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Abstract
Although habitat modification is considered one of the main causes of biodiversity 
loss, the relative contribution of different rural land uses to biodiversity conservation 
is far less known. Additionally, the realization of the multidimensionality of biodiver-
sity demands studies integrating variation of functional traits and phylogenetic infor-
mation as complements to address the effects of land use on the structure of animal 
communities. Herein, we investigated the effects of land use (i.e., intensive agricul-
tural and extensive livestock rearing) on functional and phylogenetic diversity of anu-
ran communities in farmland ponds from the Uruguayan savanna ecoregion, while 
considering the effects of local factors (i.e., water depth) on species composition. We 
surveyed adults and tadpoles in 22 ponds and quantified five traits related to tadpole 
feeding, habitat use, and predator avoidance. Tadpole identification was corrobo-
rated by DNA barcoding based on a fragment of the mitochondrial 16S rRNA gene. 
We observed a decline in phylogenetic mean nearest taxon distance associated with 
increase of surrounding agricultural land use. While land use intensification did not 
affect richness (functional or phylogenetic), ponds in livestock ranches hosted about 
four times more tadpoles than agricultural ponds. Functional evenness decreased 
with water depth, although such relationship disappeared when considering phylo-
genetic non-independence. Our results indicated that specific anuran clades were 
more sensitive to intensification in land use, reinforcing a recent view of phylogenetic 
homogenization following habitat conversion. Additionally, our study suggests that 
extensive cattle grazing over wide native pastures may provide an alternative more 
compatible with conservation than short-term crops in subtropical grasslands.

Abstract in Portuguese is available with online material.
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1  | INTRODUC TION

Habitat modification is the primary driver of population declines 
and species extinctions (Kehoe et al., 2015), with food production—
through agriculture and cattle ranching—as one of the main causes 
of habitat change (Veach, Moilanen, & Di Minin, 2017). In landscapes 
where the conversion has already taken place, agricultural intensi-
fication may enhance biodiversity loss through increased mech-
anization, decreased crop diversity, input of hazardous pesticides, 
and grassland conversion to arable fields (Schiesari & Corrêa, 2016; 
Tscharntke, Klein, Kruess, Steffan-Dewenter, & Thies, 2005). After 
conversion to croplands, vegetation homogenization and a

lterations in the hydrological regimes are the immediate impacts 
on freshwater communities. Thus, across a wide range of animal and 
plant taxa, it is unsurprising that pristine areas support greater levels 
of biodiversity than agricultural or pastoral lands (Flynn et al., 2009; 
Tscharntke et al., 2005).

When compared to intensively used agroecosystems, the rela-
tive contribution of non-intensively exploited areas to conservation 
is well acknowledged (Phillips, Newbold, & Purvis, 2017). Planted 
pastures may support moderate levels of biodiversity in relation to 
intensive crops, although pastures are often far less suitable than 
forested areas (Schiesari & Corrêa, 2016). However, exotic planted 
pastures occur by removing the original vegetation—often trans-
forming forest and woodland ecosystems—and establishing exotic 
species (Moreira, Solino-Carvalho, Strüssmann, & Silveira, 2016). 
This is contrastingly different to using natural grasslands for moder-
ate or extensive domestic animal grazing. Despite the importance of 
natural grasslands as ecosystems and their role in human economic 
activities, their relevance as economically productive systems that 
allow for the conservation of a more diverse biota, depending on 
management practices, has received little attention in the literature 
(Dotta, Phalan, Silva, Green, & Balmford, 2016; Isacch, Maceira, Bo, 
Demaría, & Peluc, 2005). Negative effects of grazing on freshwater 
communities result from direct nitrogenous waste input into ecosys-
tems and changes in vegetation structure (Jansen & Healey, 2003; 
Schmutzer, Gray, Burton, & Miller, 2008). Recent reviews show no 
clear consensus about responses to livestock use of wetlands, al-
though potential negative (even mixed or positive) effects seem 
dependent on grazing regimes and stocking densities (Howell 
et al., 2019; Schieltz & Rubenstein, 2016). Therefore, we identify a 
need for more integrative studies based on empirical data to under-
stand how the biodiversity of open areas, in its different dimensions 
(e.g., functional and phylogenetic), copes with a changing habitat. 
More importantly, we should understand how different land uses 
modify natural grasslands—which uses have more pervasive impacts 
and which uses help to supplement the biodiversity conserved in 
protected areas.

