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Abstract
The high PET consume, mainly as bottles, associated with rapid disposal and high resistance to ambient conditions and 
biological degradation lead to accumulation in the enviromental, constituting a worrying scenario in world level. Chemical 
recycle PET by glycolysis is an important alternative, once bis(hydroxiethyl)terephthalate (BHET), high added value mono-
mer, can be obtained. In this context, this study approaches the use of titanate nanotubes (i.e. sodium/protonated titanate 
nanotubes) as catalyst for PET glycolysis. Reactional conditions, the origin and granulometry of PET flakes were evaluated 
(at 196 °C). Best results (BHET yield > 80%) were obtained for both catalyst in 3 h of reaction. The protonated titanate 
nanotubes catalyst were more efficient than sodium titanate nanotubes due to greater concentration of Brönsted and Lewis 
acid sites, indicated by TPD analyzes.

Graphical Abstract

Keywords Chemical recycling · Glycolysis · PET · Nanostructure catalysts · Titanate nanotubes

1 Introduction

Chemical recycling of post-consumer polyethylene tereph-
thalate (PET), a semicrystalline thermoplastic polymer with 
high added value and very important for global economy due 
to its wide variety of applications as packaging, fibers, films 
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among others [1], has received great attention in the field of 
sustainable technology and resource conservation [2].

In the latest released data, PET consumption in Brazil 
was estimated to reach 840 kTon in 2016, representing an 
increase of 12% in relation to 2007, according to data from 
the Brazilian Association of PET Industry (ABIPET) [3].

The scenary of solids residue in Brazil in 2014, released 
by the Associação Brasileira de Empresas de Limpeza 
Pública e Resíduos Especiais (ABRELPE), shows that PET 
recycling in 2012 represented 58.9%, 1.8% higher than in the 
previous year [4]. However, in 2015 this dropped to 51% [5], 
caused by the decrease in the activities of industries that con-
sume recycled raw materials, such as textiles, chemicals and 
automotive [6], due to the decline in the country’s economic 
activity, which reduces the profitability and consequently 
the attractiveness of material recycling. The use of PET is 
mainly on products with a very short shelf life, such as food 
packaging and bottles, as a result it represents approximately 
42% by weight of the fraction referring to the polymers in 
the urban solid waste, according to the Ciclosoft released by 
Compromisso Empresarial para Reciclagem (CEMPRE) in 
2016 [7]. Moreover, its high resistance to ambient conditions 
and biological degradation causes the accumulation of this 
material to be even greater when discarded improperly. In 
view of the foregoing, PET recycling is an imperative issue.

Among the chemical recycling methods, the most com-
mon is glycolysis, in which diols, usually ethylene glycol 
(EG), are used to break the PET chain bonds and obtain the 
monomers used in the polymer manufacturing process. The 
main monomer of this depolymerization is bis (2-hydroxy-
ethyl terephthalate), better known as BHET, which can eas-
ily be reintroduced into PET production [8–10].

However, the use of drastic reaction conditions (high time 
and temperature) leads to research of different metallic cata-
lysts (chlorides, acetates, hydroxides, sulfates, carbonates, 
among others) that are soluble in ethylene glycol (EG) [9, 
11]. Yet some of these catalysts require long reaction time 
(up to 8 or 9 h) [9, 12] and others achieve a maximum yield 
of 65%, 50% [13].

In the last decades, the utilization of heterogeneous cata-
lysts has received highlight and their application is explored 
in different areas as acetalization and ketalization of glycerol 
[14], epoxidation of olefins [15, 16] conversion of ethanol in 
1,3-butadiene [17], as well as, PET glycolysis. The develop-
ment of catalytic systems based on  SO4

2−/ZnO,  SO4
2−/TiO2 

and  SO4
2−/ZnO-TiO2 present good performance in the PET 

glycolysis (PET conversion about 100% and BHET yield 
about 70%) [18]. The utilization of layered double hydrox-
ides as catalysts showed PET conversion about 100% with 
BHET yield about 80% [19]. In the context of heterogeneous 
catalysts, nanostructures emerge as promising materials for 
areas as biodiesel synthesis [20],  CO2 conversion [21], oxi-
dation of alcohols [22], among others. For PET glycolysis, 

works that studied Perkalite F100 [23] and γ-Fe2O3 [24] 
reached BHET yield over 80%, however, the reaction con-
ditions used were higher than 240 °C.

