
Information and Software Technology 141 (2022) 106718

A
0

I
L
M
S

A

K
A
E
U
L
C

1

d
s
w
k
s
t
b
i
i
t

s

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

mproving Agile Software Development using User-Centered Design and
ean Startup
aximilian Zorzetti, Ingrid Signoretti, Larissa Salerno, Sabrina Marczak ∗, Ricardo Bastos

chool of Technology, PUCRS, 6681 Ipiranga Avenue, Building 32, room 504, Porto Alegre, RS, Brazil

R T I C L E I N F O

eywords:
gile Software Development
xtreme Programming
ser-Centered Design
ean Startup
ase study

A B S T R A C T

Context: Agile methods have limitations concerning problem understanding and solution finding, which can
cause organizations to push misguided products and accrue waste. Some authors suggest combining agile
methods with discovery-oriented approaches to overcome this, with notable candidates being User-Centered
Design (UCD) and Lean Startup, a combination of which there is yet not a demonstrated, comprehensive study
on how it works.
Objective: To characterize a development approach combination of Agile Software Development, UCD, and
Lean Startup; exposing how the three approaches can be intertwined in a single development process and how
they affect development.
Method: We conducted a case study with two industry software development teams that use this combined
approach, investigating them through interviews, observation, focus groups, and a workshop during a
nine-month period in which they were stationed in a custom-built development lab.
Results: The teams are made up of user advocates, business advocates, and solution builders; while their
development approach emphasizes experimentation by making heavy use of build-measure-learn cycles. The
combined approach promotes a problem-oriented mindset, encouraging team members to work together and
engage with the entire development process, actively discovering stakeholders needs and how to fulfill them.
Each of its approaches provide a unique contribution to the development process: UCD fosters empathy with
stakeholders and enables teams to better understand the problem they are tasked with solving; Lean Startup
introduces experimentation as the guiding force of development; and Extreme Programming (the teams’ agile
method) provides support to experimentation and achieving technical excellence.
Conclusion: The combined approach pushes teams to think critically throughout the development effort. Our
practical example provides insight on its essence and might inspire industry practitioners to seek a similar
development approach based on the same precepts.
. Introduction

Agile methods are defined by their adaptability and flexibility when
eveloping software products [1], having emerged at a time where
oftware engineering methods proved not sufficiently equipped to deal
ith the constant change and unpredictability of the software mar-
et [2]. As agile methods were extensively used these past two decades,
everal studies have reported their shortcomings, ranging from difficul-
ies in problem understanding and solution finding [3] and in adding
usiness value [4] to lack of attention to design and architectural
ssues [4]. As the software industry continues to evolve so does what
s needed to thrive in it, and ‘‘fixing’’ agile methods can be a way
o achieve proper innovation and avoid the launch of undesirable

∗ Corresponding author.
E-mail addresses: maximilian.zorzetti@acad.pucrs.br (M. Zorzetti), ingrid.manfrim@acad.pucrs.br (I. Signoretti), larissa.salerno@acad.pucrs.br (L. Salerno),

abrina.marczak@pucrs.br (S. Marczak), bastos@pucrs.br (R. Bastos).

products [5]. Vilkki [6] suggests that agile methods should be com-
bined with other methods (hereinafter also referred to as ‘‘pillars’’) to
overcome their weakness, with a noteworthy ‘‘method combo’’ being
that of combining them with UCD [7] and Lean Startup [8], as the
former enables software developers to see that the user’s needs are met
and the latter introduces experiment-driven development, mitigating
risk and guiding the generation of value to business stakeholders [9].
This combined approach (hereinafter referred to as such) has been the
subject of research for some time now and its success and improvements
upon regular agile methods have been reported [8,10,11]. However,
there still is a lack of studies thoroughly examining a demonstrated
instance of the combined approach.
vailable online 28 August 2021
950-5849/© 2021 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.infsof.2021.106718
eceived 15 October 2020; Received in revised form 6 August 2021; Accepted 12 A
ugust 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:maximilian.zorzetti@acad.pucrs.br
mailto:ingrid.manfrim@acad.pucrs.br
mailto:larissa.salerno@acad.pucrs.br
mailto:sabrina.marczak@pucrs.br
mailto:bastos@pucrs.br
https://doi.org/10.1016/j.infsof.2021.106718
https://doi.org/10.1016/j.infsof.2021.106718
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106718&domain=pdf

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

a

Adopting the combined approach can be a costly journey, as it
demands not only adherence to practices and technical capabilities
for it to work, but employee mindset change as well. The combined
approach advocates for the autonomy of teams [12] so they can ef-
fectively solve problems, which can clash with existing organizational
mechanisms and culture, hindering the adopters’ chance of a successful
implementation of it. Although there are prerequisites mentioned in
literature to adopting the combined approach and studies presenting
models of it [8,10,13], we still know little about what changes take
place at the development team level and how each pillar is manifested
throughout the development process. Motivated by the need to discuss
these intricacies and the combined approach as a whole, we conducted
a case study of two software development teams from a large multi-
national IT company undergoing an adoption process to a combined
approach upheld by Extreme Programming (XP) [14], UCD, and Lean
Startup; with the intent of answering two research questions:

RQ1. How do teams use the combined approach in practice?
RQ2. How does the combined approach influence development?

To do so, we report on these teams’ custom instance of the combined
approach from a team-level perspective, addressing the combined ap-
proach itself in several aspects: the general environment and mindset
changes it brings about and the influence of each of its pillars on
the development process; and, as an extended version of a previous
paper [15], we report on new findings concerning the roles that make
up the teams and the phases of their development workflow. Our study
dives into the forefront of software development using the combined
approach, providing a holistic account of its inner workings and topical
insights on its use from the perspective of the teams themselves.

The remainder of this paper is organized as follows. Section 2
discusses the use of the combined approach of Agile, UCD, and Lean
Startup in software development. Section 3 describes the case setting.
Section 4 details the research method undertaken in this study. Sec-
tion 5 presents the combined approach as used by the two development
teams, describing their roles and workflow. Section 6 examines the
presence of the combined approach’s three pillars during development.
Section 7 discusses our findings, addressing existing literature; and
examines the study’s limitations. Finally, Section 8 concludes the study
and considers future work.

2. Literature review

2.1. Background

Agile methods range from generic project management frameworks
(e.g., Scrum [16]) to software engineering approaches that provide
specific software development practices (e.g., XP [14]), such as pair
programming. As agile methods have been extensively used in the
past two decades, their shortcomings became more apparent [17].
Some authors argue that agile methods alone are not enough to tackle
business-level issues [6] and that they provide insufficient customer
involvement [18]. Combining agile methods with other approaches to
development has been suggested as a way to fix these issues [6], and
combining them specifically with Lean Startup and UCD has shown
great promise as it seemingly increases the engagement of business
stakeholders and end users while also enabling rapid experimentation,
among other benefits [9,11].

In this combined approach, tackling business-related issues is Lean
Startup, an entrepreneurship methodology that focuses on developing
a business plan iteratively through the use of a ‘‘build-measure-learn’’
cycle, where business hypotheses are evaluated through experimen-
tation [19], enabling companies to pivot away from ideas that data
suggests to be unfruitful and persevere on the ones more likely to suc-
ceed. Continuous experimentation lies at the core of Lean Startup, and
embracing it to develop software demands technological capabilities
2

i

(e.g., continuous deployment) and organizational support (e.g., cul-
ture) [20]. Although not specifically a software development method,
it follows the idea of lightweight processes (via the build-measure-learn
cycle) and studies have reported on it being a great driving force when
developing software [21,22].

To ensure that the software not only meets business demands but
also the users’, the use of UCD [7] enables developers to understand the
users’ real needs [23] and create solutions that are generally regarded
as having improved usefulness, usability, and user satisfaction [24].
The intensity of user involvement varies, from consultation of their
needs and participation in usability testing, to having the user actively
participate in the design process [25]. Although originally a somewhat
structured approach to design,1 as it stands UCD is an umbrella term for
design philosophies, processes, and practices that focus on centering the
user at the heart of the design space, therefore encompassing terms like
Human-Centered Design [26], Design Thinking [27], and the Double
Diamond,2 the last of which encompasses two working spaces—one for
exploring an issue more widely or deeply (divergent thinking) and one
for taking focused action based on the learning from the previous phase
(convergent thinking).

Notably, combining any of the three pillars can be quite challenging
despite their many similarities and ways they can complement one
another. For instance, even though agile methods in general have
been criticized as being lackluster on the process of devising an initial
design [28], merging them with UCD practices can be difficult due to
the former’s focus on getting working software quickly and the latter’s
needs for upfront design planning. These incompatibilities can span to
a more philosophical and principled level as well, such as with the
generalist views present in Agile in contrast to the specialist views
of UCD [23], or Lean Startup’s quantitative methods [19] and UCD’s
qualitative approach [29].

The three pillars deal with different aspects of product development,
namely design (UCD), product management (Lean Startup), and devel-
opment itself (Agile). Combining them into a single approach is Pivotal
Labs, which proposes principles and ceremonies based on the three
pillars, with XP as its agile method. Pivotal Labs’ main goal is to assist
teams in building software products that deliver meaningful value for
users and their business, offering a framework and starting point for any
team to discuss its needs and define its own path towards software de-
velopment. To do so, it suggests the adoption of a cross-functional team
composed of three main roles: Product Designer, Product Manager, and
Software Engineer; the latter specialized in an Anchor role, responsible
for bridging the engineers with users and business stakeholders. It also
proposes that the team finds its own work ‘‘rhythm’’ by collectively
deciding on which ceremonies and workflows derived from the three
pillars to adopt, revisiting them constantly. Pivotal Labs does not
provide a prescriptive set of work practices (which would go against
the Agile philosophy); rather, it suggests the following principles: that
teams should learn by doing, work in a co-located fashion in order to
facilitate coordination and fast feedback loops among team members,
promote constant collaboration, take the lead and own the product
development cycle, and find their own sustainable pace having in mind
that product development is a ‘‘marathon’’ and not a sprint.