The recognition that species trait diversity may contribute 
disproportionately to ecosystem functioning has led to new in-
sights about ecological patterns and ecosystem health (Cadotte, 
Carscadden, & Mirotchnick, 2011). Organism's traits have direct and 
indirect consequences for its fitness, making functional traits a proxy 

for understanding the environmental tolerances and habitat re-
quirements (Mouillot, Graham, Villéger, Mason, & Bellwood, 2013). 
Levels of trait variation (i.e., functional richness) are expected to 
decrease with high disturbance levels, while functional evenness—
which incorporates both species traits and abundance—decreases 
even under moderate levels of disturbance (Mouillot et al., 2013; 
Villéger, Miranda, Hernández, & Mouillot, 2010). This happens be-
cause functional evenness reflects the balance between competitive 
interactions (at low disturbance levels) and trait filtering associated 
with the increase of disturbance intensity, while functional richness 
decreases with species extinctions with extreme traits (Mouillot 
et al., 2013).

Animal functional traits that describe food acquisition and hab-
itat use may influence species composition in modified landscapes 
(Flynn et al., 2009; Trimble & van Aarde, 2014). Although trait-based 
approaches might be a valuable tool, trait data are not readily avail-
able or the investigated traits are hard to quantify. Methodological 
issues remain to establish the underlying mechanisms driving com-
munity assembly, including trait selection and types of functional 
diversity measures (Schmera, Heino, Podani, Erös, & Dolédec, 2017; 
Tsianou & Kallimanis, 2016). As an alternative, phylogenetic diver-
sity metrics have been used as a surrogate for functional diversity 
(Gerhold, Cahill, Winter, Bartish, & Prinzing, 2015), based on the 
general assumption that proximity of common ancestry correlates 
with niche similarity. However, the generality of this assumption is 
contentious and commonly found processes in empirical studies, 
such as evolutionary convergence, ecological speciation, and phe-
notypic plasticity, will distort such associations (Cadotte, Davies, & 
Peres-Neto, 2017; Stroud & Losos, 2016).

While several studies have addressed the effects of land use 
intensification on functional and phylogenetic diversity (Lee & 
Martin, 2017; Ribeiro et al., 2017; Trimble & van Aarde, 2014), 
there are important knowledge gaps on the impacts of land use in 
grasslands and freshwater ecosystems. In particular for amphibians, 
phylogenetic homogenization following habitat conversion seems 
to be a global pattern (Nowakowski, Frishkoff, Thompson, Smith, 
& Todd, 2018), although local responses to conversion can vary 
widely in the functional context. Function-related responses to land 
use seems to be complex; modified habitats often show less func-
tional groups, yet not all human land uses affect functional richness 
(Díaz-García, Pineda, López-Barrera, & Moreno, 2017; Riemann, 
Ndriantsoa, Rödel, & Glos, 2017; Trimble & van Aarde, 2014). In sub-
tropical grasslands, biodiversity erosion has been documented under 
moderate levels of habitat loss. Such agricultural landscapes had 
fewer number of species, lower phylogenetic diversity, and higher 
nestedness (Saccol, Bolzan, & Santos, 2017; Staude et al., 2018), in 
which disturbance-tolerant species are favoured and non-random 
local extinctions occur in some evolutionary lineages.