Lately, titanate nanotubes (TNT) emerge as a promising 
material due to their low-cost and synthesis, low toxicity, 
besides a uniform tubular morphology and high specific sur-
face area (≈ 170 m2 g−1), making them suitable for surface 
modification [25, 26]. Between the advantages generated due 
to high specific surface area of these nanomaterials, there is 
the large number of acid active sites. Recent studies showed 
that titanate nanotubes have Brönsted and Lewis acid sites 
formed from lattice distortion due to the scrolling of titanate 
nanotubes layers [27]. By hydrothermal method it is possi-
ble to obtain TNT with sodium intercalated in its structure 
(NaTNT). One of the possibilities of modification of this 
nanostructure is the exchange of  Na+ by  H+, through acid 
washing resulting in pronotated titanate nanotubes (HTNT). 
Thus, several studies have shown a range of applications to 
this nanostructure as catalysts, for example,  CO2 conversion 
[28], dry reform of methane [29], biodiesel synthesis [30], 
glycerol acetalization [31], aldol condensation [32] and pho-
tocatalysis application [33–35], among others.

In a previous and pioneering work of our group [36], 
sodium titanate nanotubes (NaTNT) were successfully used 
as catalysts for the depolymerization of PET by glycolysis. 
However, the optimal reaction parameters have not been 
evaluated. In this context, the aims of this work was sepa-
rated in two step: the first constituting in the evaluation of 
the influence of PET (virgin and post-consumer) granulom-
etry, EG:PET ratio (w/w) and amount of NaTNT (mol%), 
as well as, time of reaction. The second step remains an 
unexplored area consisting in the performance of a com-
parative study using sodium titanate nanotubes (NaTNT) 
and protonated titanate nanotubes (HTNT) as catalysts for 
depolymerization of PET by glycolysis.

2  Materials and Methods

2.1  Materials

The materials used for synthesis of the sodium and proto-
nated titanate nanotubes (NaTNT and HTNT) and glycoly-
sis reactions were: sodium hydroxide (99% Vetec), titanium 
dioxide (98% anatase phase, JB Química), hydrochloric acid 
(Anidrol), ethylene glycol (EG, 99.5%, Dinâmica), virgin 
PET (Rhopet S-80 – Rhodia Ster/ Mossi and Ghisolfi Group) 
and post-consumer bottle-grade PET. All reactants were 
used as received.
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2.2  Titanate Nanotubes Synthesis

NaTNT were synthesized based on the hydrothermal method 
[37, 38]. In a beaker was mixed 1.5 g (18.8 mmol) of tita-
nium dioxide and 120 mL of 10 mol L−1 NaOH aqueous 
solution. The mixture was kept under magnetic stirring for 
30 min at room temperature. Then the mixture was added to 
a stainless steel autoclave reactor and remained reacting at 
135 ± 5 °C for 72 h. The formed precipitate was centrifuged 
and washed with distilled water several times until the pH of 
washing water reached about 7 and dried at 80 °C for 24 h. 
Protonated titanate nanotubes (HTNT) were obtained from 
1.0 g NaTNT (301.7 mol) mixtured with an acid solution 
(HCl, 0.5 mol L−1) for 30 min at room temperature. After, 
the precipitate was centrifuged and washed with distilled 
water several times until the pH of washing water reached 
about 7 and dried at 80 °C for 6 h.

2.3  PET Glycolysis

For PET glycolysis it was used virgin PET in pellets and 
post-consumer PET bottles, from carbonated drinks (exclu-
sively of soda) and transparent, in order to avoid variations 
relating to colorants and the polymer crystallinity. The bod-
ies of PET bottles were washed, dried and grounded with a 
knife mill in flakes form.