2.2. Related work

While Pivotal Labs proposes a philosophical way of working, scien-
tific literature presents models that abstract the combined use of Agile,
UCD, and Lean Startup in software development—with each model
having unique choices for implementing each pillar (e.g., using Design

1 UCD originally defined four phases: observation, ideation, prototyping,
nd testing [7].

2 https://www.designcouncil.org.uk/news-opinion/what-framework-
nnovation-design-councils-evolved-double-diamond

https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

t
w
t
m
t
f
p
p
P
i
p
(

r

Thinking for UCD). For instance, a successful example of the referred
approach is fashion retailer Nordstrom’s Discovery by Design [8]. The
creation of this multidisciplinary innovation approach was undertaken
in an iterative and ‘‘organic’’ fashion by a dedicated innovation team
by combining Agile with Lean Manufacturing, Lean Startup, and Design
Thinking. Spearheaded by an employee passionate about Agile Soft-
ware Development and Lean Manufacturing principles, the innovation
team fully embraced the principles of the Agile Manifesto [1] and
started to prototype new ideas, but soon found that their efforts failed
to gain traction inside Nordstrom, as Agile and Lean Manufacturing
lacked the tools to validate ideas before handing them over to the
business. By adopting the Lean Startup method afterwards, the team
turned itself into a successful ‘‘discovery vehicle’’ that rapidly tested
and validated new ideas by means of measuring customer demand,
albeit with their products seeming a little too much ‘‘business-centric’’.
Given their positive experiences with interacting with end users during
this iteration of their development method, they eventually decided to
incorporate Design Thinking [26] into it in addition to adopting a more
risk-tolerant attitude, completing their method into what they called
Discovery by Design. The team with its ‘‘iterative mindset, relentless
focus on the needs of the customer, and bias towards rapid experimen-
tation, prototyping and testing’’ [8] emerged as a successful dynamic
capability [30] for Nordstrom. The Nordstrom case is a good example of
how the combined approach is successful in supporting software teams
in keeping up with market and user needs, providing a solid source of
evidence to its success.

Another similar development approach to the one reported on this
study is Lean UX [31], which is grounded on agile methods (typically
Scrum), Design Thinking, and Lean Startup, focusing on the integration
of the design process with product development and utilizing principles
derived from its three pillars (e.g., cross-functional teams from Design
Thinking, permission to fail from Lean Startup, and getting out of the
‘‘deliverable business’’ from Agile). Other similar models include the
aforementioned Discovery By Design [8], as well as Converge [10] and
InnoDev [13]; which propose a software development approach that
merges Agile, Design Thinking, and Lean Startup. Discovery By Design
and Converge have their development process characterized by heavy
use of Design Thinking during their initial phases, followed by build-
measure-learn cycles and pivoting decision points; and are backed by
empirical data collected from an industry case and an undergraduate
development team, respectively. InnoDev is similar, providing a scop-
ing phase at the beginning of its process; although it explicitly uses
Scrum and is not yet backed by a real case example.

3. Case setting

Our research group has studied two industry teams from the mo-
ment they arrived back in Brazil at PUCRS’ campus after a three
months-long period (December 2018 to February 2019) of ‘‘learn-on-
the-job’’ training at ORG’s3 USA headquarters to December 2019 when
he teams migrated back to ORG’s Brazilian work site. The teams
ere put together by ORG as a piloting experience on the use of

he combined approach. ORG managers and HR selected among the
ost talented team members in Brazil and sent them for a collabora-

ive work experience with Pivotal Labs consultants in the USA. The
our consultants composed the teams during this three months-long
eriod mentoring them in decision making in light of Pivotal Labs
rinciples. These invited guests acted as full-time Product Designer,
roduct Manager, and Software Engineers (two of them), participating
n product development activities (i.e., they were co-owners of the
roducts under development) and decisions involving both technical
e.g., which architectural design was best for the problem at hand) and

3 Large IT multinational company. Name omitted due to confidentiality
easons.
3

work- and process-related aspects (e.g., how to best design and conduct
an experimental study or what responsibilities certain roles entailed).
Since ORG decided on adopting Pivotal Labs and hired consultancy
to support its transformation from agile methods to the combined
approach as part of the company’s strategic plan, having the teams
being temporarily moved to the USA headquarters alongside Pivotal
Labs representatives helped in their immersion and enabled face-to-face
contact with customers and end-users, these being from products for
internal use of ORG. Moreover, it allowed for a snowballing strategy
to train new people: after the period experimenting at PUCRS and ma-
turing their newly-acquired skills, these teams’ members would return
to their original work premises and train their peers while on the job.
The transformation process, its reasoning, activities, and benefits and
challenges are described in detail in the work of Signoretti et al. [11].

Upon arrival in Brazil, the teams were promptly moved to work on
our campus in a laboratory specially designed for collaborative work
(see Fig. 1), mirroring the infrastructure suggested by Pivotal Labs
(i.e., one large table for each team with notebooks for members to work
in pairs, a large TV screen at the head of each table for presentations
and screen sharing when necessary, and separated working booths
in two corners of the main space for one-to-one meetings or private
conversations). The lab also encompassed a large meeting room with an
even larger table easily flipped into a ping-pong table for leisure time.
It also offered a coffee area in which the teams could sit around during
meals. These spaces contained several whiteboards and had writable
walls to allow for sketching and writing notes as the teams saw fit.

Ever since the teams started working at the PUCRS lab, we have an-
alyzed several aspects of this case, from comparing the teams’ use of the
combined approach to existing literature [32] to analyzing how exper-
imentation takes place during their development process [9] and what
are the success and failure factors to adopting the combined approach
from the teams’ perspective [12]. As previously mentioned, our goal
is to better comprehend the combined approach with two main con-
tributions in mind: practice-wise, to help ORG in devising and rolling
out a reduced-cost transformation effort throughout their organization
by understanding the intricacies of doing so; and academic-wise, to
conceptually develop, in the long-run, what we dubbed as an ‘‘accel-
eration’’ model [33]—a model to assist in such kind of transformation
effort by identifying what knowledge (e.g., on experimentation, on
developing empathy with the user, on pair programming) is required
for a software team to develop a certain product using the combined
approach, diagnosing the gap between the required and the actual team
knowledge, and offering support to follow-up on actions aiming to fill
in this knowledge gap. Our under-development acceleration model is
fueled by the data collected on the teams’ and other similar cases. We
present the organization and the teams next.

The organization. ORG has development sites in the USA (headquar-
ters), Brazil, and India, has over 7,000 employees, and is responsible
for about 1,200 internal software products. The organization started an
agile transformation in 2015, with teams using Scrum as the guiding de-
velopment framework. From this time and on, it became common (but
not organization-wide) to get more team members (e.g., developers,
software architects, and testers) engaged with the business feature-
to-software requirement translation. In late 2017, the transformation
strategy changed as the CEO understood that the organization should
improve their user experience by focusing on products. ORG then
switched from a worldwide road map to focus on a product-oriented
mindset, also adding XP to the Scrum agile tool package. This change
demanded of teams more in-depth knowledge of their users and busi-
ness needs. For this reason, the organization decided to invest in a
combined approach of XP, UCD, and Lean Startup from mid 2018
onwards. This is when ORG reached out to PUCRS and decided on
funding a dedicated experimental research lab of which this project is
part of and that the teams were stationed in for about a year (three
months to set up the lab configuration/room renovation and nine
months working before moving back to the Brazilian ORG office as
previously mentioned).

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.
Fig. 1. Photos of the laboratory.
Table 1
Participants’ profile.

Team Role Overseas
training

IT work
Exp. (yr.)

Organization
Exp. (yr.)

A Product manager Yes 21 6
A Product manager No 16 7.5
A Product designer Yes 27 10
A Software engineer No 6 1
A Software engineer Yes 21 8
A Software engineer No 5.5 4
A Software engineer Yes 20 11
B Product manager Yes 19 0.5
B Product manager No 23 10.5
B Product designer Yes 5 4
B Software engineer Yes 10 4
B Software engineer No 15 11
B Software engineer No 7 7
B Software engineer Yes 5 5
– Transformation lead – 12 7

The teams. We observed in loco these two software development teams
(see Table 1), which originated from ORG’s financial department lo-
cated in Brazil and closely supported one another given the dependen-
cies between their product scopes. Both teams are composed of two
Product Managers, one Product Designer, and four Software Engineers.
These teams were supervised by a senior manager assigned as the
sponsor of the transformation process.

Team A is responsible for a software product that generates and
manages data about organization projects related to equipment and
service delivery. The product manages general project information,
such as personnel assignment and time spent on tasks. The application
also calculates the associated costs of services offered by the products
sold by ORG and displays this information to internal ORG consumers,
while also generating profit data for each project, which is consumed
(along with the rest of the data) by the accounting department. Team
A is tasked with integrating all existing operations of the product into
a single application that fulfills user needs and business expectations.
4

Team B is responsible for a software product that consumes data
from other ORG applications (including Team A’s) to calculate the av-
erage cost of equipment developed in Brazil. The application generates
reports for internal accounting, such as inventory reports. The team
also works on automating the validation process for the data coming
from each source. Team B has to research current product processes to
automate them into the application.

4. Research method

We conducted a single-case study [34] with the two software devel-
opment teams described in the previous section. As both teams worked
closely together, sharing the same physical work environment and
forming the focal point of ORG’s adoption of the combined approach
in Brazil, we considered them as a single unit of analysis. We closely
investigated both teams with the intent of discovering two things: how
these teams use the combined approach (RQ1), and in what ways the
combined approach influences development (RQ2).