Here, we investigated the relationship between anuran diversity 
and land use (intensive agricultural areas versus extensive livestock 
rearing) in farmland ponds from the Uruguayan savanna ecore-
gion. We considered two aspects of functional diversity (richness 
and evenness) and two aspects of phylogenetic diversity (richness 
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and divergence). Explicitly, we explored whether: (a) there are dif-
ferent amounts of evolutionary history represented by the anuran 
communities at each land use; (b) in a phylogenetic context, species 
within ponds surrounded by cultivated land would be more related 
than expected in a random assemblage, reflecting the role of envi-
ronmental filters in selecting disturbance-tolerant species; (c) func-
tional diversity patterns, based on tadpole traits related to food 
acquisition, habitat use, and predator avoidance would be linked to 
different land uses. We posit that functional evenness would decline 
with land use intensity, but without significant change in functional 
richness. Intensive agricultural areas are subject to physical (native 
vegetation removal and crop harvest) and chemical (pesticides and 
fertilizers) disturbances, whereas extensive cattle grazing leads to a 
change in grassland structure (Moreira, Solino-Carvalho, et al., 2016; 
Schiesari & Corrêa, 2016). In this way, extensive livestock ranches 
would support moderately higher levels of biodiversity in relation to 
more impoverish agricultural areas.

2  | METHODS

2.1 | Study area and data collection

We selected 22 ponds in southern Brazil (29.64°–30.10°S, 54.05°–
57.33°W), each with adjacent areas of intensive cultivated land 
(N = 11) or land used for extensive rearing livestock through grazing 
(N = 11). The Brazilian Pampa corresponds to the northern portion 
of the Uruguayan savanna ecoregion (Figure 1), which includes a mo-
saic of grasslands, scrub savannas, and gallery forests. Cattle grazing 
and fire have shaped this landscape for over 300 years (Bernardi, 
Holmgren, Arim, & Scheffer, 2016; Overbeck et al., 2007). But 
since the second half of the twentieth century, conversion of native 
grasslands to more profitable agricultural activities, mainly rice and 

soybean, have greatly expanded (Oliveira et al., 2017). Nowadays, 
livestock farming (65%) and intensive crop-based agriculture (20%) 
dominate the land use patterns (Modernel et al., 2016).

In the spring of 2015 (10–16 October), we sampled tadpoles in 
ponds located 5.5–316 km apart (Figure 1). Most anuran species 
in the Uruguayan savanna were spring breeders or overwinter as 
tadpoles (Maneyro & Carreira, 2012). We selected small ponds sur-
rounded by similar land use up to 500 m (crop or livestock). Ponds 
were close to 0.15 ha (range 0.01–0.35), although one large pond 
was included in the sampling (0.76 ha). Sampled ranches raise cat-
tle and sheep in natural grasslands (i.e., area for livestock grazing 
mostly formed by non-planted pastures with negligible amounts of 
external inputs). Stocking rates estimates range from 0.68 to 1.0 
animal units/ha, although ranchers could adjust it according to the 
winter conditions and overgrazing may occur (Modernel et al., 2016). 
Intensive agricultural areas were used for short-term crops (soy-
bean or rice). Application of agrochemical, inorganic fertilizers, and 
glyphosate-based herbicides is concentrated in the initial growth 
stage (October–November). In order to ensure that the landscape 
composition surrounding each pond did not change over different 
scales, we also defined circular areas (1,000 m radius) and measured 
land-cover data (Table S1), using Qgis 2.18.16 (QGIS Development 
Team, 2018). We based analysis on Google Earth imagery, using a 
land-cover classification for 2015 produced within the scope of the 
MapBiomas initiative (Project MapBiomas, 2019). Other land uses 
(natural forests, forest plantation, and mosaics) showed small areas 
within buffers (Table S1), and there was a strong negative correlation 
between natural grasslands used for cattle ranching and intensive 
agricultural area (r = −.972). Thus, we used agricultural area as pre-
dictor variable inversely expressing livestock farming.

