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A B S T R A C T

Although numerous studies have demonstrated the theoretical and empirical importance of treating gaps as
insertion/deletion (indel) events in phylogenetic analyses, the standard approach to maximum likelihood (ML)
analysis employed in the vast majority of empirical studies codes gaps as nucleotides of unknown identity
(“missing data”). Therefore, it is imperative to understand the empirical consequences of different numbers and
distributions of gaps treated as missing data. We evaluated the effects of variation in the number and distribution
of gaps (i.e., no base, coded as IUPAC “.” or “–”) treated as missing data (i.e., any base, coded as “?” or IUPAC
“N”) in standard ML analysis. We obtained alignments with variable numbers and arrangements of gaps by
aligning seven diverse empirical datasets under different gap opening costs using MAFFT. We selected the op-
timal substitution model for each alignment using the corrected Akaike Information Criterion in jModelTest2
and searched for optimal trees using GARLI. We also employed a Monte Carlo approach to randomly replace
nucleotides with gaps (treated as missing data) in an empirical dataset to understand more precisely the effects
of varying their number and distribution. To compare alignments, we developed four new indices and used
several existing measures to quantify the number and distribution of gaps in all alignments. Our most important
finding is that ML scores correlate negatively with gap opening costs and the amount of missing data. However,
this negative relationship is not due to the increase in missing data per se—which increases ML scores—but
instead to the effect of gaps on nucleotide homology. These variables also cause significant but largely un-
predictable effects on tree topology.

1. Introduction

Standard maximum likelihood (ML) analysis of DNA sequences
follows a three-step procedure composed of (I) multiple sequence
alignment (MSA) using programs such as CLUSTAL X (Larkin et al.,
2007), MAFFT (Katoh et al., 2005; Katoh and Toh, 2008), or MUSCLE
(Edgar, 2004), (II) substitution model selection using programs like
jModelTest (Posada, 2008) or PartitionFinder (Lanfear et al., 2012), and
(III) tree searching using, for example, GARLI (Zwickl, 2006), PhyML
(Guindon and Gascuel, 2003), RAxML (Stamatakis, 2006), or IQ-Tree
(Nguyen et al., 2014). In the first step, insertion/deletion (indel) events

are inferred according to user-specified indel opening and extension
costs (GOC and GEC, respectively) and nucleotides inferred to be absent
due to indels are represented in the alignment as gaps (coded as IUPAC
“–”). In the second and third steps, gaps are treated as missing nu-
cleotides and coded as ambiguities in the matrix (nucleotides of un-
known identity; “?” or IUPAC “N”), thereby recasting evidence of ab-
sence as absence of evidence.

The effects of increasing amounts of ambiguity due to missing data
are reasonably well understood: ML scores increase, the likelihood
surface flattens, and, depending on the number and distribution of the
ambiguities, topological relationships can change and support values
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become inflated (Lemmon et al., 2009; Denton and Wheeler, 2012;
Simmons and Norton, 2013; Simmons, 2014; Simmons and Goloboff,
2014; Sanderson et al., 2015). Similarly, previous studies have ex-
amined the degree to which different methods of alignment can alter
results (e.g., Wheeler, 1994; Wheeler, 1995; Morrison and Ellis, 1997;
Whiting et al., 2006; Wong et al., 2008; Blackburne and Whelan, 2012;
Padial et al., 2014). However, to date no study has systematically in-
vestigated the effects of variation in the number and distribution of
gaps treated as missing data on the results of standard ML analyses.
Here, we evaluated the effects of this variation on model selection, ML
score, and topology by analyzing highly variable alignments obtained
by aligning diverse empirical datasets under different GOCs and by
randomly replacing nucleotides with gaps.