We report on the responsibilities of the roles that constitute the
teams and their workflow to answer RQ1 (see Section 5); and on an
overview of the teams’ mindset using the combined approach and the
influence of its pillars on the development process to answer RQ2
(see Section 6). We collected data on both teams during the nine-
month period they were stationed in the development lab dedicated
to experimentation at our university’s campus. We describe the data
collection and analysis methods next.

4.1. Data collection

We used multiple data sources to conduct our study. We detail each
data collection procedure next.

Questionnaire. To kick-off data collection and break the ice with the
participants, we used a brief questionnaire to collect the participants’
profile (see Table 1) during a welcome meeting followed by a coffee
break to celebrate the ORG-PUCRS partnership in this research project.

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.
Fig. 2. Team B’s development workflow outline [15].

Semi-structured interviews. Next, during the first month, we conducted
an initial round of interviews with each participant to learn about their
perceptions of the combined approach. In the third month, we con-
ducted a second round of interviews with each participant to uncover
their perceptions of role changes, interactions between roles, and the
impact of the combined approach on their work routine. We invited
all team members to reflect upon roles and responsibilities changes in
the very last month they worked in our lab as part of our farewell
party. This was done during a coffee break as people were invited to
voluntarily post notes on the coffee space walls while we, researchers,
checked on these notes and chit-chatted with the participants about
them. Throughout the nine months of their stay, if time saw fit, we con-
ducted interviews to learn more about diverse aspects (e.g., purpose of
specific techniques) unveiled in our daily observations sessions. These
interviews had their scripts prepared by the research team members
as the research evolved and were validated with the senior researchers
before being conducted.

Daily observation. We observed team ceremonies (e.g., retrospectives),
stakeholder meetings (e.g., user interviews), and the participants’ over-
all work routine. Observations were conducted on a daily-basis for two
to four hours a day during the first three months and spaced out to a
couple of times a week either decided on a random basis or whenever
the team members announced that something new (e.g., end user bring-
ing new needs to discussion) or interesting (e.g., an unforeseen outcome
of an experimental study) was going on. We also shadowed each role
during the fourth month to gather in-depth knowledge about their
responsibilities and intricacies of how they performed their activities.

Focus group sessions. We conducted eight focus group sessions. In the
first six sessions, which occurred in the third and fourth months, we
discussed each of the pillars (2 sessions for each pillar) and confirmed
data collected through other procedures (e.g., we discussed in-depth
what we learned about the Product Designer role and the UCD pillar).
For the seventh session, also in the fourth month, we had all the
participants confirm our understanding of the teams’ perceptions about
the benefits and challenges of the combined approach [11]. In the last
session, in the fifth month, we had the participants discuss the elements
of each pillar as they perceived them (e.g., activities and techniques).

Workshop. In the seventh month, we had both teams clarify and il-
lustrate their development workflow (see Section 5.2) in a two-part
workshop.4 In its first time slot, we gathered the teams together and
asked them to confirm our understanding of their workflow activities,
roles, and techniques [35]; in addition to explaining their context of
use. In its second time slot, we had them sketch a rough outline (see
Fig. 2) of their development workflow and discuss it in-depth, such as
by examining similarities and differences between both teams.

All interviews, focus group sessions, and the workshop were voice
recorded and transcribed for analysis upon agreement with the teams.
We also took notes during all data collection activities, including during

4 We explicitly differentiate the focus group sessions from the workshop for
clarity as the latter had the concrete objective of creating an artifact.
5

the observation and shadowing procedures. Interviews lasted 30 min
on average, focus group sessions ran for about 1.5 h each, and both
workshop time slots lasted approximately 1.5 h each.

4.2. Data analysis

We analyzed data following the content analysis procedure by
Krippendorff [36], organized into the following steps: organization
and pre-analysis, reading and categorization, and recording the results.
Using Atlas.TI,5 we first read the dataset, extracted text excerpts and
marked them as codes. These codes were revisited and grouped into
larger codes, forming categories. Fig. 3 depicts an example of the
procedure. This iterative process was conducted by two researchers
and was revised constantly by two senior researchers to mitigate any
limitation or bias in our analysis.

We used the results of this analysis to provide a descriptive snapshot
of the teams’ combined approach as a whole. While some categories are
made explicit (e.g., shared responsibilities in Section 6), we aggregated
most of them to better illustrate some of the more prevalent concepts
of the combined approach (e.g., roles in Section 5). That said, we can
map specific collection procedures to each of our findings. For instance,
we combined data obtained from observation with the workshop data
to form a complete picture of the teams’ work process. Our major
findings are: the description and responsibilities of the Roles that make
up the teams; the development Workflow used by the participants;
the Pillars’ Influence on the development process; and the Teams’
Impressions of the combined approach, in regards to their mindset
and its overall ‘‘feel’’. Table 2 maps each major research finding to
data collection procedures—do note that the data analysis was con-
stant (i.e., always the same strategy) and iterative (i.e., conducted and
reported in a weekly-basis in the research team meeting).

During the case study’s nine-month period, our research team held
weekly 1.5 h meetings to organize, summarize, and review newfound
data in insight cards and notes in order to discuss new understandings
of the study and plan the following week’s data collection procedures.
Due to confidentiality reasons, the dataset cannot be shared, however,
it is important to note that the research project underwent an Ethics
Approval procedure with each party (ORG and PUCRS) and that the
studied team members voluntarily signed a Research Consent Form.
Our research team signed a non-disclosure and confidentiality term
with ORG upon project approval with PUCRS.

5. A workflow for the combined approach

In this section we answer RQ1 (How do teams use the combined
approach in practice?) by characterizing the combined approach as
used by the ORG teams. Section 5.1 details the roles that make up
a combined approach development team. Section 5.2 examines the
workflow followed by the teams.

Our interactions with the teams did not reveal any significant differ-
ence in their use of the combined approach, as both teams agreed with
each others’ opinions on operationalization matters during the data
collection procedures in which both were present (focus group sessions
and the workshop). Our analysis of the interviews also suggested this.

5.1. Roles

Inspired by Pivotal Labs, the teams are composed of three roles,
Product Designer, Product Manager, and Software Engineer; each em-
bodying the general aspects of the combined approach’s pillars—
UCD (design), Lean Startup (product development), and XP (develop-
ment), respectively. Other essential roles embedded in the pillars, such

5 atlasti.com

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

f
n
d
s
p
p
e

Fig. 3. Code analysis example.
Table 2
Mapping of major research findings to data collection procedures.
Finding Semi-Structured Interview Questions Daily

Observation
Focus Group
Sessions

Workshop

Roles What is your role on the team and what are your main
responsibilities?
Could you tell us more about the role’s responsibilities?
How have these responsibilities changed over the
transformation? i.e., what is new?

✔ Sessions 1–6 discussing
the pillars

—

Workflow — ✔ — One workshop to
discuss and
outline their workflow
using the combined
approach

Pillars’
Influence

Could you describe a typical work day?*
What differences did you observe in retrospect
regarding the previous work model and the current one
in the transformation so far?**
In your perception, what are the technical factors
that should be adopted and practiced to support a good
delivery process?

✔ Sessions 1–6 discussing
the pillars
Session 7 on benefits and
challenges of the approach
Session 8 on elements
of the pillars

—

Teams’
Impressions

Could you describe a typical work day? (*same question)
Did the activities you perform on the previous work
model change? What were these changes? Were new
responsibilities assigned?
What differences did you observe in retrospect regarding
the previous work model and the current one in the
transformation so far? (**same question)
In your opinion, what are the factors that influence your
team’s engagement?
In your perception, what factors contribute to the
relationship of trust established between the
stakeholders and the team?
In your perception, what factors have contributed to a
closer relationship with stakeholders and users?
What contributes to the team’s autonomy?

✔ Session 7 on benefits and
challenges of the approach

—

t
b
t
f
t
h
g

as XP’s Tester, are not explicitly used: any essential development ac-
tivities are performed by the three aforementioned roles. For instance,
testing was conducted by Software Engineers. By having roles coupled
to the pillars, teams have an easier time answering questions about
the product they are developing: if it solves the users’ problem, if it
helps the business, and if it is feasible to develop it. A common team is
comprised of at least one member on each of these three roles, typically
with a greater number of Software Engineers as they do the bulk of
development work while in pairs. We describe each role next.

Product designer. The Product Designer (PD) is a multi-disciplinary
acilitator that enables the team’s communication with the user. Their
umber one priority is to represent the user and to contribute to the
evelopment process by delivering value in the form of design deci-
ions. A PD does this kind of work throughout the whole development
rocess, not just during the initial phases of development when the
roduct is still uncertain. The PD actively uses techniques such as
xploratory research, interviews, and journey maps to get to know
6

t

the user and ‘‘extract’’ their essence, working closely with the Product
Manager so as to be an advocate for the user’s favor whenever possible.

‘‘The PD helps the team in conducting techniques like affinity and
journey mapping and in identifying the user’s problem in general. They
suggest the use of techniques that foster the team’s empathy with the
user, and also help the team in addressing user pain points through the
product. They work closely with the Product Manager’’.

[Team A]

A PD needs to be empathetic with their users while also helping
he rest of the team in developing the same empathy towards them:
y validating the team’s perception of what the user’s problem is
hrough the use of various techniques (e.g., wireframes, low and high
idelity prototypes, and mockups) and direct user validation (e.g., A/B
ests), the team gets to understand the user’s pain points, consequently
aving an increase in empathy towards them. This process helps in
uaranteeing that the team shares the same vision of the problem and
he solution, in addition to addressing the user’s needs.

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

l
a
t
o
a

a
f

p
d
t
s
p
d
h

u
s
t
i
c
t
t
p

u
r
e
t
i
n
f
m
t
t
i
m

F

‘‘We need to build a relationship with stakeholders, showing them what
we are doing and our results so far. This way we become more trusting of
one another, as both sides are aligned and understand what each other
is doing and their needs’’.