At each pond, we performed eight dip-net sweeps (30 cm diam-
eter, 2 mm mesh), each covering approximately 1 m2 and distributed 
at different pond depths (i.e., four sweeps near the edge of the pond 

F I G U R E  1   Location of Uruguayan 
savanna (dark gray) and the study sites 
in southern Brazil. Solid circles represent 
agricultural ponds and open circles 
livestock ranch ponds
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and four sweeps in deep water near the center of the pond). Sweeps 
were pooled into one sample per pond (3.5 L plastic bucket), where 
the collected tadpoles were euthanized with a benzocaine solution 
and sorted into series based on their morphology (i.e., coloration, 
body shape, eyes position, tail fin proportion, and mouth position). 
From each series, tail samples were taken from three specimens 
to corroborate tadpole identification by DNA barcoding based on 
a fragment of the mitochondrial 16S rRNA gene (Grosjean, Ohler, 
Chuaynkern, Cruaud, & Hassanin, 2015). We also registered the 
presence of all observed adults, visually or acoustically, during tad-
pole sampling. Voucher specimens were deposited at the Amphibian 
Collection of the Museu de Ciências e Tecnologia da Pontifícia 
Universidade Católica do Rio Grande do Sul (MCT-PUCRS), Brazil.

Five functional traits were selected to reflect tadpole feed-
ing, habitat use, and predator avoidance (Azizi, Landberg, & 
Wassersug, 2007; Strauss, Reeve, Randrianiaina, Vences, & 
Glos, 2010; Venesky, Wassersug, & Parris, 2010). To accommodate 
differences across tadpole developmental stages, all traits were ra-
tios between morphological measures (Table 1). Each specimen was 
rinsed in distilled water and then measured for a set of eight mor-
phological traits on an automated stereomicroscope—Leica M205A 
(Figure S1). Morphological terminology followed that of Altig and 
McDiarmid (1999), and only specimens without tail injuries between 
Gosner’ stages 29 and 39 were measured. Phylogenetic relationships 
among species were obtained from a time-calibrated phylogenetic 
tree generated by Pyron (2014). We pruned the phylogeny to match 
the species pool of both land uses. When resolution for our taxa was 
not present in the phylogeny, we manually incorporated our species 
following a range of published sources for between-species relation-
ships (Figure S2). Mean path length calibration was used to adjust 
branch lengths (Britton, Oxelman, Vinnersten, & Bremer, 2002).

2.2 | Diversity measures and phylogenetic signal

Some degree of phylogenetic signal in functional traits is common 
for taxa that share a common ancestor, so we quantified the phylo-
genetic signal in the traits using Blomberg's K statistic implemented 
in the phytools package (Revell, 2012) in R. To summarize anuran 
phylogenetic variation, we chose metrics related to richness and di-
vergence: (a) Faith's phylogenetic diversity (PD) to represent the sum 
of accumulated phylogenetic differences (i.e., sum for a total branch 
lengths for the species occurring in each pond); (b) mean nearest 
taxon distance (MNTD) to represent the mean phylogenetic related-
ness within an assemblage (i.e., mean of the branch lengths separat-
ing each species from its closest relative in each pond).

To quantify changes in functional trait variation across live-
stock ponds and crop ponds, we calculated two functional met-
rics: functional richness (FRic) and functional evenness (FEve) 
(Villéger, Mason, & Mouillot, 2008). The former describes a multi-
dimensional trait space filled by the species assemblage, while the 
latter reflects the regularity of abundance distribution in the func-
tional trait space. Functional richness is independent of species 
abundance, while FEve value is proportional to species relative 
abundance. Both functional metrics were calculated for all ponds 
with a minimum of three recorded species. To facilitate compari-
son between the different metrics (functional and phylogenetic), 
the magnitude of the differences was calculated based on stan-
dardized effect size (SES; Gotelli & McCabe, 2002). Standardized 
effects were derived from a null model that preserves regional 
species occurrence frequency and pond species richness (inde-
pendent swap algorithm; Gotelli, 2000). Positive or negative SES.
PD/FRic values indicate, respectively, phylogenetic/functional 
richness higher or lower than expected by the null model. For 

