Full Length Article

Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts

Wesley F. Monteiro¹, Michele O. Vieira¹, Camila O. Calgaro¹, Oscar W. Perez-Lopez¹,², Rosane A. Ligabue¹,³,⁴, ⁵

¹ Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul – PUCRS, Brazil
² Graduate Program in Chemical Engineering, Federal University of Rio Grande do Sul – UFRGS, Brazil
³ School of Engineering, Federal University of Rio Grande do Sul – UFRGS, Brazil
⁴ School of Sciences, Pontifical Catholic University of Rio Grande do Sul – PUCRS, Brazil

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Dry methane reforming
Syngas production
Titanate nanotubes
Nanoparticles

ABSTRACT

The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO₂), methane (CH₄) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO₂ and CH₄ conversion < 5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO₂ and CH₄ conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO₂ and CH₄ conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits coke formation when compared to Ni-HTNT.

1. Introduction

In recent years, the concentration of greenhouse gases (GHG) in the atmosphere has increased at an alarming rate due to anthropogenic activities such as the burning of fossil fuels to generate energy [1]. Carbon dioxide (CO₂) is the most detrimental greenhouse gas to environmental and it reached an concentration record of 411 ppm in 2019 [2,3]. Gases found in lower concentrations, such as methane (CH₄),
nitrogen oxides (NOx) and volatile organic compounds (VOCs), also contribute significantly to climate change [3,4]. Faced with this scenario, there is significant global mobilization to reduce emissions of these gases. In 2017, the United Nations Climate Change Conference in Bonn (Germany) found that despite efforts and planning to lower CO2 emissions, the average temperature of the planet is still 2 °C above the ideal and could increase to 3 °C by 2050 [5]. On the other hand, the US, followed by Canada and China, are the leading producers of shale gas [6], with a production that increased more than 30% in the last 10 years [7]. Methane (CH4), the major component of shale gas, plays a significant role in global warming [8]. According to the Intergovernmental Panel on Climate Change [9], urgent changes are needed to mitigate carbon emissions, since it is estimated that climate change could lead to a 10% decline in the annual GDP growth rate of developing countries by the end of century. In this context, research on the capture and conversion of greenhouse gases, primarily CO2 and CH4, is highly relevant and essential to reducing their environmental impact [10–14].

Methane reforming technologies include steam methane reforming (SMR), partial oxidation (POM) and dry reforming of methane (DRM) [15]. Steam methane reforming (SMR) (Eq. (1)) is the most common route for industrial hydrogen production [16], the main disadvantage being the constant deactivation of catalysts [17] and high incidence of equipment corrosion [18] due to the presence of water. The main drawbacks of POM (Eq. (2)) are its high risk caused by the use of O2 and high cost owing to the origin of the gas (cryogenic air separation) [18]. Dry reforming of methane (DRM) (Eq. (3)) is a beneficial chemical process involving reaction between two primary greenhouse gases (methane and carbon dioxide) to produce hydrogen (H2) and carbon monoxide (CO) [20].

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow \text{CO} + 3\text{H}_2 (\Delta H_{298K} = 228\text{kJ/mol}) \quad (1) \\
\text{CH}_4 + \frac{1}{2}\text{O}_2 & \rightarrow \text{CO} + 2\text{H}_2 (\Delta H_{298K} = -22.6\text{kJ/mol}) \quad (2) \\
\text{CH}_4 + 2\text{CO}_2 & \rightarrow 2\text{CO} + 2\text{H}_2 (\Delta H_{298K} = 247 \text{kJ/mol}) \quad (3)
\end{align*}
\]

These methane-reforming products (CO and H2) form a valuable gas mixture known as syngas. Syngas is an important precursor of several chemical routes, such as the conversion of synthetic fuels via the Fischer-Tropsch reaction, and methanol conversion into dimethyl ether (H2) and carbon monoxide (CO) [20].

