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Polyurethane /Ionic Silica Xerogel Composites for CO2 Capture
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Capturing carbon dioxide (CO2) from exhaust gases is an important strategy to prevent climate 
change. There is a great interest in developing novel CO2 sorbents. Thus, a series of polyurethane (PU) 
/ silica xerogels functionalized with RTILs (bmim Cl and bmim TF2N) composites were prepared and 
characterized. PU matrix was reinforced with functionalized silica xerogels in the range of 0.5-20 wt%. 
PU / functionalized silica xerogels were characterized by NMR, FTIR, DSC, TGA, DMTA and FESEM. 
CO2 sorption capacity and reusability were assessed by the pressure-decay technique at 298.15 K and 1 bar. 
Results showed that the filler aggregation in PU matrix promoted the reduction of mechanical properties. 
However, addition of silica xerogels functionalized with RTILs in PU matrix led to increased CO2 uptake. 
CO2 sorption capacity tends to increase with the incorporation of silica xerogels functionalized with 
RTILs in PU matrix. The best CO2 sorption value was found for PU/SX-[Bmim]-[TF2N] 0.5 composite 
(48.5 mgCO2/g at 298.15 K and 1 bar). Moreover, the PU/SX-[Bmim]-[TF2N] 0.5 composite showed 
reuse capacity and higher CO2 sorption value as compared to other reported composites.
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1. Introduction

Increased fossil fuel energy consumption with industrial 
development leads to high greenhouse gas emissions 
(GHG)1. There are evidences that the increase of GHG in the 
atmosphere, mainly carbon dioxide (CO2) resulted in climate 
change1. Carbon capture and storage (CCS) technologies are 
considered important strategy to both reduce CO2 emission 
and the global warming problem1,2. Thus, the novel CO2 
sorbents synthesis are of great interest in this field3,4.

Mixed matrix membrane (MMM) consist of a dispersed 
inorganic material within an organic polymer continuous 
matrix 5. MMMs containing zeolitic imidazolate framework 
(ZIF)6–8, silica 4,8, metal organic frameworks (MOFs) 9, nickel 
oxide nanoparticles10, Zeolite 11, ZnO Nanoparticle 12, alumina 
nanoparticles 13, TiO2 nanocomposite 14 have been studied 
to improve the membrane separation properties.

Inorganic particle/room-temperature ionic liquids (RTILs) 
composite 5,15–17 has also been examined by researchers 
to improve the properties of MMMs. Room temperature 
ionic liquids (RTILs) are salts composed by an organic 
cation and inorganic or organic anion presenting melting 
point below 100°C 18–24. RTILs are potential solvents for 
CO2 capture because their unique properties 22,25–29. such as 
negligible vapor pressure, non-flammability, high thermal 
stability, tenability and selective CO2 separation19,22,23,25,27,30

Polyurethane /silica composites have been obtained to 
improve polymer properties 31–37. PU is a class of versatile 
polymers with potential to use in gas separation due to their 
low price, thermal stability, high mechanical properties and 
appropriate permeability8,10. Urethane group is the major 
repeating unit in PUs. However, other groups such as esters, 
urea, ethers and aromatic can also be present in the PU 
structure 38,39. Silica incorporation into PU matrix may cause 
improvements in both mechanical and thermal properties, 
as well as gas separation properties of PU 13.

This study investigated the effect of silica xerogel 
functionalized with different RTILs incorporation (1-Butyl-
3-Methylimidazolium Chloride - bmim Cl and 1-Butyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide - bmim 
TF2N) on both thermal and mechanical properties, as well 
as CO2 sorption capacity of PU.