Trait Measure Relevance

Body form BL/TL Swimming type and endurance. High values 
entail lateral bending during swimming, evading 
attacking predators. Low values entail little 
lateral flexion, enabling more endurance in 
higher flow velocity

Tail shape (DTH + VTH)/TMH Position in the water column. Deep tail fins may 
distract the predator, deflecting deadly strikes 
to the body wall

Tail position TAL/BL Acceleration and maneuverability. Larger tails 
enhance sprint swimming speed of tadpoles

Oral disk position OD/BL Food acquisition. Low values entail feeding 
mainly on midwater or surface, while high 
values entail feeding on pond bottom

Number of tooth 
rows

TR/OD Food acquisition and substrate anchorage. Low 
values entail suspension feeders and midwater 
macrophagous tadpoles. More labial tooth rows 
enable tadpoles to feed on other resources by 
scraping or biting off material from substrate 
(macrophytes and carrion)

Abbreviations: BL, body length; DTH, dorsal tail fin height; OD, oral disk width; TAL, tail length; TL, 
total length; TMH, tail muscle height; TR, tooth rows number; VTH, ventral tail fin height.

TA B L E  1   Traits and measurements 
used to calculate functional diversity 
indices
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SES.MPD/FEve, positive significant values indicate clustering, 
and negative values indicate phylogenetic/functional overdisper-
sion. Phylogenetic and functional diversity measures were com-
puted using the picante (Kembel et al., 2010) and FD (Laliberté, 
Legendre, & Shipley, 2014) packages in R.

2.3 | Statistical analysis

We assessed sampling saturation overall and per land use with 
rarefaction and extrapolation curves with Hill numbers (Chao 
et al., 2014). We also estimated species richness per land use with two 
non-parametric richness estimators: one abundance-based (Chao 1) 
for tadpole data and one incidence-based (Chao 2) that include also 
anuran species identified from vocalizations. Sampling curves were 
generated using the iNext package (Hsieh, Ma, & Chao, 2016) in R.

Linear models with forward selection (Blanchet, Legendre, & 
Borcard, 2008) were used to evaluate the effect of pond charac-
teristic (water depth) and the landscape effect (agricultural area) on 
SES.PD/MNTD or SES.FRic/FEve. Phylogenetic signal in traits may 
inflate type I error in the functional metrics used here (Diniz-filho, 
Cianciaruso, Rangel, & Bini, 2011; Duarte, Debastiani, Carlucci, & 
Diniz-Filho, 2018). So, we performed a phylogenetic correction for 
functional traits in two steps: (a) performing phylogenetic general-
ized least squares (PGLS) on each trait modeled only by its mean 
and variance; (b) taking the model normalized residuals as phyloge-
ny-free estimates of trait variation (so-called S-component). These 
residuals were used to calculate phylogeny-free SES.FRic/FEve that 
was regressed on agricultural area and water depth. Finally, we per-
formed a test for spatial autocorrelation in the residuals from all 
linear models, using Moran's I statistic implemented in the spdep 
package (Bivand & Piras, 2015) in R.

