analyses of cortical volumes showed no significant dif-
ferences between the two groups (p>0.05). FreeSurfer analyses of 
subcortical regions showed a significant lower volume in right hippo-
campus (p = 0.049) and right ventral diencephalon (p = 0.048) of CD 
when compared to HC. The ventral diencephalon in Freesurfer includes 
several structures: hypothalamus with mammillary body, subthalamic, 
lateral geniculate, medial geniculate and red nuclei, substantia nigra 
and surrounding white matter. In addition, CD group showed enlarge-
ment of left inferior lateral ventricle (p = 0.012). Nevertheless, when co- 
varying for years of study only the group differences in left inferior 
lateral ventricle remained significant (p = 0.034). FreeSurfer GM vol-
umes results are summarized in table 2. 

To confirm the above reported results, we conducted the same ana-
lyses with VBM. Similar to the FreeSurfer analyses, there were no 
cortical volumes significant differences between the two groups 
(p>0.05). VBM analyses of subcortical regions showed a significant 
lower volume in left Putamen and left nucleus accumbens (NAcc) of CD 
when compared to HC (p = 0.015). When co-varying for years of study 
the group differences remained significant (p = 0.042). Data from these 
brains and their correspondent MRI are showed in Fig. 1. 

3.3. Cortical thickness 

FreeSurfer analyses revealed brain regions with significant re-
ductions of CT in CD relative to controls, while there were no brain 
regions with higher CT in the CD group (Table 3). Compared to controls, 
the CD group showed lower CT in the left inferior temporal cortex (lTC), 
left orbitofrontal cortex (lOFC) and left rostro frontal cortex (lRFC) 
(Fig. 2). However, when co-varying for years of study only the group 
differences in lTC (adjusted p-value=0.018) and lOFC (adjusted p-val-
ue=0.011) remained significant. 

3.4. Correlation analyses 
The correlation analysis of crack-cocaine years of use with CT, 

showed that lTC CT was negatively correlated with crack-cocaine years 
of use, while there was no significant association in IRFC. Furthermore, 
there was no significant correlation between crack-cocaine years of use 
and GM volumes in VBM significant clusters (i.e. putamen and nucleus 
accumbens). Table 4 shows the associations between crack-cocaine 
years of use and GM alterations. 

Additionally, there was no significant correlation between alcohol 
and cigarettes years of use, age of crack-cocaine use onset, CSSA score, 
drug use severity, ASI-6 alcohol composite score and GM alterations. 
Table 5 shows the associations between alcohol and cigarettes years of 
use, age of crack-cocaine use onset and GM brain indices. Table 6 shows 
the associations between CSSA score, drug use severity, alcohol use 
severity and GM brain indices. 

4. Discussion 

As far as the present state of knowledge, this is the first study using 
optimized VBM and FreeSurfer analyses to document GM volumes al-
terations and lower CT in several brain areas of crack-cocaine users. Our 
FreeSurfer results showed cortical thinning in lTC, lRFC and lOFC, 
diminished GM volume in right hippocampus and right ventral dien-
cephalon and larger volume in left inferior lateral ventricle in CD group. 
Our VBM results showed lower volumes in left Putamen and left NAcc in 
CD compared to HC. However, when co-varying for years of study only 
the group differences in lTC and lOFC, left inferior lateral ventricle, 
putamen and NAcc remained significant. Furthermore, crack-cocaine 

Table 1 
Sample Characteristics.  

Variables CD (n =
18) 

HC (n =
17) 

p- 
value 

Age (years; mean±SD) 28.3 ± 6.7 28.4 ± 7 0.98A 

Education (years; mean±SD) 9.4 ± 1.53 11±1.56 0.04A 

Handedness (% right) 100 100 – 
Civil Status (married) 1 (5.6%) 5 (29.4%) 0.06B 

Occupation (employed) 8 (44.4%) 14 
(82.4%) 