2. Experimental

2.1 Waterborne polyurethane (WPU) synthesis

WPU synthesis was performed using experimental 
procedures described in literature40,41. Initially, polyol (MM = 1000 
g/mol, Noxeller, Brasil) and dimethylol propionic acid (DMPA, 
99%, Perstorp, Sweden) were charged into a five-necked flask 
and heated until melting. Then, 0.1% wt of dibutyltin dilaurate 
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(DBTDL Miracema-Nuodex Ind, Brasil) as catalyst and 
Isophorone diisocyanate (IPDI, Merck, USA) were poured 
into the same reaction flask and stirred at 80°C for 60 min to 
obtain NCO-terminated PU prepolymer. The NCO/OH molar 
ratio of 1.7 was used in the reaction. In the next step, the 
reaction temperature was reduced to 55°C for neutralization 
of carboxylic groups (-COOH) present in DMPA by adding 
trimethylamine (TEA, Perstorp, Sweden) (1.1 molar ratio). 
Finally, free NCO content (%NCO) was determined by 
titration with dibutylamine (Bayer, USA) and neutralized by 
chain extension addition in water (hydrazine, Merck, USA). 
The solid content of final dispersion was 35 wt%.

2.2 Silica xerogels functionalized with RTILs synthesis

Silica xerogels functionalized with RTILs were synthesized 
according to procedures adapted from literature42,43. In a 
typical preparation, 25 mg RTIL, 2.28 mmol TEOS (Merck, 
98%, USA), PVA (Dinâmica)(4.64 g/L), NaF (Synth, 99%, 
Brasil) (0.20g/L) and 6.86 mmol water were mixed and 
cooled until gelation. The gels formed were kept at 35 °C 
for 1 day and washed with solvent. Finally, silica xerogels 
were dried at 35 °C for 1 day. The RTILs structures used in 
order to obtain silica xerogels are imidazolium-based ILs 
with two different anions as shown in Fig. 1. A silica xerogel 
sample (SX) was also synthesized without RTIL. Silica 
xerogels functionalized with RTIL were labeled as SX- RTIL. 
For example, SX-[bmim][Cl] means silica xerogel containing 
1-Butyl-3-methylimidazolium chloride IL.

2.3 PU composites preparation 

PU/ionic silica xerogel composites were prepared by 
addition of silica xerogel functionalized with bmim Cl 
or bmim TF2N into the WPU dispersion. PU matrix was 
reinforced with functionalized xerogels in the range of 
0.5-20 wt% (see Table 1). In a typical preparation, mixtures 
were placed in ultraturrax mixer (IKA T18 Basic) during 5 
min at 10,000 rpm. Finally, films around 70 µm thick were 
produced. The films were dried at 35 °C during 120 min.

Figure 1. RTILs structures used for silica xerogels synthesis

Table 1. PU composite compositions

PU composite Silica xerogel content (wt%)