Species

Crop Livestock ranch

Occurrence Abundance Occurrence Abundance

Bufonidae

Melanophryniscus 
atroluteus

1a  7 1a 

Rhinella diptycha 5a 

Rhinella dorbignyi 3a  1 3a  1

Hylidae

Boana pulchella 4 22 7a  35

Dendropsophus minutus 1 3 4a  27

Dendropsophus sanborni 1a  1 3a  4

Ololygon aromothyella 3a 

Pseudis minuta 1a  6 7a  5

Scinax fuscovarius 3a 

Scinax nasicus 1 9

Scinax squalirostris 5a  21 9a  128

Leptodactylidae

Leptodactylus gracilis 4a  14 5a  41

Leptodactylus latinasus 2a  2 4a 

Leptodactylus latrans 5a  432

Physalaemus biligonigerus 4a  15 1 6

Physalaemus cuvieri 3a  2a 

Physalaemus gracilis 4 4 2a  1

Physalaemus henselii 2a 

Physalaemus riograndensis 5a  42 6a  8

Pseudopaludicola falcipes 7a  25 11a  19

Microhylidae

Elachistocleis bicolor 2a  2 5a  8

Odontophrynidae

Odontophrynus 
americanus

2 14

aSpecies also registered by calling activity of adults. 

TA B L E  2   Species occurrence and 
tadpole abundance registered in 22 ponds 
distributed in different land uses (crop 
N = 11, livestock N = 11) of the Uruguayan 
savanna
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3  | RESULTS

Summarizing data over all sampled ponds, we found tadpoles of a 
total of 17 anuran species, representing 11 genera from five families 
(Table 2). Five additional anuran species were registered visually 
or acoustically as adults only (Ololygon aromothyella, Physalaemus 
cuvieri, P. henselii, Rhinella diptycha, and Scinax fuscovarius), bring-
ing the total number of observed species to 22. Functional diver-
sity indices were calculated from 294 individual measurements of 
five traits of the 17 species from the 22 ponds—note that many 
specimens had tail injuries and could not be included. We pro-
duced 67 barcodes (GenBank codes: MT460167–MT460233), cor-
responding to specimens of all species and tadpoles’ series (MCP 
13526–13602), that were used to confirm morphological identifi-
cations by comparing them with homologous fragments available 
in GenBank. Ponds in livestock ranches hosted about four times 
more tadpoles than agricultural ponds (Table 3). Across all study 
ponds, the most abundant species was Leptodactylus latrans, cor-
responding to 48% of all the collected individuals (Table 2). Even 
after the exclusion of L. latrans, livestock ranches hosted around 
two times more tadpoles than agricultural ponds. Species accu-
mulation curves approached but did not reach an asymptote for 
anurans overall or any land use (Figure S3). Confidence interval 
of both indicators did not differ significantly between land uses 
(Table 3).

We observed a considerable degree of phylogenetic signal for 
most measured traits, indicating conserved evolution for three 
traits (Table S2). Overall, diversity metrics exhibited random dis-
tributions, with few values being significantly less than expected 
from the null model (Table S3). Only one cattle pond showed a 
significant low value of SES.FRic. Many crop ponds exhibited low 
values of SES.MNTD (N = 7), but only two ponds had significant 
low values, indicating environmental filtering. Regarding SES.
FEve, one cattle pond showed functional clustering and one crop 
pond showed overdispersion (Table S3). Effect size of PD was not 
related to water depth or landscape, while MNTD was significantly 
related to land use intensification (Table 4). Average distances be-
tween each species and its nearest phylogenetic neighbor in the 
community decreased with agricultural area (Figure 2a). Variation 
in FRic was not explained by any of the measured variables while 
functional evenness was related to water depth (Figure 2b). 
However, when corrected by phylogenetic proximity, we found 
no significant relationship (Table 4). Considering that our esti-
mate of FEve could be biased, due to the large abundance of L. la-
trans, we excluded this species and reanalyzed the data, but the 

overall patterns remained (Figure S4). None of the model residuals 
showed evidence of spatial autocorrelation (Table 4).

4  | DISCUSSION

In line with accumulating evidence of ongoing biodiversity erosion 
in subtropical grasslands (Egorov et al., 2014; Saccol et al., 2017; 
Staude et al., 2018), our results showed that anuran communities 
respond negatively to land use intensification (i.e., conversion from 
native grasslands to intensive croplands). Although we found no rela-
tionship between richness (functional or phylogenetic) and land use, 
our results show that ponds surrounded by intensive crops contain 
species that are closely related to one another. This can be linked 
to phylogenetic homogenization, in which specific anuran clades 
were more sensitive to disturbances associated with agriculture. 
Functional evenness decreased with water depth, although this was 
probably a statistical artifact generated by phylogenetic non-inde-
pendency among species.