2. Materials and methods

2.1. Datasets, model selection, and phylogenetic analysis

We summarized the analyses of the eight empirical datasets in Fig. 1
that varied extensively in the number of terminals and sequence length
(Table 1). We aligned datasets 1–7 using the program MAFFT v7.147b.
We performed the alignment of these seven datasets using the

Needleman-Wunsch algorithm and 1,000 cycles of iterative refinement
that incorporated global pairwise alignment information using the ac-
curacy-oriented alignment method “G-INS-i.” This method is compu-
tationally intensive and therefore it is usually recommended for se-
quences of similar lengths with less than 200 terminals. This alignment
strategy was implemented with MAFFT’s arguments “–globalpair” and
“–maxiterate 1000”. We set the gap opening penalty to 0 and all values
in a geometric progression of ratio 2 from 0.095625 to 24.48, including
the program default value of 1.53 (all analyses employed a gap exten-
sion cost of 0.123). This resulted in 10 alignments per dataset that
varied greatly in the number and distribution of gaps. Next, we con-
verted the resulting MAFFT alignments from FASTA to NEXUS format
using Mesquite v2.75 (build 564; Maddison and Maddison, 2015) and
selected the optimal substitution model for each alignment using the
corrected Akaike Information Criterion (AICc) in jModelTest v2.1.4. We
then performed ML tree searches in GARLI v2.01 using default search
parameters and assuming the optimal substitution model selected pre-
viously by jModelTest. Each tree search comprised 640 replicates
spawned in parallel using a homemade Python script (sudoPar-
allelGarli.py).

To clarify the effects of increasing amounts of ambiguity due to gaps
and other possible alignment effects caused by the insertion of gaps
during alignment, we performed additional Monte Carlo analyses using
dataset 8 (Table 1). First, we aligned the data in MAFFT using the de-
fault GOC of 1.53 and the GEC of 0.123, trimmed the resulting align-
ment to include no leading or trailing gaps, and analyzed the matrix as
described above. Next, we performed three rounds of 1,000 Monte
Carlo replicates that randomly replaced nucleotides with gaps with
probabilities of 0.25, 0.5, and 0.75, respectively, thereby increasing the
number of gaps without altering nucleotide homology relationships or
the length of the alignment (see below). Finally, we analyzed each of
the resulting matrices in GARLI as described above, using the same
substitution model selected for the original alignment.

All unaligned datasets and templates for the configuration files and
execution scripts are available as supplementary material. We ran all
compute-intensive analyses on the high performance computing cluster
ACE, which is composed of 12 quad-socket AMD Opteron 6376 16-core
2.3-GHz CPU, 16 MB cache, 6.4 GT/s compute nodes (= 768 cores
total), eight with 128 GB RAM DDR3 1600 MHz (16 × 8 GB), two with
256 GB (16 × 16 GB), and two with 512 GB (32 × 16 GB), and QDR 4x
InfiniBand (32 GB/s) networking, housed at the Museu de Zoologia da
Universidade de São Paulo.

2.2. Alignment characterization

We compared the 3,070 alignments generated for the eight datasets
applying both the GOC used to generate the alignments and several new
measures and indices that describe the number and distribution of gaps
in each alignment. For each alignment, we calculated alignment length,
total number of gaps, total number of characters (columns, positions,
transformation series) containing gaps, mean number of gap openings,
and number of identical characters per alignment (i.e., the number of
columns that provide identical character-state distributions).

Fig. 1. Summary of the methods for testing the effects of gaps treated as missing
data in standard ML analysis. a) Empirical analysis with seven datasets (see
Table 1). b) Analysis of 3,000 simulated matrices. Words by the arrows indicate
the type of file or information being transferred. See text for additional details.

Table 1
Basic information of the eight datasets used in this study. ∗ Effects of variation in the number and distribution of gaps treated as missing data; ∗∗Simulations.