PU/ SX-[Bmim] [Cl] 0.5 0.5

PU/SX-[Bmim] [Cl] 5 5

PU/ SX-[Bmim] [Cl] 20 20

PU/SX-[Bmim] [TF2N] 0.5 0.5

PU/SX-[Bmim] [TF2N] 5 5

PU/SX-[Bmim] [TF2N] 20 20

2.4 PU composites characterization

Specific surface area, pore volume and pore diameter 
of silica xerogels were determined by Brunauer-Emmett-
Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, 
respectively using NOVA 4200e. Prior to measurements, 
the samples were degassed in vacuum at 125 °C for 6h. 
The structural elucidation of silica xerogels was carried 
out by solid state NMR (SS NMR) techniques. 13C MAS 
spectra were acquired with a 7 T (300 MHz) AVANCE III 
Bruker spectrometer operating respectively at 75 MHz 
(13C), equipped with a BBO probe head. The films and 
silica xerogels were characterized by Fourier transform 
infrared spectroscopy (FTIR Perkin Elmer spectrometer 
model Spectrum100, using UATR from 4000 at 650 cm-1), 
16 scans were performed for each sample and the resolution 
was 4. Differential Scanning Calorimetry (DSC) thermograms 
were attained using TA Instruments model Q20 equipment. 
Temperature range from -90 to 20 °C with a heating rate 
of 20 °C min-1 was used under N2 atmosphere. Analyses 
were performed in triplicate. Thermogravimetric analyses 
were performed using SDT equipment (TA Instruments 
model Q600). Temperature range was from 25 to 800 
°C with a heating rate of 20 °C /min under constant N2 
flow. Analyses were performed in triplicate. Films with a 
thickness close to 0.15 mm, length 12 mm, and a width 
of approximately 7.0 mm were used to perform the stress 
9 strain tests. All tests were carried out at 25 °C with on 
DMTA equipment (model Q800, TA Instruments) with 
1 N/min. Young moduli of materials were determined 
according to procedure described elsewhere (ASTM D638). 
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The analyses were carried out in triplicate. Morphology of 
PU/ionic silica xerogel composites was investigated by field 
emission scanning electron microscopy (FESEM) using FEI 
Inspect F50 equipment in secondary electrons (SE) mode. 
Samples were place into a stub and covered with a thin gold 
layer (15-20nm).

2.5 CO2 sorption measurements

CO2 sorption capacity was determined using a dual-
chamber gas sorption cell by pressure-decay technique 
previously described in detail 44–47. Experiments were 
carried out in triplicate. Samples (Ws≈1g) were previously 
degassed under vacuum (10- 3 mbar) at 298.15K during 1h. 
CO2 sorption measurements were carried out at 25° C 
(298.15 K) and 1 Bar.

Recycle experiments were performed by repeating the 
sorption/desorption cycles six times at 1 bar and 25 °C 
(298.15 K) with desorption following each cycle under 
vacuum (10- 3 mbar) at 298.15K during 1h.

3. Results and Discussion

SX-[bmim][TF2N] showed higher surface area (343 
m2 g−1) and pore volume (0.24 cm3) compared to SX – 
[bmim] [Cl] (surface area = 116 m2 g−1, pore volume = 0.10 
cm3). However, SX – [bmim] [Cl] presented a pore diameter 
(1.63 nm) higher than SX-[bmim][TF2N] (1.41 nm). This 
behavior may be related to bulky anion of [bmim][TF2N] (See 
Fig.1) and the form as it is organized on the silica surface. 
13C CPMAS NMR spectra of silica xerogel are shown in 
Fig.2. All samples presented chemical shifts from CH3, CH2 
and OCH2 groups at 15; 29 and 57-59 ppm, respectively. 
SX-[bmim][TF2N] and SX – [bmim] [Cl] samples showed 
additional chemical shifts that reveal the presence of IL, more 
specifically, the aromatic ring carbons at 120-130 ppm and 
the aliphatic chain chemical shifts between 20-40 ppm48.

FTIR analysis results for functionalized silica xerogels, PU 
and PU composites are shown in Fig.3 (a-b). In functionalized 
silica xerogels spectra revealed characteristic silica and RTIL 
bands at around 3305 cm-1 (-OH group), 1635 cm-1 (Si-OH 
and H-O-H), 1050 cm−1 (Si-O-Si) and 790 cm−1 (Si-O) and 
1634 (C═N imidazole)49–51. PU formation was observed by 
means of characteristic PU bands 52–54 at around 2936 - 2840 
cm−1 (C-H), 1532 cm−1 (HN), 1246 cm−1 (C-N and C-O of 
urethane), 1100 cm−1 (C-O-C), 3350 cm−1 (N-H of bonded 
hydrogen) and 1727 cm−1 (C=O). FTIR analysis also showed 
that band area at 3322 cm-1 tends to increase with both the 
incorporation and concentration of fillers in PU matrix, 
indicating an increase in hydrogen bond formation in the 
presence of fillers 52,53,55.

Figure 2. 13C MAS spectra for silica xerogels.

Figure 3. FTIR spectra for functionalized silica xerogels, PU and 
PU composites.