In our study, ponds in the sampled properties harbored half of 
the anuran species richness normally found in conservation areas 
of the Brazilian Pampa (André, Cechin, & Santos, 2019; Bolzan, 
Saccol, & Santos, 2016) and about 30% of the species registered 
at the Uruguayan savanna ecoregion (Canavero et al., 2010; 
Maneyro, 2008). Such impoverishment could be due to a sampling 
effect, because of low detection probabilities of many anuran spe-
cies in the region (Moreira, Moura, & Maltchik, 2016). However, 
our results agree with other estimates of total richness at Pampa 
farmlands that were not based on a single sampling period (Bolzan, 
Hartmann, & Hartmann, 2014; Machado & Maltchik, 2010; Moreira 
& Maltchik, 2015; Saccol et al., 2017). Together, these studies re-
vealed a complementary pattern in relation to the composition of 
anuran assemblages in the Pampa biome. Many species that could 
be considered as generalists have unexpected gaps in their distri-
bution. Such idiosyncrasies are commonly attributed to local veg-
etation variations associated with soil heterogeneity, topography, 
and land use (Bolzan et al., 2014; Lipinski & Santos, 2014). In spite 
of the extensive geographic extension of the Uruguayan savanna 
ecoregion, few areas within it are protected by conservation units. 
It is interesting to note that the species registered as adults only 
have the southern limit of their geographical distribution in the 
border between Brazil and Uruguay (P. cuvieri and S. fuscovarius; 
Maneyro, 2008; Maneyro & Carreira, 2012) or have low frequency 
of occurrence in the region (O. aromothyella, P. henselii, and R. dip-
tycha; Bolzan et al., 2014; Bolzan et al., 2016; Santos, Kopp, Spies, 

Species 
registered Total abundance Chao 1 (95% CI)

Chao2 (95% 
CI)

Total 17 (22) 903 17 (17–18.3) 22.1 (22–25.4)

Crop 15 (16) 174 16 (15.1–26) 21.7 (16.9–42)

Livestock 14 (21) 729 15 (14.1–28.1) 21.4 (21–26.8)

TA B L E  3   Amphibian species richness 
(number in parentheses include audio 
surveys), tadpole abundance, and 
abundance/incidence-based richness 
estimators across different land uses
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Trevisan, & Cechin, 2008). Moreover, they display an explosive re-
production strategy and are usually recorded after heavy rainfall 
events (>50 mm/day).

The decline in MNTD associated with ponds inside a large 
matrix of croplands indicates that they tend to harbor a greater 
number of recently divergent species. This result reflects the 
greater occurrence of foam nest species (family Leptodactylidae). 
Indeed, it seems that leptodactylids are more tolerant to habitat 
conversion (Machado & Maltchik, 2010; Nowakowski et al., 2018). 
Reproductive modes associated with foam nests, floating on pond 
or inside subterranean constructed nests, enable adults and tad-
poles to overcome several drawbacks that are common in open 
environments: desiccation risk, thermal damage, difficulty in ox-
ygen exchange, and microbial colonization (Fleming, Mackenzie, 
Cooper, & Kennedy, 2009; Hissa et al., 2008; Zina, 2006). 
Moreover, foam nest has been pointed at as a key innovation in 
Leptodactylidae, increasing diversification rates in lineages with 
it (Pereira et al., 2017). Yet, not all leptodactylids respond simi-
larly to land use constraints, and foam nest is only one of the 
various potentially relevant life history traits involved (Medina, 
Ponssa, & Aráoz, 2016). For example, the most abundant species 
in our sampled ponds (L. latrans) appears to be well adapted to 
habitat modification (Heyer et al., 2010). However, recent stud-
ies have also reported low occurrence of L. latrans in areas sur-
rounded by agricultural fields (Moreira & Maltchik, 2015; Prado 
& Rossa-Feres, 2014). Tadpoles of this species have schooling 
behavior, and relative levels of water availability seems to be an 
important factor affecting tadpole survival—L. latrans tadpoles 
select deeper microhabitats covered by clay substrate (Melo, 
Garey, & Rossa-Feres, 2018). Agricultural runoff and changes in 
the water availability associated with crop cycle can be particu-
larly challenging for this species and others with similar behavior. 
To elucidate why clades other than Leptodactylidae are less fre-
quent in agricultural ponds is a tricky task, because of synergetic 
effects among various co-occurring stressors affecting amphibi-
ans. Toxic stress has consequences on amphibian survival and sus-
ceptibility to parasites (Hua et al., 2017; Peltzer et al., 2013), but 
there is no consensus about the existence of phylogenetic signal 