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow \text{CO} + 3\text{H}_2 (\Delta H_{298K} = 228 \text{kJ/mol}) \quad (1) \\
\text{CH}_4 + \frac{1}{2}\text{O}_2 & \rightarrow \text{CO} + 2\text{H}_2 (\Delta H_{298K} = -22.6\text{kJ/mol}) \quad (2) \\
\text{CH}_4 + 2\text{CO}_2 & \rightarrow 2\text{CO} + 2\text{H}_2 (\Delta H_{298K} = 247 \text{kJ/mol}) \quad (3)
\end{align*}
\]

Within this context, titane nanotubes (TNT), nanostructures synthesized from titanium dioxide nanoparticles (TiO2) using a simple low-cost hydrothermal method [46], are potential catalysts for DRM. Classic titane nanotubes present Na atoms (NaTNT), in their structure, or by acid wash process, are converted in its protonated form (HTNT). TNT have a large specific surface area and high concentration of active sites [47]. Due to this, TNT have been shown to be efficient catalysts in a variety of reactions, including PET glycolysis [48], biodiesel synthesis [49], acetylation of glycerol [50], among others. Besides that, some works, including previous work from our group, showed that NaTNT can adsorb and activate CO2 molecule [51,52].

Coelho et al. studied sodium titanate nanotubes as support for Ni, Pt and Co and their activity to DRM [53]. The better results were obtained in 600 °C using TNT modified with Ni reaching 25% of CH4 conversion. However, no study about the influence of sodium in the nanostructure was reported. In this context, the present study aims to enrich debate in DRM area evaluating the interaction of different metals (Co, Cu, Zn and Ni) with TNTs as support and applying these catalysts to DRM reaction. In addition, the focus is evaluating the influence of presence or not of sodium atoms in TNT nanostructure in relation to coke formation.

2. Methodology

2.1. Materials

For the synthesis of the catalysts, the following reactants were used as received: Sodium hydroxide, NaOH (Vetec, 99.0%), titanium dioxide, TiO2 (JB Química, 98.0% anatase phase), zinc nitrate, Zn(NO3)2·6H2O (Vetec, 99.0%), copper nitrate, Cu(NO3)2·3H2O (Vetec, 98.0%), cobalt nitrate, Co(NO3)2·6H2O (Vetec, 98.0%), nickel nitrate, Ni(NO3)2·6H2O (Vetec, 97.0%) and hydrochloric acid, HCl (Anidrol, 37.0%/v/v).
2.2. Catalysts syntheses

Sodium titanate nanotubes (NaTNT) were prepared according to the method described in the literature [54,55]. In a typical synthesis reaction, 1.5 g (18.8 mmol) of TiO2 powder was mixed with 120 mL of 10 mol·L⁻¹ NaOH solution under magnetic stirring for 30 min. Next, the suspension was hydrothermally treated in a 100 mL Teflon-lined autoclave at 130 °C for 72 h. The white precipitate obtained was washed with distilled water until pH = 7, then centrifuged and dried at 80 °C for 6 h. The NaTNTs were modified by wet impregnation [56]. Therefore, metallic aqueous solutions were prepared from 0.1 g of metallic salt (Zn, Cu, Co and Ni salts) in 50 mL of distilled water. Next, 1 g (3.3 mmol) of NaTNT was added in these solutions and the mix was kept under magnetic stirring at room temperature for 24 h. Lastly, the solid was dried at 80 °C for 12 h, and the nanostructures Zn-NaTNT, Cu-NaTNT, Co-NaTNT and Ni-NaTNT were obtained. Protonated titanate nanotubes (HTNT) were obtained from 1 g (3.3 mmol) of NaTNT mixed in an acid solution (HCl 0.5 mol·L⁻¹) for 30 min, washed with distilled water, centrifuged and dried at 80 °C for 6 h. Ni-HTNT was obtained from HTNT and a nickel nitrate solution, using the same procedure described above (impregnation with excess solvent). All the catalysts were calcined in a tubular quartz reactor with 50 mL·min⁻¹ of synthetic air (21% O₂ and 79% N₂ v/v, White Martins, 99.997% of purity) and a heating rate of 10 °C·min⁻¹ for 1.5 h, volume ratio of 1:9, 10 °C·min⁻¹. The NaTNTs were modiﬁed by wet impregnation [56]. Thereafter, the samples deposited on 300 mesh carbon then centrifuged and dried at 80 °C for 6 h. The NaTNTs were modiﬁed by wet impregnation [56]. Thereafter, the samples deposited on 300 mesh carbon nanotubes (HTNT) were obtained from 1 g (3.3 mmol) of NaTNT mixed in an acid solution (HCl 0.5 mol·L⁻¹) for 30 min, washed with distilled water, centrifuged and dried at 80 °C for 6 h. Ni-HTNT was obtained from HTNT and a nickel nitrate solution, using the same procedure described above (impregnation with excess solvent). All the catalysts were calcined in a tubular quartz reactor with 50 mL·min⁻¹ of synthetic air (21% O₂ and 79% N₂ v/v, White Martins, 99.997% of purity) and a heating rate of 10 °C·min⁻¹, from room temperature up to 600 °C for 2 h, as described in the literature [57].