In a typical reaction of PET glycolysis was carried out 
in a 500 mL round-bottom three-naked flask equipped with 
magnetic stirrer, thermometer and reflux condenser. The ves-
sel containing the mixture of EG and catalyst was preheated 
to the selected temperature (196 °C) and, after was added 
the PET. In all runs 15 g of PET (76.5 mmol) were charged 
to the reactor. At the end of the reaction, the temperature of 
the reaction system was reduced to 120 °C. Boiling distilled 
water (300 mL) was added to the reaction mixture to solu-
bilize the glycolysis product. The mixture was filtered (filter 
Unifil C42, 1–2 µm) under reduced pressure with a Büchner 
funnel and the filtrate was stored at 4–10 °C for 72 h to 
form BHET crystals. After, BHET crystals were filtered (G4 
sintered glass funnel and filter Unifil C42, 1–2 µm) under. 
Lastly, the white BHET crystals were dried at 60 °C for 24 h 
and weighted in an analytical balance to estimate the BHET 
yield (Y) according to Eq. (1):

where WBHET,f represents the final weight of BHET, 
MWBHET represents the molar weight of BHET 
(254 g mol−1), WPET,i represents the initial weight of PET 
used in the reaction and MWPET represents the molecular 
weight of the repeat unit of PET chain (192 g mol−1).

(1)Y =
WBHET ,f∕ MWBHET

WPET ,i∕MWPET

× 100,

The conversion (C) of PET in glycolysis reactions was 
calculated based on Eq. (2):

where Wi represents the initial weight of PET and Wf rep-
resents the weight of undepolymerized PET. All reactions 
were performed in duplicate and the experimental error of 
about 3% was accepted.

2.3.1  Effect of Granulometry of Post‑consumer PET in PET 
Glycolysis

The comminution process of post-consumer PET bottles 
produces flakes of different sizes, which were separated as 
follows: particles from 1.00 to 2.36 mm (granulometry 1), 
particles from 2.36 to 4.75 mm (granulometry 2) and par-
ticles larger than 4.75 mm (granulometry 3) using AAKER 
sieves with 16 mesh opening and KAMACHA with 8 and 4 
mesh opening. These three different grain sizes were used in 
the post-consumer PET depolymerization reaction by glyco-
lysis to evaluate the influence of particle size. All reactions 
were realized up to 4 h.

2.3.2  Effect of EG:PET Weight and PET:Catalyst mol% Ratio 
in PET Glycolysis

Table 1 summarizes the experimental conditions to all runs 
carried out in this part of the work. The EG:PET weight ratio 
varied between 2:1 and 8:1. NaTNT was used as catalyst in 
all runs and the catalyst content (relative to the amount of 

(2)C =
Wi − Wf

Wi

× 100,

Table 1  Reactional parameters of the glycolysis reactions carried out 
for PET:EG weight ratio and content of NaTNT (mol%) study in this 
work

Run* PET type EG:PET (w/w) NaTNT 
(mol%)

1 Virgin 2:1 1
2 Virgin 4:1 1
3 Virgin 6:1 1
4 Virgin 8:1 1
5 Virgin 4:1 2
6 Virgin 4:1 3
7 Virgin 4:1 6
8 Post-consumer 2:1 1
9 Post-consumer 4:1 1
10 Post-consumer 6:1 1
11 Post-consumer 8:1 1
12 Post-consumer 4:1 2
13 Post-consumer 4:1 3
14 Post-consumer 4:1 6
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PET used) in mol% varied between 1 and 6. All reactions 
were realized up to 4 h.

2.4  Characterization

2.4.1  Transmission Electron Microscopy (TEM)

The evaluation of the internal structure and numbers of 
rolled multilayer lamellar walls of TNT was made using 
transmission electron microscopy (FEI Tecnai G2 T20) 
using cupper grids with carbon film (300 mesh). The meas-
ures of TNT dimensions were obtained by FESEM analysis 
used Image J software (number of measurements = 25).