0.049C 

Ethnicity (afrodescendant) 11 (61.1%) 6 (35.3%) 0.09C 

Crack use (years; mean±SD) 9.5 ± 5.8 – – 
Age of crack-cocaine use onset (mean±SD) 19.6 ± 5.9 – – 
Years in life that drank alcohol regularly, 3 

or more days a week (mean±SD) 
7.9 ± 6.4 – – 

Years in life that drank at least 5 drinks a 
day, 3 or more days a week (mean±SD) 

5.7 ± 5.4 – – 

Years in life that smoked cigarettes 
(mean±SD) 

10.4 ± 7.6 – – 

CSSA score (mean±SD) 29.9 ±
17.9 

– – 

ASI Drug use severity score (mean±SD) 0.49±0.21 – – 
ASI Alcohol composite score (mean±SD) 51.4 ± 8.1 – – 

A Student t-test; B Fisheŕs exact test; C Yateśs correction chi square test; SD 
Standard deviation. 

Table 2 
Summary of FreeSurfer GM volumes results.  

Region Crack-cocaine 
(n ¼ 18) Mean 
±SD (mm3) 

Controls (n ¼
17) Mean±SD 
(mm3) 

p- 
value 

Adjusted 
p-value* 

Left inferior 
lateral 
ventricle 

302±164 181±46.7 0.012 0.034 

Right 
hippocampus 

4404±425 4693±372 0.049 0.235 

Right ventral 
diencephalon 

4855±416 5185±484 0.048 0.154 

GM volumes reductions in CD vs. HC. 
* adjusted for years of study by Covariance Analysis. 

Fig. 1. Statistical parametric map o whole-brain VBM.  
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years of use was negatively correlated with lTC CT. These findings 
suggest close neuroanatomical pathology of fronto-striatal areas in CD. 

A group of processes is supposed to explain why GM abnormalities 
are observed in crack-cocaine users, such as oxidative stress and neu-
roinflammation (Blanco-Calvo et al., 2014; López-Pedrajas et al., 2015). 
Although the mechanisms of crack-cocaine neurotoxicity are not fully 
understood, according to some studies, the current main etiological 
hypothesis of the addictive cycle involves a fronto-striatal circuit pa-
thology (Garza-Villarreal et al., 2018; Jaworska et al., 2017; Volkow 
et al., 2016). Okita et al. suggest that the correlation between striatal 
D1-type (dopamine) levels and mean global CT indicates cortical 
adaptation due to striatum pathology (Okita et al., 2018). Our results are 
in agreement with these findings, bearing in mind that we observed 
shared morphological findings of cortical thinning and lower striatal 
volumes. 

The findings presented here about GM abnormalities in CD in-
dividuals are consistent with previous neuroimaging studies, revealing 
structural modifications in brain areas concerning reward system in CD 

(Alia-Klein et al., 2011; Ersche et al., 2012; Garza-Villarreal et al., 2018; 
Schuch-Goi et al., 2017). Lower CT of lOFC and a volumetric reduction 
in hippocampus, ventral diencephalon, putamen and NAcc demon-
strated in our study corroborates the hypothesis proposed by Koob and 
Volkow that the transition to addiction involves neuroplasticity in all of 
these structures (G.F. Koob and Volkow, 2010). The cortical thinning 
was observed in regions that play an important role in executive func-
tions such as working memory, sustained attention, inhibitory control, 
problem solving, cognitive flexibility and decision making (Volkow and 
Fowler, 2000). 

A pioneer report dedicated to crack-cocaine addiction observed a 
smaller GM volume in dorsolateral prefrontal cortex, anterior cingulate, 
the cerebellum, insula and superior temporal gyrus between crack- 
cocaine users compared to non-cocaine dependents (Weller et al., 
2011). Even though this preliminary report did not analyze differences 
in striatal structures, a FreeSurfer study carried out by Shuch-Goi et al. 
found reduction of the NAcc in crack-cocaine users compared to healthy 
subjects (Schuch-Goi et al., 2017). Although we did not find a congruent 
result in our FreeSurfer analysis, our VBM analysis also presented 
decreased NAcc volume in CD group. Hall et al. hypothesized that the 
inconsistencies in the directions of reported subcortical changes could 
be related to methodological reasons such as the use of different image 
analysis methods between studies (Hall et al., 2015). Thus, our results 
support that hypothesis by showing distinct findings while using two 
different image analysis techniques in the same sample. 