2.3. Dry reforming of methane tests

The catalytic tests were performed in a fixed-bed quartz reactor (½ in. diameter) heated in an electric oven, under atmospheric pressure. Quartz wool was used to support the catalyst bed and silicon carbide as diluent. Temperature was measured using a K-type thermocouple and gas flow rates were established with digital mass flow controllers (Sierra Instruments). The flow rate used in the tests was 100 mL·min⁻¹ at a CH₄:CO₂:N₂ volume ratio of 1:1:8. System pressure was monitored using a manometer. Runs were carried out at temperatures between 500 and 700 °C (molar ratio CO₂/CH₄ = 1). The products were analyzed by online gas chromatography (Varian 3600cx), with a packed column (Porapak Q), thermal conductivity detector, and N₂ as carrier gas. Reaction runs were performed with approximately 100 mg of catalysts with GHSV of 12000 mL·g⁻¹·h⁻¹. For reduced sample runs, the catalysts were activated in situ at 700 °C, under a mixture of H₂ and N₂ (100 mL·min⁻¹, volume ratio of 1:9, 10 °C·min⁻¹). Methane and carbon dioxide conversion were calculated according to Eq. (7) and (8), respectively. The H₂/CO ratios were estimated using Eq. (9).

\[
\text{CH}_4 \text{ conversion} (%) = \frac{\text{CH}_4(\text{in}) - \text{CH}_4(\text{out})}{\text{CH}_4(\text{in})} \times 100
\]

(7)

\[
\text{CO}_2 \text{ conversion} (%) = \frac{\text{CO}_2(\text{in}) - \text{CO}_2(\text{out})}{\text{CO}_2(\text{in})} \times 100
\]

(8)

\[
\text{H}_2/\text{CO} \text{ ratio} = \frac{\text{H}_2(\text{out})}{\text{CO}_2(\text{out})}
\]

(9)

2.4. Characterization of catalysts

All characterizations were performed using powdered calcined catalysts. Morphological analysis of the nanostructured catalysts was performed by field emission scanning electron microscopy (FESEM, FEI Inspect F50) in secondary electron beam and dispersive energy spectroscopy (EDS) mode using 20 kV. The samples were coated with a thin gold film using ion beam sputtering. Transmission electron microscopy (TEM, FEI Tecnai G2 T20) was also used for morphological analysis, with samples deposited on 300 mesh carbon film coated copper grids. Temperature-programmed reduction (TPR) analyses were performed in a multipurpose system (SAMP3), at a heating rate of 10 °C·min⁻¹ up to 850 °C, under a H₂:N₂ mixture (1:9 vol ratio), with a total flow rate of 30 mL·min⁻¹.

Thermogravimetric analyses (TGA) and temperature programmed oxidation (TPO) were conducted in an SDT Q600 device (TA Instruments) at a heating rate of 10 °C·min⁻¹ from room temperature to 800 °C, under air flow.

X-ray diffraction (XRD) patterns were obtained for the fresh and spent catalysts using a BRUKER D2-Phaser diffractometer under Cu-Kα radiation, at 30 kV and 10 mA.

3. Results and discussion

3.1. Catalyst properties

The XRD patterns for calcined catalysts are shown in Fig. 1. The NaTNT nanosupport exhibits characteristic diffraction peaks for lamellar titanate structures at 2θ = 10°, 24°, 28°, 48° and 62° [50,51], while HTNT shows peaks at 2θ = 25.4°, 37.8°, 48.0°, 53.8°, 55.1° and 69°, similar to described in the literature and in agreement with anatase XRD patterns [52]. The Cu-NaTNT samples presented small peaks between 35 and 39° related to CuO phase, whereas, additional peaks at 33, 35.7 and 49.5° in Ni-HTNT are ascribed to nickel titanate (NiTiO₃) phase [58]. These peaks are smaller for Ni-NaTNT, indicating a smaller crystallites size.