2.4.2  X‑Ray Diffraction (XRD)

The characterization of the crystalline structure of TNT was 
made by X-ray diffraction analysis (Shimadzu XRD 7000) 
using radiation  Kα of the copper (λ = 1.542 Å), voltage 
40 kV, 30 mA, scanning between 5°–70° 2θ, scan speed of 
0.02° and counting time of 2.0 s. In all analysis TNT was in 
powder form.

2.4.3  Temperature Program Desorption (TPD)

TPD analyzes were performed in a multipurpose system 
(SAMP3). The sample were first degassed at 100 °C in He 
flow (30 min) and then saturated with 5%  NH3 or 30%  CO2 
in He (v/v) for TPD-NH3 and TPD-CO2, respectively. After 
adsorption, the sample were purged in pure He flow for 
30 min to remove physosorbed/weakly adsorbed species, 
and then heating was initiated at the rate of 10 °C min−1 in 
30 mL min−1 of He flow. Desorption curves were recorded 
using a thermal conductivity detector (TCD).

2.4.4  Differential Scanning Calorimetry (DSC)

BHET formed by PET depolymerization reactions were 
characterized by thermal analysis of Differential Scanning 
Calorimetry (DSC) in a calorimeter, Model Q20 from TA 
Instruments in the range from 45 to 270 °C at a heating rate 
of 10 °C min−1, under inert atmosphere of  N2.

2.4.5  Thermogravimetric Analysis (TGA)

The thermal stability of starting virgin and post-consumer 
PET and BHET formed by PET depolymerization reactions 
were characterized by thermogravimetric analysis (TGA) in 
a SDT equipment, Model Q600 from TA Instruments in the 
range from 50 to 800 °C at a heating rate 20 °C min−1, under 
inert atmosphere of  N2.

2.4.6  Nuclear Magnetic Resonance Spectroscopy (NMR)

In order to confirm the production of BHET, 1H-NMR and 
13C-NMR were recorded on a Bruker Ascend 400 NMR 
spectrometer operating at 400 MHz in deuterated DMSO 
solution.

3  Results and Discussion

3.1  Effect of Granulometry of Post‑consumer PET 
in PET Glycolysis

In order to evaluate the influence of post-consumer PET 
granulometry in the BHET formation, thermal analyses by 
DSC for the glycolysis reactions of PET using different par-
ticle sizes were performed and the results are presented in 
Fig. 1. The behavior of the curves is quite similar, showing 
that the reactions presented BHET yields without residual 
PET. A strong endothermic peak located at about 110 °C 
corresponding to the BHET melting temperature [39] is dis-
played for all samples. Considering that none PET flakes 
remain in the first filtration, can be concluded that PET 
conversion was about 100%. In the DSC results, no peaks 
corresponding to dimers and oligomers (165 °C) [40] are 
presented showing high purity of product. The weak signal 
between 200 and 230 °C can be associated to BHET poly-
condensation [41].

The yield values (Y) in BHET are presented in Table 2. 
As observed, the results are similar for all granulometries, 
considering the estimate error (≈ 3%). In general, the high-
est BHET yields were obtained with smaller pellets of PET 
in 3 h of reaction (1.00–2.36 mm), because there was an 
increase in the available surface area for the reaction to 
occur [42, 43]. Maximum yields values for granolumetry 

Fig. 1  Comparative DSC curves of BHET from PET granulometry: a 
1 (1.00–2.36 mm), b 2 (2.36–4.75 mm) and c 3 (larger than 4.75 mm)
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1 and 2 were obtained with 3 h reaction time (80 and 76%, 
respectively).

To decreasing trend on yield value for 4 h reaction time 
may be an indicative that the glycolysis has reached the reac-
tion equilibrium, since the depolymerization of PET can be 
considered a reversible reaction [42]. For grain sizes larger 
than 4.75 mm, the better result was obtained with 4 h of 
reaction.