Although we used the same dataset in our FreeSurfer and VBM an-
alyses, there was surprisingly no overlap between the results in the areas 
in which we found significant effects. Since our study was not designed 
to specifically investigate between-technique differences, we will only 
shortly discuss possible explanations why the VBM findings deviate from 
our FreeSurfer results. Whereas FreeSurfer calculates the total volume of 
a cortical parcellation or subcortical segmentation, VBM assesses GM 
volume on a voxel-by-voxel basis. VBM might, therefore, be more sen-
sitive to detect small local effects that may be ‘averaged out’ when 

Table 3 
Summary of FreeSurfer CT results.  

Region Talairach 
coordinates (X,Y,Z) 

Cluster 
size 
(mm2) 

p- 
value 

Adjusted 
p-value* 

Left inferior 
temporal 
cortex 

− 58.8,− 43.2,− 12.8 3929.23 <0.001 0.018 

Left 
orbitofrontal 
Cortex 

− 17.1,31.2,− 19.7 1884.63 <0.001 0.011 

Left rostro 
frontal cortex 

− 41.5,31.8,25.3 895.63 0.014 0.053 

CT reductions in CD vs. HC, as Determined from regions of interest (ROI) 
Analysis. 

* adjusted for years of study by Covariance Analysis. 

Fig. 2. CT group difference.  
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measured over a larger area. Also minor methodological variations, such 
as different spatial transformations or smoothing procedures can alter 
results in a way similar to the biologic differences under investigation 
(Gerrits et al., 2016; Hall et al., 2015; Henley et al., 2010). Since Free-
Surfer is a surface-based technique, and thereby differentially affected 
by these important preprocessing steps, this further hinders the 
between-technique comparison. Moreover, in our VBM evaluation, we 
used TFCE for multiple comparison correction considering a significant 
p-value of 0.05., whereas in the FreeSurfer evaluation we employed 
Monte Carlo Null-Z simulation for multiple comparisons correction, 
which is statistically more stringent (Gerrits et al., 2016; Lieberman and 
Cunningham, 2009). In addition, it is also conceivable that subcortical 
abnormalities in crack-cocaine users are subtler than cortical alter-
ations. (Ersche et al., 2013; Hirsiger et al., 2019). Thus, we believe that if 
GM volumes differences had been more pronounced, both techniques 
would have detected similar findings. 

The fronto-striatal circuit is linked to addiction-related behaviors 
concerning a series of transitions from initial voluntary drug use to drug 
seeking and taking behaviors. The current hypothesis is that voluntary 
goal-directed behaviors mediated by the ventral striatum dynamically 
shift towards habitual and compulsive behaviors by dorsal striatum as 
drug addiction progress (Everitt and Robbins, 2013). NAcc has an 
important function to integrate associative information and reward from 
limbic circuits (Corbit and Balleine, 2011). Functional MRI (fMRI) 
studies also show a correlation with the brain areas affected by 
crack-cocaine in our study. Early studies of fMRI in humans (Volkow 

et al., 2006) found an association between cocaine craving and dopa-
mine increases in dorsal striatum, but failed to show association be-
tween craving and dopamine changes in ventral striatum. Some findings 
in laboratory animals have shown that NAcc presents an impairment to 
acquire new associations after cocaine exposure (Saddoris and Carelli, 

Table 4 
Correlation between crack-cocaine years of use and CT.  

Region Correlation coefficients p-value Adjusted Correlation coefficients p-value adjusted** 

Left orbitofrontal cortexa − 0.509 0.047* − 0.460 0.098 
Left inferior temporal cortexa − 0.488 0.036* − 0.324 0.048* 
Left rostro frontal cortexa − 0.118 0.652 − 0.204 0.485 
Left inferior lateral ventricleb 0.579 0.038* 0.471 0.089 
Right hippocampusb 0.345 0.249 0.108 0.712 
Right ventral diencephalonb 0.334 0.265 0.010 0.974 
VBM significant clustersc 0.205 0.418 0.136 0.642 

Note. 
a FreeSurfer CT results. 
b FreeSurfer GM volumes results. 
c VBM GM volumes results. 
* p<0.05. 
** adjusted by age. 