PU and PU composites FESEM images clearly show that 
fillers are unevenly dispersed in the PU matrix (Fig.4). Moreover, 
filler aggregation tends to increase with filler concentration 
increase in PU matrix. Filler aggregation in the polymer matrix 
may promote the reduction of mechanical properties 56,57.

PU and PU composite thermal stability was investigated 
by TGA. PU and PU composite TG and DTG curves 
are shown in Fig. 5. All samples presented three typical 
degradation stages (Fig.5). The first weight loss between 
50°C and 150°C is related to water evaporation. The second 
stage is associated mainly to degradation of hard segments 
(urethane bonds) 58–60 and the third stage is attributed 
mainly to decomposition of soft segments (polyol) 61. 
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Figure 4. SEM micrographs: a) PU, b) PU/SX-[Bmim] [Cl] 0.5, c) PU/SX-[Bmim] [Cl] 5, d) PU/SX-[Bmim] [Cl] 20; e) PU/SX-[Bmim] 
[TF2N] 0.5, f) PU/SX-[Bmim] [TF2N] 5 and PU/SX-[Bmim] [TF2N] 20.

Figure 5. PU and PU composites: a) TG and b) DTG thermograms.

Table 2. TGA and DSC data for PU and PU composites

sample T1 onset (°C) T2 onset (°C) Tg (°C)

PU 270 ± 1.2 356 ± 1.0 -40.0 ± 0.9

PU/ SX-[Bmim] [Cl] 0.5 181 ± 1.5 266 ± 1.3 -35.9 ± 0.4

PU/SX-[Bmim] [Cl] 5 194 ± 1.3 323 ± 1.0 -35.5± 0.3

PU/ SX-[Bmim] [Cl] 20 209 ± 2.0 325 ± 1.7 -30.3 ± 0.5

PU/SX-[Bmim] [TF2N] 0.5 203 ± 2.2 316 ± 1.8 -35.0 ± 0.6

PU/SX-[Bmim] [TF2N] 5 204 ± 0.8 320 ± 1.4        -32.9 ± 0.3

PU/SX-[Bmim] [TF2N] 20 206 ± 1.3 323 ± 1.2 -30.8 ± 0.6

PU and PU composite degradation temperatures (Tonset) of 
two stages are given in Table 2. TGA analysis reveals that 
the addition of functionalized silica xerogels in PU matrix 
results in a degradation temperatures decrease (Tonset) as seen 
in Table 2. Interactions between hydroxyl groups present 
in the filler structure and PU hard segments can generate a 
deleterious effect on PU composites thermal stability. This 
effect might lead to breaking urethane and urea bonds of 
hard segments 62,63.

PU and PU composites DSC thermograms are shown 
in Fig. 6. PU showed a glass transition temperature (Tg) 
related to the soft domain at - 40.0 °C. PU composite DSC 
thermograms exhibited significant changes in Tg compared 
to PU. Tg tends to rise with filler concentration increase in 
PU matrix as seen in Table 2. According to these results, 
the hydrogen bonding increase observed by FTIR after the 
filler addition may be restricting the mobility of PU chains64. 

In this work, PU/SX-[Bmim] [TF2N] composites were 
chosen to study the effects of filler addition in PU matrix 
on mechanical properties due to higher CO2 sorption 
capacity compared to PU (see Fig. 7). Tensile properties 
and Young moduli are presented in Figs 7 and Table 3. 
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CO2 sorption tends to increase with filler incorporation in 
PU matrix. Silica xerogel functionalization with fluorinated 
anion increased the affinity to CO2 molecules compared to 
non-fluorinated anion (PU/ SX-[Bmim] [Cl] 0.5 = 31mgCO2/g 
PU/ SX-[Bmim] [TF2N] 0.5 = 46 mgCO2/g). The best CO2 
sorption values were found for PU composites prepared 
with SX-[Bmim] [TF2N] 0.5. This behavior is probably 
associated with both the higher specific surface area of 
SX-[Bmim] [TF2N] (343 m2 g−1) compared to SX-[Bmim] 
[Cl] (116 m2 g−1) and the presence of fluorinated anion that 
may improve CO2 sorption 46,67