Dataset Reference Marker Length (bp) # terminals Analyses

1 Wheeler and Hayashi (1998) 18S rRNA 940–2020 32 ∗
2 Wheeler and Hayashi (1998) 28S rRNA 336–652 28 ∗
3 Healy et al. (2009) 18S rRNA 554–2189 58 ∗
4 Healy et al. (2009) 28S rRNA 668–4279 58 ∗
5 Wei et al. (2014) 12S mtDNA 437–1011 31 ∗
6 Mauro et al. (2014) 16S mtDNA 1534–1635 55 ∗
7 Pozzi et al. (2014) mtDNA Control Region (CR) 515–2295 77 ∗
8 Blotto et al. (2013) CytB 338–1003 (385) 88 (85) ∗∗
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Several indices and algorithms have been proposed to describe and
compare multiple sequence alignments (e.g., Thompson et al., 2005;
Kemena et al., 2011; Blackburne and Whelan, 2012; Soto and Becerra,
2014; Zambrano-Vega et al., 2017), some of which are derived from
some of the same measures listed above. However, these methods focus
on measuring overall genetic distances, structural modifications, or
alignment accuracy or reliability, whereas we are specifically interested
in evaluating the effects of varying the number and distribution of gaps.
Consequently, we derived the following original indices (all defined to
vary between 0–1) to summarize the distribution of gaps both within
and among terminals.

Gap contiguity index (GCI).—GCI quantifies the degree to which gaps
are grouped into contiguous strings or broken into short strings. For a
given terminal with g gaps and g trailing gaps (where trailing gaps are
defined as all but the first in a contiguous string of gaps),

=GCI g
g 1

GCI is undefined if the sequence has only one gap; otherwise,
=GCI 0 if there is at least one gap or no gaps are contiguous (i.e., there

are no trailing gaps), and =GCI 1 if there is > all gaps are contiguous.
For an alignment-wide value, we report the mean GCI for all terminals
in the alignment. Sequences without gaps are ignored during GCI cal-
culations. Nucleotide contiguity index (NCI).—NCI is equivalent to GCI
but measures the contiguity of nucleotides instead of gaps. For a given
terminal with n nucleotides and n trailing nucleotides,

=NCI n
n 1

NCI is undefined if the alignment is composed of < 2 nucleotides;
otherwise, =NCI 0 if all nucleotides for the terminal are separated by
gaps and =NCI 1 if all nucleotides for the terminal are contiguous. For
an alignment-wide value, we report the mean NCI for all terminals in
the alignment.

Shared gaps index (SGI).—SGI quantifies the degree to which a given
gap is shared among terminals. For a given character scored for t
terminals of which t terminals possess a given gap,

=SGI t
t 1

Assuming the alignment is composed of at least two terminals and
no columns consist entirely of gaps, =SGI 0 if the character contains no
gaps and =SGI 1 if the gap is shared by all but one of the terminals (i.e.,
only one terminal possesses a nucleotide). For an alignment-wide value,
we report the mean SGI for all characters that contain gaps (CG).
Topological gap index (TGI).—TGI incorporates topological information
that SGI omits. SGI summarizes the degree to which gaps are shared
among terminals in the matrix. However, it ignores the topological
distribution of those terminals—and, therefore, the topological dis-
tribution of the gaps—on the optimal tree. As such, for a given char-
acter with gaps shared by t terminals and explained on the given tree
by a minimum of t gap nucleotide transformations, TGI is defined as

=
×

TGI t
t t

TGI is undefined if the character does not contain gaps; otherwise,
=TGI 1 if a minimum of one gap nucleotide transformation explains

the gaps in all terminals (i.e., a single split divides all the terminals that
possess the gap from all the terminals that possess a nucleotide) and
decreases as the minimum number of gap nucleotide transformations
increases. For an alignment-wide value, we report the mean TGI for all
characters that contain gaps.

2.3. Evaluation criteria

We evaluated the effects of variation in the number and distribution

of gaps treated as missing data in standard ML phylogenetic analysis by
comparing the alignment parameters (i.e., GOCs) and measures and
indices with three response variables: (I) optimal substitution model
selected using jModelTest; (II) the optimal ML score from GARLI; and
(III) the optimal tree topology. To assess the effect on tree topology, we
calculated the match split distances (MSD) between the optimal
topologies using MSdist v0.5 (Bogdanowicz and Giaro, 2012) and vi-
sualized their congruence using YBYRÁ (Machado, 2015). Note that
GARLI collapses zero-length branches and, in these cases, MSdist will
treat the nonbinary trees using the methodology described in
Bogdanowicz and Giaro (2012) (2012: p. 158–159). We used R v3.3.1
(R Core Team, 2016) to fit linear models for correlation analysis.