Table 5 
Correlation between alcohol and cigarettes years of use, age of crack-cocaine use onset and GM brain indices (correlation coefficients are presented*).  

Region Years in life that drank alcohol regularly, 3 
or more days a week 

Years in life that drank at least 5 drinks a day, 
3 or more days a week 

Years in life that smoked 
cigarettes 

Age of onset of crack- 
cocaine use 

Left orbitofrontal 
Cortexa 

− 0.263 − 0.006 − 0.313 0.150 

Left inferior temporal 
cortexa 

− 0.028 0.164 − 0.239 − 0.469 

Left rostro frontal 
cortexa 

− 0.109 0.433 0.083 0.114 

Left inferior lateral 
ventricleb 

− 0.114 − 0.410 − 0.022 − 0.036 

Right hippocampusb 0.083 0.244 − 0.066 0.033 
Right ventral 

diencephalonb 
0.076 0.032 0.288 0.453 

VBM significant 
clustersc 

0.479 0.171 0.481 − 0.194 

Note. 
a FreeSurfer CT results. 
b FreeSurfer GM volumes results. 
c VBM GM volumes results. 
* all p>0.05. 

Table 6 
Correlation between CSSA score, drug use severity, alcohol composite score and 
GM brain indices (correlation coefficients are presented*).  

Region CSSA 
score 

Drug use 
severity 

Alcohol composite 
score 

Left orbitofrontal cortexa − 0.174 − 0.133 0.032 
Left inferior temporal 

cortexa 
− 0.081 − 0.144 − 0.192 

Left rostro frontal cortexa − 0.095 − 0.370 − 0.006 
Left inferior lateral 

ventricleb 
0.452 0.111 − 0.108 

Right hippocampusb − 0.418 − 0.174 0.069 
Right ventral 

diencephalonb 
0.038 0.177 − 0.004 

VBM significant clustersc 0.399 − 0.176 − 0.133 

Note. 
a FreeSurfer CT results. 
b FreeSurfer GM volumes results. 
c VBM GM volumes results. 
* all p>0.05. 
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2014). Dorsal striatum (caudate and putamen) are implicated in 
stimulus-response learning, including habit formation in drug addiction 
(White and McDonald, 2002). A recent research performed by Wang 
et al. (Wang et al., 2018) demonstrated an abnormal function of 
fronto-striatal-thalamic during response inhibition in cocaine users 
compared to HC. Taken together, results from structural and fMRI sug-
gest that structural damage in fronto-striatal circuit plays a key role in 
drug addiction. 

Our study revealed lower CT in lTC, lOFC and lRFC in CD group 
compared to HC. These findings are not surprising as cortical thinning 
have been found in studies of cocaine addiction (Garza-Villarreal et al., 
2018, p.; Hirsiger et al., 2019; Kaag et al., 2014; Makris et al., 2008). 
These CT alterations may be associated with loss of inhibitory and 
emotional control, as well as difficulties for functioning in a social 
context (Beer et al., 2003; Szczepanski and Knight, 2014). Thus, alter-
ations in thickness would be an important indicator of functional brain 
illness (Makris et al., 2008). Furthermore, we found a negative corre-
lation between crack-cocaine years of use and ITC and IOFC CT. How-
ever, the partial correlation adjusted by age between lOFC CT and 
crack-cocaine years of use did not remain significant. Two 
meta-analyses also reported an association between duration of cocaine 
use and GM abnormalities (Ersche et al., 2013; Hall et al., 2015). 
Moreover, our findings of lower lOFC CT are consistent with findings 
reported by Hirsiger et al. (Hirsiger et al., 2019). The authors also found 
longitudinal CT changes in the middle frontal gyrus, which includes the 
lRFC region shown to have cortical thinning in this study (Hirsiger et al., 
2019). These findings suggest that the CT abnormalities of crack-cocaine 
users are, at least in part, drug-induced. 