[Team B]

Product manager. The Product Manager (PM) acts as a business repre-
sentative, helping the team to deliver products with meaningful value
to the organization. As the UCD pillar pushes to have the user at
the center of the development process, the PM must understand and
address their needs from a business perspective, acting as a moderator
that balances their needs with the expectations of stakeholders. As a
business advocate, the PM constantly considers the product’s impact
on the business as a whole, and thus works closely with the PD to
iron out any issues that may arise. The PM helps the team in defining
the vision of the product, their strategy to solving the user’s problem,
and encourages the use of experimentation, defining assumptions that
originate from business concerns. They schedule meetings with the
stakeholders to verify if the team is aligned with their goals, ensuring
that the team is treading in the right direction and delivering the right
product to the organization.

‘‘This role helps the team to address the business needs in the product
through value mapping, creating and validating assumptions, helping
the team manage the product backlog, and also helping during exper-
iments. A PM helps the team focus on the problem and work with a
discovery-oriented approach’’.

[Team B]

Software engineer. The Software Engineer (SE) is a software developer
responsible for implementing solutions and the environment in which
they are developed in. The majority of technical tasks (i.e., program-
ming) are performed by the SE, who constantly strives for technical
excellency by mastering development techniques and staying up-to-
date on modern software trends so as to better support and manage
the constant changes that experiments require. The SE also actively par-
ticipates in other non-technical activities, such as user interviews and
experiment definitions, contributing with their technical perspective.

‘‘The software engineer has the responsibility of guaranteeing the en-
vironment to the develop the solution on, implementing a pipeline that
employs continuous delivery and integration. The SE also participates in
each decision made by the team since the product’s conception, while
also participating in user interviews, stakeholder meetings, and other
ceremonies’’.

[Team B]

A specialization of it, the Anchor, also following Pivotal Labs guide-
ines, is an engineer that assists in overall communication by serving as
bridge from the SEs to the user and business stakeholders. The SE that

akes on this role does not necessarily have to be the most experienced
ne on the team, but the role’s heavier emphasis on soft skills calls for
moderate amount of knowledge of non-technical issues.

‘‘One of the roles is the Anchor: a Software Engineer with great commu-
nication skills’’.

[Team B]

Both teams decided on rotating this role from time to time as
means to promote knowledge sharing among team members and

amiliarity with users.

‘‘Since we don’t want users to think that they should go back to the
model in which we had focal points to mediate conversation with business
people, we are rotating the Anchor role among ourselves to avoid
attachment to a certain person and help each one of us to get to know
our product’s users better’’.

[Team A]
7

u

5.2. Workflow

Both teams reported that their workflow (see Fig. 4) is divided
into three major phases, as they progressively gather an increased
understanding of the problem they are trying to solve and what type of
solution might fit best. Their work approach gradually morphs into a
typical development approach more akin to ‘‘standard’’ agile methods,
though it never completely does so. Although reported in a sequential
manner, the teams stated that they sometimes move back and forth
between phases, as dictated by the situation they find themselves in,
conferring an ‘‘organic’’ attribute to problem solving.

Their workflow begins with the Scoping phase, in which teams aim
to discover the scope of their work by interacting with stakeholders.
Just as the product development cycle begins, the UCD pillar promptly
starts exerting its influence as the teams host a meeting to explore the
totality of the vision they will embark in by discussing the problem
to be solved, mapping stakeholders, expectations, etc., in addition to
determining and securing resources, such as specialized tools or extra
personnel. They also take the opportunity to outline an approach to
solve the stakeholders’ demands by means of a brief brainstorming
session, setting the pace of development.

‘‘We have a meeting with stakeholders to understand what will be the
problem that we will work with, understanding our work scope and
problem, trying to understand what it all entails’’.

[Team B]

By mapping all the initial elements that make up the context of the
roblem they will work on, the teams obtain a slate that effectively
efines their work for the upcoming time period by pointing towards
he ‘‘leads’’ that they will have to follow in order to properly satisfy
takeholder demands: stakeholders to interview, a problem vision and
roblem statement (the ‘‘big picture’’ and specifics of the stakeholders’
emands, respectively) to explore, and an initial strategy to figure out
ow to solve the problem.

Next comes the Discovery and Framing phase, in which teams
se the British Design Council’s Double Diamond to refine their under-
tanding of the problem to solve and to determine the right solution
o develop, given the entire context the problem is situated in. It is
n this phase that the Lean Startup pillar starts to emerge, as the
oncept of the build-measure-learn cycle is introduced and immediately
akes a hold of the development process—its pervasive use conferring
he same data-driven approach to decision-making that makes up the
ivot-or-persevere mechanism of Lean Startup.

‘‘The Discovery stage enables the whole team to understand the problem
meticulously. Our goal in the Framing stage is to identify multiple
solutions to the problem we are solving’’.

[Team B]

In its first stage, Discovery, the team focuses on attaining a deeper
nderstanding of the user’s problem and finding its root causes by
unning build-measure-learn cycles. Their activities in this stage are not
xperiments as one would do in a straight Lean Startup approach, but
he teams still use the build-measure-learn nomenclature as they ‘‘build
nterview scripts, measure the efficacy of the script, and learn to do better
ext time’’. By repeatedly employing UCD practices (e.g., collecting
eedback with interviews) they obtain a more specified problem state-
ent to work on, in addition to refining their vision of the context that

he problem is a part of. Throughout cycles, they settle on a persona of
he user and establish a list of assumptions as to what the root problem
s, eventually uncovering metrics that assist them in defining what the
ost likely root problems are, which are then ranked and prioritized.

With a properly defined problem, the teams begins the second stage,
raming, in which they explore different solution ideas through the
se of experimentation, culminating in the selection of a solution idea

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.
Fig. 4. Workflow overview of the combined approach.
that is decidedly better than the others, as suggested by experimental
data. To identify the proper solution to the problem at hand, the teams
again make use of build-measure-learn cycles to generate a list of
possible solutions and the core assumptions that each one holds true
(e.g., refactoring a spreadsheet system will improve its response time
significantly). As the teams iterate, they experiment with prototypes
and collect user feedback to narrow their solution choices down to
the ones most likely to succeed. The Product Designer role is heavily
accentuated in this phase, acting as a constant facilitator for UCD
practices (e.g., user interviews) and guiding the team to the proper
understanding of the user’s needs. After defining the proper solution
to the problem, they establish a Minimum Viable Product (MVP) by
writing User Stories.

The final phase is the Iteration phase, in which the solution cho-
sen in the previous phase is repeatedly developed upon and properly
implemented. This phase is characterized by its heavy use of XP and
similarity to typical agile development, which includes the use of
popular practices such as planning poker and development iterations.
As the teams estimate, prioritize, develop, and deliver User Stories
validated by stakeholders in weekly meetings, the teams still constantly
push for new experiments: they establish new assumptions and devise
new experiments to gather data that might steer the course of the
solution (e.g., validating the need for a new feature), all in service of
improving it overall.

‘‘We are constantly building something: a problem understanding, a
possible solution, a MVP, etc. We create assumptions for each build
process to measure the effectiveness of the deliverable, and we learn in
each delivery if we are treading the right path’’.

[Team A]

Experiment and user feedback data points are used together to plan
out the next steps in developing the solution, and this is done until all
stakeholder demands have been satisfied. If at any point the teams find
8

Table 3
Key aspects of using the combined approach.

Aspect Summary

Roles Each pillar is upheld by a specific role.
Product designer (UCD): an advocate for the user, assists
the team in exploring user needs through the use of UCD
techniques, such as personas and user journey mapping.
Product manager (Lean Startup): an advocate for business
stakeholders, assures that the solution being developed is in
the best interests of the organization and assists the team in
defining experiments to do so.
Software engineer (XP): implements the solution itself and
sets up their development environment with CI/CD
capabilities to better support experimentation, while also
actively participating in the activities proposed by the other
two roles. One Software engineer is designated as Anchor,
and has to bridge the communication gap between engineers
and user and business stakeholders.

Workflow The workflow of the combined approach is organized into
three sequential phases, but teams can return to any
previous phase of development if they find what they are
working on to be unfitting.
Scoping: An overview of the problem to be solved is defined
and affected parties are mapped. Organization resources
required for development are secured.
Discovery & framing: Development immediately turns its
focus towards experimentation. The problem space is
explored with the user and a sensible solution that fits the
organization is determined.
Iterations: The solution is developed iteratively as with
common agile methods, with users and business stakeholders
being consulted weekly.

out through new data that either the problem or the solution they have
been working on is faulty in some way, they pivot back to either the
Discover or Framing stages to explore new alternatives.

Table 3 shows a summary of the teams’ operationalization matters.

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

w
d
t
p
i
t
e

6. Influence of the combined approach on development

In this section we answer RQ2 (How does the combined approach
influence development?) by reporting on the teams’ perception of the
combined approach. Section 6.1 reports on how the teams see the
influence of the pillars during development. Section 6.2 describes the
teams’ impressions of the combined approach overall, explaining its
perspective to software development.

6.1. Influence of the pillars

Each of the pillars that make up the combined approach brings
a set of qualities to the development process, from ceremonies and
techniques to methods and attitudes. In this section we outline the
influence of each pillar from the perspective of the ORG teams.

6.1.1. User-centered design
The teams considered the use of a variant of the British Design

Council’s Double Diamond framework to be the most significant change
imparted by the UCD pillar. They emphasized that the use of this
framework is a consequence of the problem-oriented perspective and
that the whole team participates in its activities. Its use promotes a
closer relationship between them and the stakeholders, increasing the
stakeholders’ trust of the team.