3.2  Effect of Reaction Parameters in PET Glycolysis

Since the BHET yield results obtained with post-consumer 
PET using granulometry 1 (1.00–2.36) were superior (80% 
in 3 h of reaction), this granulometry was chosen to be 
used in the others stages of the study. Figure 2 shows the 
influence of the EG:PET weight ratio and NaTNT content 
(mol%), for both virgin and post-consumer PET (runs 1–14, 
Table 1) to 4 h of reaction. This time was chosen to evaluate 
the possibility of repolymerization once the equilibrium is 
achieved in 3 h. As observed in Fig. 2a, with the increase 
of EG:PET ratio, there is also an increase on BHET yield. 
Above EG:PET of 4:1 there is no significant difference on 
BHET yield, with values close to 80% similar to that found 
by López-Fonseca et al. using zinc and sodium compounds 
as catalysts [13]. This result shows that it is not necessary to 
use a large excess of ethylene glycol in the depolymerization 
of both PET.

When evaluating the effect of NaTNT content (mol%, 
EG:PET 4:1, 4 h of reaction, Fig. 2b), there is a more sig-
nificant difference the higher the percentage of the catalyst 
used. For virgin PET, the BHET yield remains constant up to 
2 mol% catalyst. However, the use of larger contents leads a 
decrease of up to 20%. On the other hand, for post-consumer 
PET, 1 mol% of catalyst has the highest BHET yield value, 
dropping from approximately 20% to 2, 3 and 6 mol%. This 
decrease in yield with higher catalyst contents may be asso-
ciated with the agglomeration of nanostructures, which is 
increased with high catalyst concentrations, decreasing the 

accessibility of the active sites [44], or even the reversibil-
ity of the reaction (BHET polycondensation) leading dimer, 
trimers or oligomers products [45].

Evaluation of influence of reaction time in BHET yield is 
presented in Fig. 2c, where the EG:PET weight ratio of 4:1 
and amount of catalysts of 1% in relation to PET were used. 
For both virgin and post-consumer PET, the reaction equi-
librium is reach between 3 and 4 h of reaction. In 0.5 h of 
reaction, the BHET yields reach 65% and 38% using virgin 
and post-consumer PET, respectively.

DSC and TG curves of BHET are presented in Fig. 3. 
These results are related to some conditions adopted (4:1 
EG:PET, 1 mol% of catalyst and 4 h). The other conditions 

Table 2  Results of BHET yield (Y, %) for different times and granu-
lometries

PET granulometry (mm) Time (h) Y (%)

1 (1.00–2.36) 2 67
3 80
4 78

2 (2.36–4.75) 2 57
3 76
4 60

3 (> 4.75) 2 70
3 71
4 77

Fig. 2  Effect of a EG:PET weight ratio, b NaTNT content (mol%) 
and c reaction time on BHET yield for virgin and post-consumer PET
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are presented in supplementary material. It is observed in 
DSC curves that there was BHET formation, confirmed by 
the endothermic peak at about 110 °C [46]. Moreover, there 
are not observed peaks corresponding to dimers or oligom-
ers (~ 170 °C) [42] and unreacted PET (255–265 °C) [47]. 
TG curves of BHET exhibit two steps of weight losses. The 
first one, between 200 and 300 °C, shows approximately 
20% and refers to BHET thermal decomposition [36]. The 
second occurs between 300 and 550 °C with about 65% of 
weight loss and is attributed to thermal degradation of PET 
produced by the thermal polymerization of BHET during the 
thermogravimetric analysis process [48]. The residues to all 
analysis are approximately 15%.

BHET samples were also analyzed by 1H-NMR and 13C-
NMR to prove its chemical structure. 1H-NMR and 13C-
NMR spectra are shown in Fig. 4, along with an illustration 
of the chemical structure of the compound.