Interestingly, we did not find a significant correlation between 
striatal subnuclei volume and years of crack-cocaine consumption. 
Studies with a similar design as presented here also failed to demon-
strate an association between years consuming crack-cocaine and 
striatum volume (Barrós-Loscertales et al., 2011; Garza-Villarreal et al., 
2017; Hirsiger et al., 2019). Although we found lower volume in right 
hippocampus in CD, we did not find the same negative correlation re-
ported by hall et al. between right hippocampus volume and duration of 
crack-cocaine use (Hall et al., 2015). Additionally, when co-varying for 
years of study the group differences in ventral diencephalon and right 
hippocampus did not remain significant. We also found enlargement in 
the left inferior lateral ventricle in CD, but the positive correlation be-
tween duration of crack-cocaine use and left inferior lateral ventricle did 
not remain significant after adjusting for age. It is not surprising as 
ventricular enlargement has been found in normal aging (Lg et al., 
2012). Taken together, these findings may imply that cocaine has either 
no chronic effect on the volume of subcortical structures or even it could 
be a neural indicator linked to a higher vulnerability for crack-cocaine 
addiction. 

Future steps in neuroimaging are moving toward the use of this 
knowledge to improve patient care to crack-cocaine addicted in-
dividuals. The integration of neuromarkers into the diagnosis and 
prognosis of addictions may help psychiatrists to select the most bene-
ficial treatment for each patient. Interestingly, a recent longitudinal 
study showed that decreasing cocaine consumption was associated with 
increasing CT in the follow-up. In addition, the same study showed a 
tendency of decreased frontal CT in subjects with sustained or increased 
cocaine intake (Hirsiger et al., 2019). The corroboration of our results in 
longitudinal studies provides information that support the importance of 
prolonged abstinence periods, since GM fronto-striatal dysfunction re-
covery may be associated with more effective treatments. Surprisingly, 
we found no associations between drug use severity, abstinence symp-
toms, age of crack-cocaine use onset and GM measures. Outcome studies 
investigating differential treatment modalities may help elucidate the 
clinical implications of these GM abnormalities. 

Strengths of this study include the investigation of contradictory MRI 
imaging aspects of crack-cocaine addiction, a suitable matched control 
sample and the use of recognized methods of image analysis. 

Nevertheless, we recognize some limitations in this report. The small 
sample size reduces the power of the study, and as such the results 
should be interpreted with caution. Furthermore, neuroimaging data 
from 12 participants were excluded from the analyses. We argue that 
crack-cocaine addicts are a difficult population to study, especially in 
the context of neuroimaging research, due to its social vulnerability, 
impulsive behaviors, unfamiliarity about medical procedures such as 
MRI scans, and possible weak motivation to complete this study. In 
addition, other authors have reported similar difficulties (Kiluk et al., 
2013; Paim Kessler et al., 2012; Schuch-Goi et al., 2017; Weller et al., 
2011). Even though we demonstrated significant results with a relatively 
small sample size, studies enrolling more subjects may provide more 
substantial differences in other brain areas in crack-cocaine users. Our 
sample consisted exclusively of men, so collected results could not be 
generalized to a larger population. 

Bearing in mind that CD subjects presented concomitant regular use 
of alcohol and tobacco, it is not clear how specific our findings might be 
for crack-cocaine use. Co-occurring substance use is a general issue for 
all studies of human substance dependence. The mega-analysis of 
Mackey et al. reported that alcohol had the greatest effects on GM 
structures (Mackey et al., 2019). Alcohol use disorder is very prevalent 
in the population of crack-cocaine addicts, so exposure to alcohol is 
nearly inevitable in this population (Gossop et al., 2006). However, we 
found no association between alcohol consumption patterns and GM 
abnormalities. In order to maintain the generalization of our findings, 
we chose not to exclude alcohol use disorder in the sample. Further-
more, years in life that smoked cigarettes was not significantly corre-
lated with GM alterations, supporting previous findings that showed 
that GM alterations found in CD were not associated with tobacco use 
severity (Crunelle et al., 2014; Hirsiger et al., 2019). Moreover, the 
mixture of cocaine with levamisole is linked to neurotoxic effects in 
addicts with regular use of levamisole-contaminated cocaine (Vonmoos 
et al., 2018). Therefore, it is another potential source of variance in our 
analyses, bearing in mind that levamisole is currently one of the most 
common crack-cocaine adulterants in Brazil (Ribeiro et al., 2019). 