‘‘Using UCD techniques and being more empathetic with our stakeholders
makes them feel essential to the development process, consequently
encouraging them to contribute and talk with us. The business considers
us to be very important to their success, while our users see us as problem
solvers. We gain their trust when we show interest in providing a product
that solves their problems’’.

[Team B]

The framework enables the teams to explore the problem they
ere tasked with solving, obtaining a deep understanding of it, and to
iscover several potential solutions to it. Having stakeholders position
hemselves as empathetic partners was reported to be essential to this
rocess, more so than in the other phases of development. The partic-
pants state that constantly working with stakeholders and collecting
heir feedback is vital to promoting their engagement and discovering
very relevant detail about the problem at hand:

‘‘We use stakeholder feedback as a tool to refine and redefine problem
definitions and priorities. Being aligned with the stakeholders’ needs
makes them more confident about our work. We work together with
stakeholders, ensuring that we are discovering the right path to guide
the product’s development’’.

[Team A]

6.1.2. Lean startup
One of the most powerful concepts drawn out from Lean Startup

from the teams’ point of view is the use of experimentation—the build-
measure-learn cycle. The participants state the cycle to be an ubiquitous
mechanism throughout development:

‘‘We use build-measure-learn all the time, in any part of our process. For
example, in a user interview. If we are defining the interview script, we
are building a script. We measure the script’s value by checking after the
interview if we collected the right data or not. For instance, a stakeholder
answers our questions, but our questions did not bring about the answers
we were looking for. This process allows us to learn from our failures and
create a more assertive script, so we can be more accurate next time.
Build-measure-learn is applicable to any product development activity’’.
9

[Team A]
Experimentation lies at the core of the build-measure-learn cycle.
The teams make assumptions about everything concerning develop-
ment, from what might be the cause of the stakeholders’ problem to
how efficient a solution could be, and then experiment in order to
confirm or refute them, assisting them in understanding the problem
and finding out optimal solutions:

‘‘At the foundation of the build-measure-learn cycle is the concept of
experimentation. We work with a problem-oriented mindset because
experimentation allows it. For instance: in the beginning, we have a
simple view of a problem and this leads us to start making assumptions,
executing experiments using prototypes or other techniques. The results
enable us to measure things about the problem and to refute or accept
our assumptions. At the end of the cycle, we learn from the results and
restart the loop, refining our vision of the problem’’.

[Team A and B]

By confirming or refuting assumptions, the teams can ‘‘pivot’’ away
from wrong problem understandings and bad solutions, reducing devel-
opment waste that would have been spent on exploring them. This prac-
tice of ‘‘pivoting’’ confers a strategic element to the adaptability already
present in regular agile methods, as teams now have experimental data
to fall back on and make more assertive decisions:

‘‘Experiments give us the conditions to understand if we are doing a
smart strategy for our product or not. Sometimes, the strategy defined for
the long-term may not be valid anymore. Also, our relationship with the
stakeholders is an essential factor to persevering in a strategy or pivoting
to another direction’’.

[Team B]

Additionally, experimentation provides the teams with more room
for failure as it makes wrong courses of action be stopped at early
stages, with experimental data also giving them the pointers they need
to fix mistakes quickly:

‘‘Product development is uncertain and very susceptible to failure. Nev-
ertheless, what matters is the speed at which we will react to those things.
The experimentation at the core of build-measure-learn gives us room to
fail but also allows us to fail and fix things quickly. We do not need to
wait until the end of an iteration to discover that we do not understand
the stakeholder’s needs’’.

[Team A and B]

The participants also shared an unusual experiment case which
resulted in a non-software solution, an experience that solidified the
benefits of experimentation in the eyes of the team:

‘‘Our users were facing problems when using spreadsheets with a sub-
stantial amount of data. They were spending a lot of time in this one
application, usually about three days between calculating what they
needed and waiting for the results. Based on that and after analyzing
the application’s architecture for possible performance bottlenecks, our
assumption was that maybe the problem was with the host machine’s
performance and not with the application that generates the spreadsheet
itself. So we defined a hypothesis that a computer with better specifica-
tions would be able to handle the workload, and got to confirm it. After
that, we suggested that the host machine needed some new parts and we
managed to solve the problem without having to write a single line of
code. This experience showed us the importance of experimentation—
and more than that, it showed us that sometimes the solution can be a
non-software one, which is a huge breakthrough for us’’.

[Team A]

By solving the users’ problem without delving into proper software
development, Team A managed to save the organization a considerable
amount of money that would have been spent on development expenses
and man-hours. The ‘‘out-of-the-box’’ solution further consolidated how

they were seen as problem solvers rather than just software developers.

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

a
u
t

e
p
o

i
o
s
t
o

s
s
c

i
o
T
p
t
t

v
a
t
t
r
u

A
o
t
a
a
m
‘

c
d
a
w
s
s

H
m
c
o
v
p
T
d
o

6.1.3. Extreme programming
The XP pillar strives to provide technical excellency to the develop-

ers by instituting practices such as pair programming, unit testing, and
test-driven development. The teams highlight how they benefit from
it, but in regards to pair programming, what is interesting to note is
how this technique was revisited into pair-wise work: the teams work in
pairs most of the time, be it programming, developing interview scripts,
or defining new assumptions to experiment on.

‘‘We benefit from pair programming in many ways: from accelerating the
learning process of a new engineer, to promoting improvements in code
quality. We actually work in pairs in most activities, on the single table
that we have. Our productivity increased despite all the odds’’.

[Team B]

The teams reported significant change to their work process when
dhering to XP due to the new ceremonies. Of note is the ‘‘office stand
p’’ in which both teams (each working on different problems) discuss
echnical hurdles and give status updates on their work to one another.

‘‘We tried to be more aligned with ourselves, and the ceremonies are
useful for that. We continued doing the stand up meeting, retrospective,
and planning. However, we now have an office stand up to be more
connected to other teams—also, the ceremony nomenclature changed
from sprint to iteration. In the planning sessions, we choose if we
must have more than one session—for example, a pre-iteration meeting.
Finally, we have weekly sessions with all stakeholders to strengthen our
relationship with them further’’.

[Team A and B]

The teams highlighted the use of the already in-place practice of
stablishing a continuous integration and continuous delivery (CI/CD)
ipeline, as they considered it essential in enabling their problem-
riented approach and in improving the morale of Software Engineers:

‘‘A CI/CD pipeline is crucial to handle the changes. It promotes faster
feedback and helps us validate stories on the production environment.
CI/CD makes software engineers feel more accomplished, leading to
better quality code later’’.

[Team B]

Lean Startup’s build-measure-learn cycle was reported to directly
mpact how they deal with development iterations, as the development
f the product is completely ingrained with the sense of thinking
ystematically and conducting experiments. The participants state that
heir adoption of the combined approach is successful due to their
pportunistic use of the different pillars:

‘‘Even though our process is represented in a sequential or continuous
vision of the combination of the three methodologies, our daily use of
it is adapted. If we are doing development iterations and notice that the
problem is not well defined, we find it okay to come back to the Discovery
and Framing framework and start again. Alternatively, if we defined
some assumptions and discovered that the product or problem vision is
not well aligned with them, we can redefine these assumptions. This is
the secret of the adoption, applying the combined approach organically’’.

[Team A]

The combined approach gives the teams the tools they need to
ystematically solve problems and expects them to engage in pursuing
olutions without relying on a strict process, thus having the team think
10

ritically and drive the development effort themselves.
6.2. Teams’ impressions

The combined approach has been described by the study partic-
ipants as an ‘‘organic’’ way to solve problems, in contrast to the
waterfall-like approach they were used to employing at ORG before the
transformation to Agile, and even still when compared to Agile itself
given the combined approach’s exploratory and experimental nature.
Before and whilst diving into actual software programming, the teams
constantly question the problem they are actively solving, clearing
their doubts only by trusting ‘‘real’’ sources of truth: user feedback
and other data acquired through experimentation. The teams use this
experimental data to fuel their product discovery process.

‘‘We aggregate value to our products by using experimentation. We
explore the problem that the business wants us to, and by the end of
it, we address their needs through a product’’.

[Team A]

The constant questioning changes the way in which teams approach
ssues (e.g., stakeholder demands, architectural decisions) to a strategic
ne, as they look to be as effective as possible with their solutions.
his in turn leads to an interesting outcome, as they realize that not all
roblems are to be solved by software: although a rare occurrence, the
eams have reported solving some stakeholder demands without having
o write a single line of code.

The chosen pillars of XP, UCD, and Lean Startup respectively pro-
ide direct support to development, product design, and product man-
gement issues with the myriad of techniques that they each refer
o. Our interactions with the teams, however, suggest that its not the
echniques themselves that make the combined approach prosper, but
ather the ‘‘team environment’’ (i.e., shared mindset) that enables their
se in an effective and opportunistic fashion.

problem-oriented mindset. The ORG team members stated that one
f the most impactful changes experienced during their transition
o the combined approach was that of moving to a discovery-based
pproach to development, which pushes them to actively search for the
nswers they need and the questions that need answering themselves,
aking them embrace a problem-oriented perspective instead of one of

‘implementing software requirements’’ as they previously used to:

‘‘Previously, we usually received a set of predefined software require-
ments. We implemented these requirements and considered our work to
be done, not knowing if the underlying problem was actually solved.
Now, we investigate, understand, and participate in the problem’’.

[Team A]

The participants mentioned that this change in mentality was a
hallenge at first, as it directly affects the team’s whole attitude towards
evelopment: the new mindset demanded the teams to start acting
s the main actors of product development and not just as those
ho operationalize it—whereas before business people would provide

oftware requirements directly, the teams now had to interact with
takeholders and discover the requirements themselves.

igh levels of team engagement. The teams’ perception of their com-
itment to the entire software development process has improved

onsiderably since the adoption of the problem-oriented mindset. Early
n, the teams recognized the need to move to a discovery-based de-
elopment approach that provides an improved understanding of the
roduct as a whole, paving the way for more business-aligned solutions.
his realization led them to understand that several new aspects of
evelopment depend directly on their involvement, and that everyone
n the team should be engaged with them.