In 1H-NMR spectrum, the signals labelled as 1, 2, 3 and 
4 (Fig. 4a) are attributed to protons of the aromatic ring 
(δH = 8.11 ppm, s, 4H), hydroxyl groups (δH = 4.96 ppm, 
t, 2H), methylenes (–CH2–) adjacent to –OH groups 
(δH = 3.53 ppm, m, 4H), methylenes (–CH2–) adjacent to 
–COO groups (δH = 4.33 ppm, t, 4H), respectively. Sig-
nal in 2.5 ppm is DMSO and in 3.3 can be attributed to 
residual  H2O [10, 47]. In 13C-NMR spectrum, the signals 
labelled as 1 (δC = 165.55  ppm), 2 (δC = 134.15  ppm), 

Fig. 3  a DSC and b TG curves of BHET with for different reactions conditions for virgin and post-consumer PET

Fig. 4  a 1H-NMR and b 13C-NMR spectra of BHET obtained from post-consumer PET with the use of NaTNT for 4 h reaction
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3 (δC = 130.02  ppm), 4 (δC = 67.48  ppm) and 5 
(δC = 59.47 ppm) are attributed to carbons of the BHET 
chemical structure, as shown in Fig.  4b. DMSO signal 
appears in 40 ppm.

3.3  Comparative Study Between NaTNT and HTNT 
as Catalysts

NaTNT has ability to make ion exchange with a diverse ions 
range, among them, the  H+ ions are inserted into the struc-
ture by a simple acid washing process. In this way, a proto-
nated nanostructure (HTNT) was obtained and character-
ized. Figure 5 presents the results obtained by TEM analysis, 
in which NaTNT and HTNT nanostructures have a similar 
tubular morphology, but with difference in external diameter 
being 8.8 ± 0.8 nm to NaTNT and 10.4 ± 0.8 nm to HTNT 
(calculated using Image J software in Fig. 5). Besides that, 
its observed that NaTNT presented a tubular morphology 

more defined, making possible the visualization of internal 
walls, while HTNT presented a roughness in the surface and 
a lower crystallinity similar to find in the literature [50, 51].

Figure 6 shows the XRD and Raman results obtained 
for NaTNT and HTNT nanostructures. The first one has a 
monoclinic structure belonging to the space group P21/m 
showing diffraction peaks located at 2θ = 10°, 24°, 28°, 48° 
and 61°. In addition, a low intensity peak is observed at 62° 
due to the intercalation of the  Na+ ions between the lamellae. 
The peak located at 10° refers to the interlamellar distance 
of the structure being equal to 0.87 nm. The ion exchange 
promoted a reduction in the crystallinity observed by the 
decrease in the intensity of the peak located at 2θ = 10°, 
suggesting the structure  H2Ti3O7, belonging to the space 
group C2/m, similar to literature [31, 52]. Furthermore, the 
low peak intensity compared to the 28° peak at 24° shows 
that the ion exchange of  Na+ by  H+ cations was successfully 
achieved [53]. Interlamelar distance to HTNT is 0.92 nm, 

Fig. 5  TEM micrographs of 
NaTNT and HTNT catalysts

Fig. 6  a XRD and b Raman of NaTNT and HTNT catalysts
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this increase being due to the addiction of  H3O+ ions [31]. 
Raman results of NaTNT present bands at about 168 and 
193 that are attributed to the Na···O–Ti bending modes [54]. 
Bands around at 295, 462, 710 and 926 cm−1 are assigned 
to the Ti–O–Ti stretching vibration from the  TiO6 octahedra 
from edge-shared  TiO6 [54, 55]. Similarly, Raman spectrum 
of HTNT shows the same characteristics bands of titanate 
phase. However the absence of band in 926 cm−1 indicating 
the efficiency of ion exchange. These results are in agree-
ment with those of the literature [31, 55, 56].

In order to evaluate the influence of the cation exchange 
of  Na+ by  H+ on the active sites of the nanostructures, 
TPD analyzes for  NH3 and  CO2 were performed, shown 
in Fig. 7. Desorption of  NH3 or  CO2 are observed three 
distinct regions located in peaks between 130 and 200 °C, 
250–300 °C and 320–400 °C assigned to the weak, medium 
and strong sites, respectively. The total acid sites quantifica-
tion was 0.34 and 0.79 mmol  NH3 g−1 for the NaTNT and 
HTNT, respectively, while the values obtained for total basic 
sites were 0.20 and 0.35 mmol  CO2 g−1, for the NaTNT 
and HTNT nanostructures, respectively. This result are in 
according with literature [57] indicating a more acidic char-
acter in these catalysts and showing that the HTNT nano-
structure presents more active sites.