Finally, the cross-sectional design of our studies cannot let us define 
cause-and-effect in crack-cocaine addiction. We acknowledge that this 
question can only be tested using longitudinal studies in populations at 
risk of crack-cocaine use. Despite these shortcomings, our findings can 
stimulate new studies aiming to deepen the knowledge about neuroan-
atomical underpinnings of different ways of cocaine consumption and 
the role that fronto-striatal pathology plays in crack-cocaine addiction. 
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Chakravarty, M.M., Devenyi, G.A., Gonzalez-Olvera, J.J., 2018. Patterns of reduced 
cortical thickness and striatum pathological morphology in cocaine addiction. 
bioRxiv. https://doi.org/10.1101/306068, 306068.  

Garza-Villarreal, E.A., Chakravarty, M.M., Hansen, B., Eskildsen, S.F., Devenyi, G.A., 
Castillo-Padilla, D., Balducci, T., Reyes-Zamorano, E., Jespersen, S.N., Perez- 
Palacios, P., Patel, R., Gonzalez-Olvera, J.J., 2017. The effect of crack cocaine 
addiction and age on the microstructure and morphology of the human striatum and 
thalamus using shape analysis and fast diffusion kurtosis imaging. Transl. Psychiatry 
7, e1122. https://doi.org/10.1038/tp.2017.92. 

Geng, X., Hu, Y., Gu, H., Salmeron, B.J., Adinoff, B., Stein, E.A., Yang, Y., 2017. Salience 
and default mode network dysregulation in chronic cocaine users predict treatment 
outcome. Brain J. Neurol. 140, 1513–1524. https://doi.org/10.1093/brain/awx036. 

Gerrits, N.J.H.M., van Loenhoud, A.C., van den Berg, S.F., Berendse, H.W., Foncke, E.M. 
J., Klein, M., Stoffers, D., van der Werf, Y.D., van den Heuvel, O.A., 2016. Cortical 
Thickness, Surface Area and Subcortical Volume Differentially Contribute to 
Cognitive Heterogeneity in Parkinson’s Disease. PLoS ONE 11. https://doi.org/ 
10.1371/journal.pone.0148852. 

Gossop, M., Manning, V., Ridge, G., 2006. Concurrent use and order of use of cocaine and 
alcohol: behavioural differences between users of crack cocaine and cocaine powder. 
Addiction 101, 1292–1298. https://doi.org/10.1111/j.1360-0443.2006.01497.x. 

Hall, M.G., Alhassoon, O.M., Stern, M.J., Wollman, S.C., Kimmel, C.L., Perez- 
Figueroa, A., Radua, J., 2015. Gray matter abnormalities in cocaine versus 
methamphetamine-dependent patients: a neuroimaging meta-analysis. Am. J. Drug 
Alcohol Abuse 41, 290–299. https://doi.org/10.3109/00952990.2015.1044607. 

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., 
Pacheco, J., Albert, M., Killiany, R., Maguire, P., Rosas, D., Makris, N., Dale, A., 
Dickerson, B., Fischl, B., 2006. Reliability of MRI-derived measurements of human 
cerebral cortical thickness: the effects of field strength, scanner upgrade and 
manufacturer. Neuroimage 32, 180–194. https://doi.org/10.1016/j. 
neuroimage.2006.02.051. 

Hatsukami, D.K., Fischman, M.W., 1996. Crack cocaine and cocaine hydrochloride. Are 
the differences myth or reality? JAMA 276, 1580–1588. 

Henley, S.M.D., Ridgway, G.R., Scahill, R.I., Klöppel, S., Tabrizi, S.J., Fox, N.C., 
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