3. Results

3.1. Alignments

We used the following GOC values: 0, 0.096, 0.191, 0.383, 0.765,
1.53 (1.53 is the program’s default value), 3.06, 6.12, 12.24, and 24.48.
We set the GEC a fixed value of 0.123. The different GOCs we used to
align each dataset generated highly diverse alignments, as indicated by
the variation in the values taken by all of the indices (Table S1). Among
the alignments of sequences from datasets 1–7, mean GCI, mean NCI,
mean SGI, and mean TGI values varied from 0.49–0.99, 0.38–0.99,
0.12–0.76, and 0.39–0.86, respectively. The most variable datasets for
each of our indices were dataset 5 for mean SGI (0.39–0.58), dataset 6
for mean GCI (0.49–0.94), and dataset 7 for mean NCI (0.79–0.99) and
mean TGI (0.394–0.571).

The 3,000 alignments generated by randomly replacing nucleotides
with gaps in dataset 8 were also highly diverse. Alignment matrices
composed of approximately 25% gaps had mean GCI, mean NCI, and
mean SGI values of 0.23–0.27, 0.74–0.76, and 0.25–0.26, respectively.
Alignment matrices with approximately 50% gaps had mean GCI, mean
NCI, and mean SGI values of 0.49–0.51, 0.49–0.51, and 0.50–0.52,
respectively. Lastly, alignment matrices with approximately 75% gaps
had mean GCI, mean NCI, and mean SGI values of 0.74–0.76,
0.23–0.26, and 0.75–0.77, respectively. As expected, our results in-
dicate that GCI and NCI are largely congruent with each other so that
we can use any of them to predict the other.

3.2. Model selection

Despite the extensive variation among alignments, model selection
varied little (Table S1). All models included gamma rate variation.
Model selection chose the most complex model (GTR + I+G) for 80%
of the alignments, including 100% of the alignments for datasets 3, 4, 6,
and 7. Among the remaining datasets, we did not detect any trends in
model selection. For example, dataset 5 varied most extensively,
shifting between three models as GOCs increased: GTR + G for the two
lowest gap opening costs, then HKY + G for the next three gap opening
costs, GTR + G again for the next two, then GTR + I+G, GTR + G,
and GTR + I+G for the three highest GOCs, respectively. In contrast,
for dataset 2 the most complex model was chosen for the lowest two
GOCs, then the less complex GTR + G, returning to the most complex
model, then the even less complex HKY + G followed by GTR + G for
the three highest GOCs.

3.3. Tree topology

Although variation in the number and distribution of gaps treated as
missing data had little effect on model selection, it had a substantial
effect on tree topology (Fig. 2). Nevertheless, we did not detect any
pattern in the distribution of gaps to explain the observed variation in
tree topology. Additionally, in many cases, the most distant topologies
were derived from alignments with adjacent gap opening scores. Hence,
we obtained significant differences in tree topology with only minor
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variations in the alignment parameters and the resulting number and
distribution of gaps, even when there was no variation in the sub-
stitution model.

3.4. ML score

For most datasets, the ML score was negatively correlated with gap
opening cost (adjusted >R 0.992 ; Table S2). For all datasets except
dataset 4, ML score was also negatively correlated with GCI (adjusted
R2 = 0.73–0.99) and NCI (adjusted R2 = 0.71–0.91), both of which
measure the degree to which sequences form contiguous strings or are
broken into short strings. In contrast, the ML score positively correlated
with alignment length, percentage of gaps, and mean SGI in all datasets
except dataset 4 (Fig. 3).

Dataset 4 differed from all others in that the number of identical
characters decreased as the gap opening cost increased (Fig. 4). The
correlation analysis of the ML score and the mean TGI of dataset 4 had

=R 0.982 . In contrast, the next-largest R2 for this relationship was 0.86
for dataset 3 and the average R2 for all datasets was 0.40 (see Table S2).
In addition to that, the insertion of longer indels as the gap opening cost
increases strongly affected nucleotide homology in dataset 4, leading to
the unpredictability of mean GCI values. This also decreases similarity
among characters in each alignment and results in alignments that
differ more in the information contained in characters and their re-
spective character states than in the distribution of gaps.