H₂-TPR analyses were performed to investigate the reducibility of the calcined samples and interaction between different metal particles and the support. The results are presented in Fig. 2. A peak was observed above 700 °C for the Co-NaTNT nanostructure, corresponding to Co₃O₄ reduction (Co³⁺ → Co²⁺ → Co⁰) with strong interaction with support, which is well described in the literature [57]. In the present study, this peak at high temperature indicating that cobalt showed a strong interaction with the NaTNT when compared to others supports, like alumina [59] and silica [60], that showed reduction peaks below 500 °C. On the other hand, Cu-NaTNT showed a single intense peak at low temperature (maximum ≈ 300 °C), related to the reduction of CuO species that exhibit weak interaction with the support [61,62]. No
reduction signal was observed for the Zn-NaTNT nanostructure, but an interesting behavior was noted for the Ni-NaTNT and Ni-HTNT catalysts. The first exhibited two peaks, one at 630 °C, corresponding to NiO reduction (NiO → Ni°), showing strong interaction with the support (NaTNT), and another at 790 °C, which may be associated with the reduction of Ni in the NaTNT structure or small crystals of NiO that are difficult to reduce. The first signal for Ni-HTNT is located at 450 °C and can be attributed to the reduction of NiO species in a weaker interaction with the tubular structure. The second signal (600 °C) is associated with the reduction of small Ni from NiTiO3 [63–65].

This behavior can be better assessed by deconvolution the TPR profiles (Fig. 3). Deconvolution of the TPR profiles for the Ni-NaTNT and Ni-HTNT samples showed three peaks corresponding to NiO reduction to Ni0, where the rise in temperature is related to greater interaction between NiO and support [65]. Rui et al. (2014) also reported strong interaction between NiO species and TiO2 [66] and to the NiTiO3 formation. Fig. 3 indicates that the reduction temperatures of the deconvoluted peaks were significantly lower for the Ni-HTNT sample than for Ni-NaTNT, indicating the higher interaction of the Ni particles with support in this last nanostructure. This interaction can be favored by the migration of Na+ to the Ni particles, which will difficult the diffusion of hydrogen [64,67,68].

TEM images for Co-NaTNT and Zn-NaTNT presented difference when compared with Cu and Ni-NaTNT (Fig. 4). In some parts are observed metal free nanotubes and small particle agglomerates (Fig. 4). Distribution of nanoparticles were similar when compared the Cu-NaTNT, Ni-NaTNT and Ni-HTNT nanostructures. EDS mapping obtained from SEM images (Fig. 4) for Co (blue), Cu (red) and Zn (purple) showed signs of metal atoms in all the samples. The Ni-NaTNT and Ni-HTNT nanostructures exhibited a homogeneous nanoparticle distribution over the nanotubes (Fig. 4).

These results present a contribution about the modification of titanate nanotubes with some low cost metals. Use of classic impregnation method to modify the support with Zn and Co generated a heterogeneous distribution of nanoparticles over the nanotubes. Modification with Cu nanoparticles although having homogeneous distribution, has a low reduction temperature, showing weak interaction with support. Ni nanoparticles were shown a homogeneous distribution and great interaction with support.

3.2. Catalytic activity in DRM reactions

Temperature is an important parameter for this reaction due to their endothermic nature [25] and as such, the influence of this parameter in NaTNT and HTNT nanostructures was assessed first. NaTNT exhibited low activity, not exceeding 11% CO2 conversion and 13% CH4 conversion, whereas HTNT displayed negligible CO2 and CH4 conversion rates. The Co-NaTNT, Cu-NaTNT and Zn-NaTNT catalysts showed very low activity (CO2 and CH4 conversion < 5%) (Fig. 5). The low activity observed for the Co and Zn catalysts can be attributed to the hard reducibility of the catalyst, as observed in TPR analysis (Fig. 2) which will not produce active metals. In the case of Cu-NaTNT, this metal has a lower interaction with support, evidenced by TPR analyses. This easy reducibility can lead to the agglomeration of the metal particles, which can result in the low catalytic activity [34]. Ni-NaTNT was the best catalyst among the samples using NaTNT as support, exhibiting greater CO2 and CH4 conversion with an increase in the reaction temperature (35% and 27% at 700 °C, respectively). For this catalyst, CO2 conversion was slightly higher than CH4 conversion due to the reverse water-gas shift reaction (CO2 + H2 → CO + H2O, RWGS) that occurs in DRM [69].

In light of these results, only Ni was used to modify the protonated titanate nanotubes (HTNT). Results obtained with Ni-HTNT were far higher than those observed with Ni-NaTNT nanostructure. CO2 and CH4
conversion were 47 and 41% at 600 °C, respectively, and reaching 70 and 74% of CO2 and CH4 conversion at 700 °C. Our results, compared to literature [53] showed that the protonation of nanostructure of the support leading to the improve in their catalytic activity.