‘‘Everyone needs to understand the product, not just the Product De-
signer or the Product Manager—the Software Engineer is no longer
isolated. The entire team needs to know why the product is working and
understand the vision behind it. Everyone is always up-to-date’’.

[Team B]

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.
Shared responsibilities. The high level of team engagement resulted in
the teams having shared responsibilities: the entire team participates
in activities such as discussing product needs with the stakeholders
or making strategic decisions about the product itself—a huge de-
parture from what the Software Engineers used to do, which was
mostly requirements elicitation and implementation. By establishing a
relationship between the whole team and the stakeholders, having a
consistent problem understanding throughout the team becomes easier;
and having the Software Engineers actively contribute to the product
conversation can provide novel technical (or non-technical) insights,
hopefully resulting in a better solution overall.

‘‘We have the responsibility to guarantee the environment to develop
the solution on, setting up our pipeline with continuous delivery and
integration. However, we are now responsible for discovering what we
are supposed to be doing in a product-sense, participating in each
decision made since the product’s conception. To that end, we interview
users ourselves, discuss business needs with stakeholders, and so on’’.

[Software Engineers from Team A and B]

The combined approach encourages an increased level of proactivity
as the teams empathize with and get to see issues from the perspective
of users and the business, pushing them to active problem-solving
as they better understand the impact and fruitfulness of their work.
Combined with the data-driven approach of Lean Startup, the teams are
able to solve problems in ways beneficial to the whole organization, for
instance, by taking into account the cost of development for different
types of solutions to a given problem.

‘Back when our work was based on release plans, there was no room
whatsoever for us to experiment and fail. With our new continuous
development and release approach, we can explore, test, and pivot to
different solutions. The extra time we get from this provides us room for
value-driven development’’.

[Team A]

As mentioned in our previous studies on this case, the teams re-
ported a series of perceived benefits after adopting the combined
approach, from increased code quality and trust among team mem-
bers [11] to rapid feedback and reduced development effort [9]. The
combined approach appears to be a suitable fit for ORG, as senior
staff members continue to invest organizational resources in it with the
intent of spreading it throughout the whole organization.

‘‘Users are happy with the results, and senior managers are positive [the
transformation] will work in the long run’’.

[Team B]

While the teams are consistently satisfied with the combined ap-
proach itself and its development results, they have expressed several
concerns with ORG properly adhering to it due to culture clash [11].
The teams require a lot of autonomy to make proper use of the com-
bined approach, but the rest of ORG is used to employing strict project
deadlines and other rigid measures [12], affecting their development
process. For instance, they were unable to deploy a solution for two
months as managers claimed the production environment was unstable,
and one of the participants feels like they will be pressured to abandon
the combined approach if management does not take a stand for it at
ORG’s upper management decision levels [12].
11

Table 4 shows a summary of the combined approach’s influences.
Table 4
Key aspects of the combined approach.

Aspect Summary

Overview The combined approach is a software development
methodology backed by XP, UCD, and Lean Startup. Each
of its pillar tackles different issues (development, product
design, and product management, respectively), and together
they encourage a problem-oriented mindset, pushing team
members to high levels of engagement as they actively
pursue assertive solutions through the use of experimentation
and carry shared responsibilities when taking into account
business needs and user concerns to improve developed
solutions both in a usability and business sense.

Benefits The ORG teams perceived a series of benefits when using
this combined approach, from increased code quality and
trust among team members [11] to rapid feedback and
reduced development effort [9].

7. Discussion

The workflow used by the teams can be interpreted as a somewhat
lightweight process, as the participants stated that they use it in an
‘‘organic’’ fashion, as both product-scale and moment-to-moment pivots
(i.e., opportunistic use of techniques and phases) confer great adapt-
ability to it. Their workflow provides a series of steps that when taken
lead to the discovery and eventual solving of stakeholder problems, and
as the decisions made during the development of a solution are backed
by data, teams can work with confidence knowing that their efforts are
being put to good use.

There are other studies that report on approaches similar to the
teams’ workflow in scientific literature [8,10,13]. While Converge [10]
and InnoDev [13] were presented in a lower level of abstraction,
reporting on roles and activities yet untested in an industry scenario,
and Discovery by Design [8] in a higher level [8], reporting on their
approach as a whole from an empirical perspective in the industry,
our study strikes the balance between both ends of the spectrum by
reporting on operationalization matters of the combined approach in
addition to providing rich detail on the inner workings of the approach
grounded from a team-level industry perspective.

Although the teams’ workflow is not so different from the similar
approaches, it has its particularities. Discovery by Design [8], Con-
verge [10], and InnoDev [13] all bridge Agile and UCD by employing
an upfront design phase, a commonplace ‘‘fix’’ to some Agile and
UCD integration issues [37]. Unlike typical practice, however, the ORG
teams explicitly involve all members in the so-called iteration 0 [37] in-
stead of having designers ‘‘one iteration ahead’’ of engineers [37]. The
teams’ focus on experimentation also ends up improving the integration
effort: with the entirety of the team perceiving their development effort
as a series of experiments, it is easier to convince themselves to go back
to a design phase and adapt their product when there is data justifying
as much, mitigating any resistance to process and culture change one
would expect [37], in addition to helping chunking design [37] down
into experiments. This was not as transparent to ORG stakeholders
external to the team, however, as they were still resistant to the
combined approach [12], even if the change to a discovery-oriented
perspective forced the teams to build more rapport with stakeholders
to properly uncover problems and define effective solutions.

Much of the teams’ perceived improvements can be traced back
to Lean Startup, as its pervasiveness of the build-measure-learn cycle
(i.e., continuous experimentation) enables companies to make well-
informed strategic decisions based on customer data [19]. This ra-
tionale of gathering information to make assertive decisions is used
by the ORG teams to take sensible courses of action at every turn of
product development, resulting in a more adequate solution both in a
technical and business sense. The use of continuous experimentation
brings about several benefits, such as deeper customer insights and

reduced development effort [22], deeper insights on customer needs,

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

7

(
t
o
H
t
o
w
w
t

a
g
a
m
u

behavior, and priorities [22,38]; and possibly improving cycle times
due to the required risk-tolerant approach that increases room for
failure [39]. Running such experiments requires a certain degree of
autonomy and freedom for the teams to explore business-level issues.
Such empowerment can enhance the teams’ morale [40] and overall
efficiency, as they are better suited to handle some decisions due to
being in direct contact with customers and technical matters [39].

Cross-functional teams have been reported as crucial to new product
development for decades [41], and the teams pointed out the impor-
tance of having Product Designers amongst them: even though caring
about and understanding the users’ needs is a responsibility shared by
the entire team, the Product Designer’s expertise and dedicated focus
in conducting UCD techniques is invaluable to having these needs well-
understood. The presence of the Product Manager role mirrors this on
the business side, with the relationship of IT and business stakeholders
greatly improving as new products properly address their needs as well.
Having Software Engineers present during product conception activities
and during business decision-making meetings highlights how the role
is not limited to technical skills in this discovery-oriented approach, and
helps ease the burden of UCD activities [37] on the Product Designer.

While ORG has other teams working on products for external cus-
tomers, the case study teams have only worked for internal customers
so far. We cannot say for sure if the combined approach could work
throughout (or if it is appropriate for) the whole company due to its
sheer size and variety of software projects with different needs [42].
Nordstrom [8] addressed this by using the combined approach specif-
ically for innovation—creating a self-contained team to test new ideas
and products. The case study teams, however, specifically employ XP—
which brings additional engineering practices in contrast to their old
use of Scrum. Tessem [43] highlights how empowered agile teams ac-
centuate the use of low-cost techniques that promote information flow
in order to make better decisions, much like how the ORG teams share
responsibilities among team members and employ pair-wise work,
decreasing knowledge silos and enabling all members to contribute to
decision-making, which should bring at least some net benefit to ORG.

Although we know that each software product comes with its own
context and the combined approach as reported might not be well
suited to some, we derived pragmatical recommendations to using it:

• Ensure that teams understand that they have to look at the
development process through ‘‘problem-solving’’ lenses to make
the combined approach work.

• Ensure that the team is working on several activities together and
not having each pillar completely upheld by a single role.

• Have Product Designers and Product Managers work closely to-
gether to better align the user’s needs with the organization’s.

.1. Limitations

As with any empirical study, ours is limited in several aspects
e.g., generalization concerns [34]). A limitation specific to our study is
hat we did not have explicit contact with the teams’ customers due to
ur research contract with ORG, as they were located outside of Brazil.
owever, we were allowed to use any customer and user data collected

hroughout any of our data collection procedures with full awareness
f these individuals. Even with the explicit absence of direct contact,
e managed to observe several activities in which users and customers
ere involved, thus allowing us to realize how cooperative, in line with

he transformation, and fond of the combined approach they were.
Our case study paints a somewhat idyllic picture of the combined

pproach. From a more cynic point of view, we could interpret the
eneral positivity of the participants towards the combined approach
s an attempt to convince upper management that the investments
ade on the teams were worthwhile, though we think this is quite
12

nlikely given the extensive period we observed the teams; or that it
was brought by subconsciously due to the dedicated lab’s improved
facilities and cheerful atmosphere compared to their old work site.

We made use of several techniques to improve the quality of our
study, and describe them in regards to specific quality tests [34] next.
We do not address internal validity concerns as our study is of an
exploratory nature [34].