Although the average strength of the correlations between the
aforementioned variables and the ML score was smaller than the cor-
relation between gap opening cost and the ML score, we have no reason
to assume the correlations are purely coincidental and instead propose
that these variables partially account for the changes in the alignment
matrix that lead to different ML scores. A special case seems to be when
alignment is biased towards randomizing homology statements that
follow long indels, as exemplified by dataset 4. In this case, the corre-
lation of variables that explain the number and distribution of gaps in
the alignment matrix with the ML score is weak, but we observed a
strong correlation of the ML score and the TGI as a result of the number
of gap nucleotide transformations on the tree.

3.5. Fixed nucleotide homology and alignment length

When we fixed the nucleotide homologies and alignment lengths,
we observed a strong, positive, linear relationship between the number
of gaps and the ML score. This means that ML score varied exclusively
according to the number of indels treated as missing data, no matter the
indel distribution patterns in the alignment. As such, there was no
correlation between the ML score and any of the indices we defined,
such as mean SGI (Fig. 5).
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4. Discussion

This study is the first to systematically explore how the number and
distribution of gaps treated as unknown nucleotides affect model se-
lection, ML score, and topology in empirical phylogenetic analyses.
Although the datasets we employed were small compared to many
modern studies, they were chosen precisely because their relative
simplicity facilitates interpretation, and our findings provide a basis for
future studies to determine if the behavior of larger, more complex
datasets is similar or different. Our general finding is that the effects
depend on both the number of gaps and their effect on nucleoti-
de nucleotide homologies. That is, all else being equal, as shown in
our Monte Carlo simulations that randomly replaced nucleotides with
gaps, increasing gaps results in higher ML scores and alignments ap-
proach trivial identity alignment (TIA; see Denton and Wheeler, 2012).
However, in practice, introducing more gaps during alignment also
affects the homology relationship among nucleotides, resulting in less
predictable outcomes.

On the basis of our results, we identify three general responses to
variation in the number and distribution of gaps. The first response,
exemplified by analyses of datasets 1–3 and 5–7, occurs when sequence
length is similar among all terminals and variation in the number and
distribution of gaps has little effect on nucleotide nucleotide homo-
logies. In this scenario, ML scores are negatively correlated with gap
opening cost, number of gaps, sequence length, and mean GCI,

positively correlated with mean SGI, and unrelated to mean TGI. The
second response is observed in analyses of dataset 4, which has the
greatest variation in sequence length (Table 1). In this response, ML
score is negatively correlated with gap opening cost and positively
correlated with mean TGI, which suggests that the insertion of long
indels in these sequences strongly affected nucleotide homology. Fi-
nally, the third response is drawn from our Monte Carlo simulations,
whereby we introduced gaps into the alignment matrix without altering
nucleotide homology. In this case, ML scores improve as gaps increas-
ingly replaced nucleotides, confirming that, all else being equal, ML
score increases with the amount of missing data (cf. Denton and
Wheeler, 2012).

In both responses 1 and 2, the uniformity of the nucleotide evolu-
tion models selected for the different alignments was unexpected. Given
that alignments approaching TIA are simple matrices requiring few
substitutions due to maximization of character columns that include
only one nucleotide class (i.e., identical nucleotides and gaps treated as
nucleotides of unknown identity), we expected that gappier alignments
would require less complex models. Our interpretation of the lack of
variation in model selection is that the alignments did not sufficiently
approximate TIA to reduce the complexity of the models needed to
explain the data. This explanation is supported by the fact that the most
parameter-rich model was selected as optimal (i.e., GTR + I+G) for
most alignments (75%).