A lower activity observed to Ni-NaTNT can be associated to the smaller crystallite size of Ni nanoparticles or due to their interaction with Na+, as observed in TPR analyzes. Only the Ni-HTNT catalyst approaches the equilibrium conversion of CH4 and CO2 at the higher temperatures evaluated [70]. The Ni-HTNT catalyst led to a linear increase in CH4 and CO2 conversion according to the increase of the temperature. However, for the Ni-NaTNT catalyst, the proportional increase of conversion to CH4 and CO2 occurs due to the DRM reaction, but this does not occur linearly with increasing temperature. The presence of Na in the Ni-NaTNT catalyst acts on carbon gasification during the reaction and influences the dispersion of the Ni in the catalyst.

The deactivation of DRM catalysts due to the formation of coke, which blocks the active metal sites been widely reported in literature [71]. As such, the stability tests for Ni-NaTNT and Ni-HTNT were performed at 700 °C (Fig. 6).

Fig. 6 shows that the catalysts remained stable after 5 h of reaction. The CO2 and CH4 conversion results were 45% for Ni-NaTNT and 79% for Ni-HTNT. A slight decline (< 5%) in conversion values was

![TEM and SEM images](image-url)
observed for Ni-HTNT, although its activity was noticeably superior to that of the Ni-NaTNT sample. The CH₄ conversion obtained for Ni-HTNT it closes to the equilibrium conversion of 91.5%. In addition, CO₂ conversion for HTNT is higher than equilibrium conversion (66.7%) [70]. The favoring of the reverse water gas shift reaction (RWGS) may increase the conversion of CO₂ depending on the catalyst and conditions used. The H₂/CO ratios for Ni-NaTNT and Ni-HTNT were approximately 0.6 and 0.8, respectively. Low values also suggest inhibition of the reverse water gas shift reaction (RWGS) [72].

The activity differences between Ni-NaTNT and Ni-HTNT are related to the particle size formed. Ni-HTNT sample present relatively large Ni particles and, consequently, are more easily reduced resulting in high activity. At the same time, these particles present lower stability, because there is slight loss of activity over time. On the other hand, the Ni particles are smaller in Ni-NaTNT and more difficult to reduce, consequently this sample shows lower initial activity but there is an increase in activity over time. These results are in agreement with the XRD pattern (Fig. 1) and TPR profiles (Fig. 2) for these samples.

3.3. Spent catalyst characterization and coke formation

Coke formation was initially assessed based on the XRD patterns of spent catalysts (Fig. 7). The spent catalysts exhibited new diffraction peaks at 2θ = 27° and 44°. The diffraction peak at 27° was attributed to the carbon produced during DRM [49], whereas the peaks at 44° is related to metallic Ni. A comparison of the spent Ni-NaTNT and Ni-HTNT samples demonstrated that the more intense peak carbon diffraction peak for Ni-HTNT suggests greater carbon deposition. On the other hand, the carbon peak for Ni-NaTNT was small, indicating that this sample had greater resistance to carbon formation when compared to Ni-HTNT, which can be attributed to the presence of Na⁺ in the support nanostructure. In addition, the peak at 44° is more intense an narrower for Ni-HTNT indicating large Ni⁰ crystallite size than Ni-NaTNT and suggesting sintering of Ni⁰ particles.

TGA and TPO analysis of spent catalysts was also used to evaluate the amount of carbon produced in DRM. According to Fig. 8a, Ni-NaTNT exhibited only a small weight increase between 300 and 400 °C, corresponding to the oxidation of nickel particles supported on the spent catalysts [73,74]. However, weight loss (≈ 21%) was also observed for Ni-HTNT between 500 and 650 °C, due to the oxidation of carbon deposited on the catalyst. The TPO (Fig. 8b) results for both catalysts indicated oxidation at lower temperatures (< 400 °C), corresponding to the activated carbon also called amorphous carbon [69,71]. Considering the low weight variation in this range, the amount of amorphous carbon was small and similar for both samples. Additionally, an intense peak was observed at 580 °C for Ni-HTNT, attributed to filamentous carbon or carbon nanotube oxidation [75]. The TPO results corroborate the findings of XRD, demonstrating low carbon deposition in Ni-NaTNT nanostructures and that using NaTNT as support may suppress carbon formation on the Ni surface.