In order to compare the two catalysts, NaTNT and HTNT, 
were performed glycolysis reactions using virgin and post-
consumer PET (particle size 1.00–2.36 mm) at 2, 3 and 4 h 

(Fig. 8). In all reactions the conversion of PET was about 
100%. For virgin PET, in 3 h of reaction the HTNT showed 
to be a slightly more effective than NaTNT with BHET 
yields of 88 and 84%, respectively. Whereas for the time 
of 4 h the effect of repolymerization becomes expressive, 
decreasing its yield in BHET to 80% and 76% for NaTNT 
and HTNT, respectively. When using post-consumer PET, 
HTNT nanostructure is more effective in the three reaction 

Fig. 7  NH3-TPD results for a 
NaTNT and b HTNT.  CO2-TPD 
results for c NaTNT and d 
HTNT. The blue curves cor-
responding to curve fitting of 
weak (line), medium (dash line) 
and strong (dot line) sites

Fig. 8  Results of BHET yield (%) in function of glycolysis reaction 
time using virgin and post-consumer evaluating NaTNT and HTNT 
as catalyst
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times evaluated, showing BHET yields equal to 74 and 81%, 
respectively, whereas NaTNT presented values at 67 and 
78%, for 2 and 4 h, respectively.

These better catalytic activity of HTNT are in accordance 
to value obtained by TPD analyzes. More acid actives sites 
present in the surface made this catalyst more promisor for 
PET glycolysis. The proposed mechanism of TNT-catalyzed 
PET glycolysis is illustrated in Fig. 9. PET glycolysis reac-
tion can occur through the acyl-type mechanism  (AAC2) 
according to literature [49]. TNTs catalysts present both 
Brönsted and Lewis sites in their structure. It is suggested 
that the specie that would be formed  (Ti3O7

2−), a Brönsted 
base, can deprotonate the ethylene glycol, making it a better 
nucleophile, specie (1). Lewis acid sites  (Na+ or  H+ ions) 
can form an electron donor–acceptor specie (2) with the car-
bonyl oxygen of the PET chain (Step 1). Thus, the oxygen 
of the hydroxyl group of EG has a higher nucleophilicity 

to attack the carbonyl carbon of the PET chain leading a 
concerted (Step 2). This step leads the break of PET chain 
producing two smaller chains and regenerating the catalyst 
(Step 3) [19, 58]. The new chains return to the catalytic cycle 
lead to formation of oligomers, dimers and BHET. The high 
catalytic activity of TNTs in conversion of PET to BHET 
may be due to the fact that the acidic and basic sites of TNT 
may act concomitantly in the depolymerization mechanism 
of PET.

4  Conclusions

The reaction parameters evaluated with the use of sodium 
titanate nanotubes as a catalyst, such as PET granulometry, 
EG: PET ratio (w/w) and molar percentage of TNT (mol%) 
had no influence on BHET purity, interfering only with yield 

Fig. 9  Proposed mechanism of PET glycolysis catalyzed by NaTNT and HTNT
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values. The best granulometry, among those studied, is of 
1.00–2.36 mm, presenting higher yields in relation to the 
others in 3 h of reaction. For the EG:PET ratios, the best 
relation yield/amount of ethylene glycol used was obtained 
in 4:1. The most efficient percentage of TNT was 1 mol%, 
yielding approximately 80%. HTNT presented as a more 
promising catalyst than NaTNT for PET glycolysis, with 
a maximum yield of 88% compared to 84% when using 
NaTNT at 3 h depolimerization of virgin PET. The use of 
HTNTs maintained the purity of the product obtained, con-
firmed by DSC and TGA analyzes. Thus, this study shows 
that NaTNT and HTNT are efficient catalysts for the depo-
lymerization of PET by glycolysis, presenting high yields.
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