Construct validity. As a premise to construct validity, we defined our
subject of change by asking each participant how they were used to
developing software. This was essential as it provided us with a baseline
to better understand what changed with the adoption of the combined
approach. We had multiple researchers conduct the data collection and
analysis procedures to reduce bias, and also used multiple methods and
sources of data to triangulate our findings, in addition to using member
checks (i.e., confirming our interpretations with study participants). We
also had senior researchers validating draft case study reports with two
keen study participants. Alongside the use of multiple data sources,
both are tactics commonly used to address construct validity [34]. We
made sure our research work was as transparent as possible to the
teams, to avoid any misguided suspicions that we might have been
harming the teams in some way, such as by conducting performance
evaluations on behalf of ORG. Our research team coexisted daily with
the teams throughout the extensive time period they were stationed at
our campus. Indeed, some members of our research group even played
ping-pong with the teams outside work hours. While this could have
influenced our analysis somewhat, we think that the long exposure
between participants and researchers led to increased trust, opening
the teams to more honest dialogues about their situation.

External validity. The study was conducted in a single organization (see
Section 3), posing a threat to its external validity. We sampled two
teams developing two different products to mitigate this, although we
analyzed them both as a single cohesive unit. We also highlight that
both teams had the support of one another when using the combined
approach, having been stationed in the same environment for this pur-
pose. This fact could have made the use of the combined approach an
easier and more fortunate endeavor—all negative statements reported
by the teams were not made towards the combined approach itself, but
instead to contextual organizational issues that interfered with it [12].
Nevertheless, the two teams had a substantial level of empowerment,
granting them the autonomy to work as they saw fit in the two distinct
software products they were each working on. We believe this makes
our study more generalizable to software development teams inserted
in different contexts, however we cannot assertively claim so as several
factors need to be considered during the adoption of a development
approach, from team maturity and organizational vision, to specifics of
unique instances of the combined approach.

Reliability. Although case studies are seldom reproducible, we made
sure to document the entire study [44]. We also made use of the
aforementioned triangulation efforts to make our data more consistent
and dependable.

8. Conclusion

We reported on a case study of two product-oriented teams using
a development approach that combines Agile (XP), UCD, and Lean
Startup. We characterized this combined approach through the per-
spective of both teams, revealing key elements that constitute it: the
mindset of the teams when using it, the roles that make up the teams
adhering to it, its workflow, and how its pillars affect development—
while XP provides tools to achieve technical excellence, UCD helps
draws in more knowledge from the user, and the constant experimen-
tation from Lean Startup guides the development process. With the
combined approach, teams are given the tools to gather information
and experiment, compelling them to think critically upon experimental

data in order to determine the next courses of action. For academics,

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.

v
I
L
–

our study contributes with details on the essence of the combined
approach backed by empirical evidence, providing a rich snapshot of
the workflow and mindset of industry practitioners that use it.

We also reported the study from a pragmatic viewpoint by describ-
ing operational aspects of the combined approach, detailing the roles
and workflow utilized by the teams, as well as providing practical rec-
ommendations to using it. Practitioners can take advantage of the study
to kick-start their own adoption process of the combined approach,
even more so if their organizational contexts are similar to ORG’s.

For future work, we suggest an experiment to determine how the
combined approach fares when compared to other development ap-
proaches (e.g., pure XP or InnoDev), so as to quantitatively determine
its strengths and weaknesses. As for our endeavors, after nine months
of studying these two teams, we are ready to assist ORG in assessing
how mature other teams participating in the transformation rollout are,
particularly from a self-evaluation perspective in order to reduce costs.
As previously mentioned, we have been developing a model [33] that
enables teams to perform context-informed assessments and identify
what actions they can take to accelerate their transformation.

CRediT authorship contribution statement

Maximilian Zorzetti: Investigation, Data curation, Writing – re-
iew & editing. Ingrid Signoretti: Conceptualization, Formal analysis,
nvestigation, Data curation, Writing – original draft, Visualization.
arissa Salerno: Investigation, Formal analysis, Data curation, Writing
original draft. Sabrina Marczak: Conceptualization, Methodology,

Validation, Resources, Writing – original draft, Writing – review & edit-
ing, Supervision, Project administration, Funding acquisition. Ricardo
Bastos: Conceptualization, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge that this research is sponsored by Dell Brazil using
incentives of the Brazilian Informatics Law (Law no. 8.2.48, year 1991).
Sabrina Marczak thanks the financial support by CNPq, Brazil (grant no.
307177/2018-1).

References

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., Manifesto for agile software
development, 2001.

[2] E.J. Barry, T. Mukhopadhyay, S.A. Slaughter, Software project duration and
effort: An empirical study, Inf. Technol. Manag. 3 (1–2) (2002) 113—136,
http://dx.doi.org/10.1023/A:1013168927238.

[3] T. Lindberg, C. Meinel, R. Wagner, Design thinking: A fruitful concept for IT de-
velopment? in: Design Thinking: Understand – Improve – Apply, Springer, Berlin,
Heidelberg, 2011, pp. 3–18, http://dx.doi.org/10.1007/978-3-642-13757-0_1.

[4] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, K. Taylor, The challenges that
challenge: Engaging with agile practitioners’ concerns, Inf. Softw. Technol. 77
(2016) 92–104, http://dx.doi.org/10.1016/j.infsof.2016.04.006.

[5] R. Verganti, Leveraging on systemic learning to manage the early phases of
product innovation projects, R&D Manag. 27 (4) (1997) 377–392, http://dx.doi.
org/10.1111/1467-9310.00072.

[6] K. Vilkki, When agile is not enough, in: Proceedings of the International
Conference on Lean Enterprise Software and Systems, Springer, Helsinki, Finland,
2010, pp. 44–47, http://dx.doi.org/10.1007/978-3-642-16416-3_6.

[7] D.A. Norman, S.W. Draper, User Centered System Design; New Perspectives on
Human-Computer Interaction, Lawrence Erlbaum Associates, New Jersey, USA,
1986.

[8] B. Grossman-Kahn, R. Rosensweig, Skip the silver bullet: driving innovation
through small bets and diverse practices, in: Proceedings of the DMI International
Research Conference, Design Management Institute, Boston, USA, 2012, pp.
13

815–829.
[9] B.P. Vargas, I. Signoretti, M. Zorzetti, S. Marczak, R. Bastos, On the understand-
ing of experimentation usage in light of lean startup in software development
context, in: Proceedings of the Evaluation and Assessment in Software Engineer-
ing, ACM, Trondheim, Norway, 2020, pp. 330—335, http://dx.doi.org/10.1145/
3383219.3383257.

[10] B.H. Ximenes, I.N. Alves, C.C. Araújo, Software project management combining
agile, lean startup and design thinking, in: Proceedings of the International Con-
ference on Design, User Experience, and Usability: Design Discourse, Springer,
Los Angeles, USA, 2015, pp. 356–367, http://dx.doi.org/10.1007/978-3-319-
20886-2_34.

[11] I. Signoretti, S. Marczak, L. Salerno, A.d. Lara, R. Bastos, Boosting agile by
using user-centered design and lean startup: A case study of the adoption of the
combined approach in software development, in: Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, IEEE, Porto de
Galinhas, Brazil, 2019, pp. 1–6, http://dx.doi.org/10.1109/ESEM.2019.8870154.

[12] I. Signoretti, M. Zorzetti, L. Salerno, C. Moralles, E. Pereira, C. Trindade,
S. Marczak, R. Bastos, Success and failure factors for adopting a combined
approach: A case study of two software development teams, in: Proceedings of
the International Conference on Product-Focused Software Process Improvement,
in: Lecture Notes in Computer Science, vol. 12562, Springer, Turin, Italy, 2020,
pp. 125–141, http://dx.doi.org/10.1007/978-3-030-64148-1_8.

[13] F. Dobrigkeit, D. de Paula, The best of three worlds: The creation of InnoDev, a
software development approach that integrates design thinking, scrum and lean
startup, in: Proceedings of the International Conference on Engineering Design,
Design Society, 2017, pp. 319–328.

[14] K. Beck, Embracing change with extreme programming, Computer 32 (10) (1999)
70–77, http://dx.doi.org/10.1109/2.796139.

[15] I. Signoretti, L. Salerno, S. Marczak, R. Bastos, Combining user-centered design
and lean startup with agile software development: A case study of two agile
teams, in: Proceedings of the International Conference on Agile Software Devel-
opment, Springer, Copenhagen, Denmark, 2020, pp. 39–55, http://dx.doi.org/
10.1007/978-3-030-49392-9_3.

[16] K. Schwaber, J. Sutherland, The Scrum Guide, Vol. 21, Scrum Alliance, 2011.
[17] E. Schön, et al., Key challenges in agile requirements engineering, in: Pro-

ceedings of the International Conference on Agile Software Development,
Springer, Cologne, Germany, 2017, pp. 37–51, http://dx.doi.org/10.1007/978-
3-319-57633-6_3.

[18] M. Bastarrica, G. Espinoza, J. Sánchez, Implementing agile practices: The
experience of Tsol, in: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, ACM, Oulu, Finland, 2018, pp. 1–10,
http://dx.doi.org/10.1145/3239235.3268918.

[19] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses, Crown Business, New York, USA, 2011.

[20] E. Lindgren, J. Münch, Raising the odds of success: The current state of
experimentation in product development, Inf. Softw. Technol. 77 (2016) 80–91,
http://dx.doi.org/10.1016/j.infsof.2016.04.008.

[21] F. Fagerholm, A.S. Guinea, H. Mäenpää, J. Münch, The RIGHT model for
continuous experimentation, J. Syst. Softw. 123 (2017) 292–305, http://dx.doi.
org/10.1016/j.jss.2016.03.034.