We caution that our findings are agnostic with regards to the

Fig. 3. Variation of different variables as a result
of changes in the gap opening score and the
likelihood score of the corresponding tree. The
Y-axis shows the normalized likelihood scores.
The X-axis shows a) the gap opening cost, b) the
average gap contiguity index (mean GCI), c) the
average nucleotide contiguity index (mean NCI),
d) the normalized number of gaps (percentage),
e) the average shared gap index (mean SGI), and
f) the average topological gap index (mean TGI).
The variable length was omitted since it closely
resembles the variable percentage of gaps.
Analyzed data and the results of the linear model
analyses are available at Tables S1 and S2, re-
spectively.
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optimal gap opening and extension costs for empirical analyses that
treat gaps as missing data. That is, although the effects of variation in
gap costs on model selection, tree topology, and ML score can be pre-
dicted, none of these response variables provides a defensible optim-
ality criterion for selecting alignments or alignment parameters in
standard ML analysis. The program SATé (Liu et al., 2009; Liu et al.,
2012) does employ ML score to choose among alignments obtained
from MAFFT while treating gaps as unknown nucleotides, but Denton
and Wheeler (2012) showed that the gaps-as-missing assumption results
in TIA being optimal if alignments are evaluated on the basis of the ML
score. In practice, it is highly unlikely for trivial alignments to be
chosen as optimal in empirical studies because SATé searches using
alignments obtained from MAFFT, which does not use ML as its op-
timality criterion and does not treat gaps as absence of evidence.
Nevertheless, this does not absolve SATé of Denton and Wheeler’s
fundamental criticism, as its apparent immunity is due to its incomplete
analysis of alignment space and inconsistent application of the optim-
ality criterion. That is, given the specified optimality criterion, an
adequately thorough analysis must select TIA as optimal, and it is only
by employing different criteria for alignment and tree assessment that
SATé avoids TIA. As Denton and Wheeler demonstrated, the problem is
eliminated if gaps are attributed a cost in both the alignment and tree
searching stages of analysis.

A long and growing list of theoretical and empirical studies has
demonstrated the importance of treating gaps as indel events in

Fig. 4. As an example of all datasets except da-
taset 4, we show in a) the relationship of mean
gap contiguity index (GCI) and the normalized
likelihood scores (top left), the variation in the
number of identical characters and the gap
opening cost (GOC; see heatmap on the bottom
left), and the distribution of gaps and nucleotides
on all alignments (right) for datasets 6 (Mauro
et al. 2014: 16S rRNA). Alignments are stacked
on top of each other, ordered according to GOC,
and divided into four windows of 1,125 bp. In b)
we show the same information for dataset 4
(Healy et al. 2009: 28S rRNA), which differs
from all others in the effect of gaps on nucleotide
homology.

Fig. 5. Variation of normalized likelihood score (LS) and shared gaps index
(SGI) of dataset 8 across three rounds of simulations (1,000 independent re-
plicas each). In each simulation round, nucleotides were substituted by indels
with a fixed probability (black = 0.25, red = 0.5, and green = 0.75). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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phylogenetic analyses (e.g., Simmons et al., 2001; Ogden and
Rosenberg, 2007; Dwivedi and Gadagkar, 2009; Dessimoz and Gil,
2010; Jordan and Goldman, 2012; Nagy et al., 2012; Yuri et al., 2013).
Although this obviously does not prevent variation in the number and
distribution of gaps from affecting results, by combining alignment and
tree selection into a common analytical framework through generalized
tree-alignment (Varón and Wheeler, 2013), gap opening and extension
parameters can be chosen to maximize the likelihood score, as envi-
sioned by Sankoff (1975) and implemented in programs like POY
(Wheeler et al., 2015) and BEAST (Suchard et al., 2018). Nevertheless,
the most common approach is to code gaps as unknown nucleotides. For
example, all phylogenetic analyses of nucleotide sequences in the 50
open access articles published in Molecular Phylogenetics and Evolu-
tion since 2017 (available at www.journals.elsevier.com/molecular-
phylogenetics-and-evolution/open-access-articles, accessed April 11,
2020) treated gaps as unknown nucleotides, as did all articles in Sys-
tematic Biology between 2013 and 2016.

Given how frequently gaps are treated as unknown nucleotides in
phylogenetics, it is imperative to understand how their number and
distribution affect results. Our findings are revealing, and there is no
empirical or theoretical reason to believe they are unique to the data-
sets and optimality criterion we employed. Nevertheless, studies using
larger and more diverse datasets and additional optimality criteria,
especially Bayesian inference, must be undertaken to assess their gen-
erality and discover additional effects.
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