The SEM and TEM images of the spent catalysts are shown in Fig. 9. Three types of carbons are commonly reported in the literature, i.e.: (i) amorphous carbon, (ii) graphitic carbon and (iii) carbon nanotubes [57]. As shown in the TPO and XRD analyses, the Ni-NaTNT nanostructure (Figs. 7 and 8) does not favor carbon deposition in the form of carbon filaments, but rather a low level of amorphous carbon. The morphology of spent catalysts after 300 min of reaction showed nanoparticles homogeneously dispersed on the nanotubes and covered by amorphous carbon (Fig. 9c, d). Fig. 9d shows small dark spots on the catalysts associated with the sintering of Ni nanoparticles at high temperatures, similar to behavior described in literature [71]. The SEM and TEM Images of Ni-HTNT are presented in Fig. 9(e-h), indicating the presence of carbon filaments (Fig. 9h) around the Ni nanoparticles formed by multiple walls. In both reactions, with the Ni-NaTNT and Ni-HTNT catalyst, through the TEM images (Fig. 9e and d) the crystallite sintering of Ni is observed.

The presence of Na⁺ in the nanostructure of Ni-NaTNT confers coking resistance properties when compared to Ni-HTNT, evident in the low carbon content observed in TPO analyses. Dry methane reforming involves CH₄ decomposition followed by carbon species oxidation. The DRM mechanism requires metal-supported catalysts capable of catalyzing CH₄ adsorption and decomposition and hindering or removing carbon species. In a recent study, Dama et al. (2018) found that the presence of alkaline earth metals such as calcium (Ca) in the bimetallic catalyst MZr₁₋ₓNiₓO₃₋₈ resulted in high coking resistance [76]. This effect is similar to that obtained by the presence of Na in the support.

3.4. Proposed schematic diagram for Ni-NaTNT and Ni-HTNT

A schematic diagram of the catalytic system was proposed (Fig. 10) based on the results obtained in this study. The first step corresponds to
CH$_4$ activation and dissociation on the surface of Ni nanoparticles to form CH$_x$ and H species [29]. These species when combined, leave the surface as H$_2$ [76,77]. The TNTs exhibit good interaction and CO$_2$ activation capacity due to the presence of acid and basic sites in the nanostructure [51,52,78–80]. As such, the second step corresponds to CO$_2$ adsorption and decomposition on the TNT surface to form CO species. The Ni-HTNT catalyst showed carbon formation. The carbon deposition occurs from CH$_4$ decomposition in a series of elementary H-abstraction steps that is not removed by desorption or reaction with chemisorbed O* derived from CO$_2$ or H$_2$O co-reactants [29]. The accumulation separates the Ni nanoparticles from the support. This occurs because the growth of carbon nanotubes around the nanoparticles toward the exterior of the catalyst causes Ni nanoparticles to separate from the support, as shown in Fig. 9g, h. However, some Ni nanoparticles remain active for the reaction.

The Ni-NaTNT nanostructure displayed good coking resistance, without the presence filamentous carbon when compared to Ni-HTNT. This effect can be explained by the presence of Na$^+$ ions in the nanostructure, which can migrate from the support to nickel particles, inhibiting coke formation. By contrast, the interaction of Na$^+$ and Ni nanoparticles may reduce the active sites, thereby lowering conversion values [67,68]. The change of Na$^+$ by H$^+$ improves the active sites in the titanate nanotubes, in special acid sites [81,82]. Thus, a part of CH$_4$ molecules can interact with support, which will increase the conversion.

4. Conclusion

This study presented the synthesis and characterization of sodium and protonated titanate nanotubes (NaTNT and HTNT, respectively) modified with metals (Co, Cu, Zn and Ni). TPR analyzes showed high interaction of Ni with the support, while Cu presented easy reducibility. Ni-NaTNT and Ni-HTNT catalysts proved to be highly efficient in DRM. In this study was evidenced that the presence of sodium in the nanostructure of the support, although present decreased the activity of the catalyst, provided resistance to coke formation. HTNT when used as support provide a catalyst with greater activity, however, the formation of carbon filamentous its observed.

In summary, the Ni-HTNT catalyst exhibits higher activity due to the larger size of the Ni particles, which in turn are easily activated but present formation of carbon filaments. On the other hand, the Ni-NaTNT catalyst presents a smaller crystallite size but is more difficult to activate and consequently with less activity but with high stability and resistance to carbon deposition.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The authors would like to thank the National Research Council (CNPq) and the Pontifical Catholic University of Rio
W.F. Monteiro, et al.