[22] S. Yaman, M. Munezero, J. Münch, F. Fagerholm, O. Syd, M. Aaltola, C. Palmu,
T. Männistö, Introducing continuous experimentation in large software-intensive
product and service organisations, J. Syst. Softw. 133 (2017) 195–211, http:
//dx.doi.org/10.1016/j.jss.2017.07.009.

[23] D. Salah, R. Paige, P. Cairns, Patterns for integrating agile development processes
and user centred design, in: Proceedings of the European Conference on Pattern
Languages of Programs, ACM, Kaufbeuren, Germany, 2015, pp. 1–10, http:
//dx.doi.org/10.1145/2855321.2855341.

[24] K. Vredenburg, J.-Y. Mao, P.W. Smith, T. Carey, A survey of user-centered
design practice, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, Minneapolis, Minnesota, USA, 2002, pp. 471—478,
http://dx.doi.org/10.1145/503376.503460.

[25] C. Abras, D. Maloney-krichmar, J. Preece, User-centered design, in: Encyclopedia
of Human-Computer Interaction, SAGE, Bainbridge Island, USA, 2004, pp.
763–768.

[26] IDEO, The Field Guide to Human-Centered Design, IDEO, Palo Alto, USA, 2015.
[27] T. Brown, Design thinking, Harv. Bus. Rev. 86 (2008) 84–92.
[28] H. Obendorf, M. Finck, Scenario-based usability engineering techniques in agile

development processes, in: Extended Abstracts on Human Factors in Computing
Systems, ACM, Florence, Italy, 2008, pp. 2159–2166, http://dx.doi.org/10.1145/
1358628.1358649.

[29] D. Norman, The Design of Everyday Things: Revised and Expanded Edition, Basic
books, USA, 2013.

[30] D.J. Teece, Capturing value from knowledge assets: The new economy, markets
for know-how, and intangible assets, Calif. Manage. Rev. 40 (3) (1998) 55–79,
http://dx.doi.org/10.2307/41165943.

[31] J. Gothelf, Lean UX: Applying Lean Principles to Improve User Experience,
O’Reilly, Sebastopol, USA, 2013.

http://refhub.elsevier.com/S0950-5849(21)00170-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb1
http://dx.doi.org/10.1023/A:1013168927238
http://dx.doi.org/10.1007/978-3-642-13757-0_1
http://dx.doi.org/10.1016/j.infsof.2016.04.006
http://dx.doi.org/10.1111/1467-9310.00072
http://dx.doi.org/10.1111/1467-9310.00072
http://dx.doi.org/10.1111/1467-9310.00072
http://dx.doi.org/10.1007/978-3-642-16416-3_6
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb7
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb7
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb7
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb7
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb7
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb8
http://dx.doi.org/10.1145/3383219.3383257
http://dx.doi.org/10.1145/3383219.3383257
http://dx.doi.org/10.1145/3383219.3383257
http://dx.doi.org/10.1007/978-3-319-20886-2_34
http://dx.doi.org/10.1007/978-3-319-20886-2_34
http://dx.doi.org/10.1007/978-3-319-20886-2_34
http://dx.doi.org/10.1109/ESEM.2019.8870154
http://dx.doi.org/10.1007/978-3-030-64148-1_8
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb13
http://dx.doi.org/10.1109/2.796139
http://dx.doi.org/10.1007/978-3-030-49392-9_3
http://dx.doi.org/10.1007/978-3-030-49392-9_3
http://dx.doi.org/10.1007/978-3-030-49392-9_3
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb16
http://dx.doi.org/10.1007/978-3-319-57633-6_3
http://dx.doi.org/10.1007/978-3-319-57633-6_3
http://dx.doi.org/10.1007/978-3-319-57633-6_3
http://dx.doi.org/10.1145/3239235.3268918
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb19
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb19
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb19
http://dx.doi.org/10.1016/j.infsof.2016.04.008
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2017.07.009
http://dx.doi.org/10.1016/j.jss.2017.07.009
http://dx.doi.org/10.1016/j.jss.2017.07.009
http://dx.doi.org/10.1145/2855321.2855341
http://dx.doi.org/10.1145/2855321.2855341
http://dx.doi.org/10.1145/2855321.2855341
http://dx.doi.org/10.1145/503376.503460
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb25
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb25
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb25
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb25
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb25
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb27
http://dx.doi.org/10.1145/1358628.1358649
http://dx.doi.org/10.1145/1358628.1358649
http://dx.doi.org/10.1145/1358628.1358649
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb29
http://dx.doi.org/10.2307/41165943
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb31

Information and Software Technology 141 (2022) 106718M. Zorzetti et al.
[32] C. Moralles, M. Vaccaro, M. Zorzetti, E. Pereira, C. Trindade, B. Prauchner, S.
Marczak, R. Bastos, On the mapping of underlying concepts of a combined use
of lean and user-centered design with agile development: The case study of the
transformation process of an IT company, in: Workshop Brasileiro de Métodos
Ágeis, in: Communications in Computer and Information Science, vol. 1106,
Springer, 2019, pp. 25–40, http://dx.doi.org/10.1007/978-3-030-36701-5_3.

[33] C. Moralles, M. Zorzetti, I. Signoretti, E. Pereira, M. Vaccaro, B. Prauchner, L.
Salerno, C. Trindade, S. Marczak, R.M. Bastos, On the development of a model
to support the combined use of agile software development with user-centered
design and lean startup, in: Proceedings of the European Conference on Systems,
Software and Services Process Improvement, in: Communications in Computer
and Information Science, vol. 1251, Springer, Düsseldorf, Germany, 2020, pp.
220–231, http://dx.doi.org/10.1007/978-3-030-56441-4_16.

[34] R. Yin, Case Study Research and Applications: Design and Methods, SAGE,
Thousand Oaks, USA, 2003.

[35] M. Zorzetti, I. Signoretti, E. Pereira, L. Salerno, C. Moralles, C. Trindade,
M. Machado, R. Bastos, S. Marczak, A practice-informed conceptual model
for a combined approach of agile, user-centered design, and lean startup, in:
Proceedings of the International Conference on Product-Focused Software Process
Improvement, in: Lecture Notes in Computer Science, vol. 12562, Springer, Turin,
Italy, 2020, pp. 142–150, http://dx.doi.org/10.1007/978-3-030-64148-1_9.

[36] K. Krippendorff, Content Analysis: An Introduction to Its Methodology, SAGE,
Thousand Oaks, USA, 2018.
14
[37] D. Salah, R.F. Paige, P. Cairns, A systematic literature review for agile devel-
opment processes and user centred design integration, in: Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering,
ACM, London, England, United Kingdom, 2014, pp. 41–50, http://dx.doi.org/10.
1145/2601248.2601276.

[38] M. Gutbrod, J. Münch, M. Tichy, How do software startups approach experimen-
tation? Empirical results from a qualitative interview study, in: Proceedings of
the International Conference on Product-Focused Software Process Improvement,
Springer, Innsbruck, Austria, 2017, pp. 297–304, http://dx.doi.org/10.1007/978-
3-319-69926-4_21.

[39] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile Toolkit,
Addison-Wesley, Boston, USA, 2003.

[40] C.M. Riordan, R.J. Vandenberg, H.A. Richardson, Employee involvement climate
and organizational effectiveness, Hum. Resour. Manag. 44 (4) (2005) 471–488.

[41] A. Griffin, PDMA research on new product development practices: Updating
trends and benchmarking best practices, J. Prod. Innov. Manage. 14 (6) (1997)
429–458, http://dx.doi.org/10.1016/S0737-6782(97)00061-1.

[42] M. Yilmaz, R. O’Connor, P. Clarke, Software development roles: A multi-project
empirical investigation, Special Interest Group Softw. Eng. 40 (2015) 1–5, http:
//dx.doi.org/10.1145/2693208.2693239.

[43] B. Tessem, Individual empowerment of agile and non-agile software developers
in small teams, Inf. Softw. Technol. 56 (8) (2014) 873–889, http://dx.doi.org/
10.1016/j.infsof.2014.02.005.

[44] I. Signoretti, Characterizing the Combined Use of Agile, User-Centered Design
and Lean Startup: A Case Study of Two Software Teams (Master’s thesis),
Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil, 2020,
URL http://tede2.pucrs.br/tede2/handle/tede/9783.

http://dx.doi.org/10.1007/978-3-030-36701-5_3
http://dx.doi.org/10.1007/978-3-030-56441-4_16
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb34
http://dx.doi.org/10.1007/978-3-030-64148-1_9
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb36
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb36
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb36
http://dx.doi.org/10.1145/2601248.2601276
http://dx.doi.org/10.1145/2601248.2601276
http://dx.doi.org/10.1145/2601248.2601276
http://dx.doi.org/10.1007/978-3-319-69926-4_21
http://dx.doi.org/10.1007/978-3-319-69926-4_21
http://dx.doi.org/10.1007/978-3-319-69926-4_21
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb39
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb39
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb39
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb40
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb40
http://refhub.elsevier.com/S0950-5849(21)00170-1/sb40
http://dx.doi.org/10.1016/S0737-6782(97)00061-1
http://dx.doi.org/10.1145/2693208.2693239
http://dx.doi.org/10.1145/2693208.2693239
http://dx.doi.org/10.1145/2693208.2693239
http://dx.doi.org/10.1016/j.infsof.2014.02.005
http://dx.doi.org/10.1016/j.infsof.2014.02.005
http://dx.doi.org/10.1016/j.infsof.2014.02.005
http://tede2.pucrs.br/tede2/handle/tede/9783

	Improving Agile Software Development using User-Centered Design and Lean Startup
	Introduction
	Literature review
	Background
	Related work

	Case setting
	Research method
	Data collection
	Data analysis

	A workflow for the combined approach
	Roles
	Workflow

	Influence of the combined approach on development
	Influence of the pillars
	User-centered design
	Lean startup
	Extreme programming

	Teams' impressions

	Discussion
	Limitations

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