. PU/ SX-[Bmim] [Cl] CO2 
sorption values showed to be constant for all concentrations 
while PU/ SX-[Bmim] [TF2N] CO2 sorption capacity tends 
to decrease with filler concentration increase in PU matrix 
possibly due to high filler aggregation in the polymer matrix 
evidenced by FESEM images (Fig.3). PU/SX-[Bmim] 
[TF2N] 0.5 composite demonstrated higher CO2 sorption 
capacity (46 mgCO2/g at 298.15 K and 1 bar) as compared 
to reported polyvinylidene-fluoride-hexafluoropropylene 
(PVDF-HFP)/ amino-silica composites4 ( PVDF-HFP-20 
wt% AFS = 26.27 mgCO2/g and PVDF-HFP-20 wt% ANS 
= 12.36 mgCO2/g at 323.15 K and 1.01 bar).

PU/SX-[Bmim] [TF2N] 0.5 was selected to recyclability 
study due to higher CO2 sorption capacity compared to all 
other samples. CO2 sorption capacity was increased in the 
first four recycles, probably due to remaining moisture. 

Figure 6. DSC thermograms obtained for PU and PU composites.

Figure 7. Stress/strain curves obtained for PU and PU composites.

Table 3. PU and PU composites mechanical properties

Sample Stress (MPa) Strain (%) Young Moduli (MPa)
PU 2.41 ± 0.8 133 ± 0.7 7.54 ± 0.5
PU/SX-[Bmim][TF2N] 0.5 1.57 ± 0.5 107 ± 0.5 5.03 ± 0.7
PU/SX-[Bmim] [TF2N] 5 1.07 ± 0.3 94 ± 0.4 4.68 ± 0.2
PU/SX-[Bmim] [TF2N] 20 0.40 ± 0.3 50 ± 0.4 3.64 ± 0.6

Figure 8. PU and PU composite CO2 sorption capacity values at 
0.1 bar and 298.15 K.

Mechanical analysis revealed that both filler addition and 
increased content in PU matrix results in mechanical properties 
reduction (See Fig.7). Young’s modulus, tensile strength, 
elongation-at-break are decreased after filler addition in PU 
matrix. Thus, the best result of mechanical properties was 
found for PU (Young’s modulus of 7.54, tensile strength 
of 2.41 MPa and elongation at a break of 133%). These 
results are consistent with FESEM finding and indicate 
that filler aggregates in polymer matrix promote increase 
of weak points in the PU composites leading to mechanical 
properties decrease 56,57.

CO2 sorption results are presented in Fig. 8. PU showed a 
CO2 sorption capacity of 25 mgCO2/g due to the polar groups 
present into PU structure which may promote CO2 affinity 65,66. 
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CO2 sorption values were constant for the next cycles as 
seen in Fig. 9. This result evidences the reuse capacity and 
potential of this material for use in CO2 capture processes.
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Figure 9. CO2 sorption/desorption tests for PU/SX-[Bmim] [TF2N] 0.5.

3. Conclusion

Uniform distribution of filler in PU matrix is desirable 
to obtain PU composites with improved mechanical and 
thermal properties. PU composites showed lower mechanical 
properties than PU. However, the functionalized silica 
xerogels addition in PU matrix led to CO2 sorption capacity 
increase. CO2 sorption values were higher for PU composites 
prepared from silica xerogels functionalized with fluorinated 
RTIL. The best CO2 sorption capacity was found for PU/
SX-[Bmim] [TF2N] 0.5 (48.5 mgCO2/g). Furthermore, PU 
composites CO2 sorption/desorption cycle results showed 
both stability and reuse capacity in CO2 capture processes.
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