in the impact of agrochemicals (Egea-Serrano, Relyea, Tejedo, & 
Torralva, 2012; Guenard, Carsten von der Ohe, Carlisle Walker, 
Lek, & Legendre, 2014).

Several studies have stressed the role of depth gradients en-
abling different guilds of anuran larvae to co-occur in the same 
habitat (Both, Cechin, Melo, & Hartz, 2011; Melo et al., 2018). Such 
link between tadpole guild and water depth is commonly invoked 
to explain responses to habitat alteration. For instance, Queiroz, da 
Silva, and Rossa-Feres (2015) suggested that some traits (triangu-
lar bodies, high dorsal and ventral fins, and the presence of flagella) 
enhanced tadpole performance in medium depth ponds (40–70 cm 
deep) in agricultural landscapes of the Cerrado ecoregion. Thus, nek-
tonic species with such traits would be poorly adapted to shallow or 
deep waters in ponds. Although human induced changes are often 
correlated with amphibian functional diversity, decoupling observed 
patterns from phylogenetic autocorrelation is not a common prac-
tice. While other studies found anatomical modifications associated 
with some strata in the water column, we did not find a signal of 
changes in functional evenness when controlled for phylogenetic re-
latedness among species. In this sense, our results reinforce the idea 
that phylogenetic relationships have to be considered in analyses 
trying to correlate functional diversity with environmental variation 
or land use changes.

An important point here is that the presence of tadpoles de-
pends on breeding-site preferences of adults (Both, Melo, Cechin, 
& Hartz, 2011). However, amphibian adults and tadpoles live in 
different contexts and land use may have distinct effects for each 
stage. Extensive cattle production of Uruguayan savanna is as-
sociated with native grasslands (Oliveira et al., 2017) and despite 
unsuitable management problems (i.e., overgrazing and erosion), 
traditional extensive livestock rearing have maintained many areas 
of Uruguayan savanna as grasslands with low level of disturbance 
(Oliveira et al., 2017; Overbeck et al., 2007). On the other hand, 
conversion to intensive agricultural lands is followed by a homoge-
nization of plant communities and water physicochemical properties 
(Schiesari & Corrêa, 2016; Staude et al., 2018). Relative benefits and 
drawbacks of agroecosystems to amphibians are often crop depen-
dent (Cosentino, Schooley, & Phillips, 2011), but common negative 

Variable Adj. R2 F(df)

Coefficients
Moran's I 
(p-values)Area Depth

Phylogenetic diversity

SES.PD ≈0 0.512(2,19) 0.93 (.16)

SES.MNTD 0.20* 6.811(2,19) −1.44 0.67 (.25)

Functional diversity

SES.FRic 0.07 1.674(2,17) −0.57 (.72)

SES.FRic (S-component) ≈0 0.593(2,17) 0.7 (.24)

SES.FEve 0.17* 4.890(2,17) −0.03 0.26 (.39)

SES.FEve (S-component) ≈0 0.302(2,17) −0.44 (.67)

Note: S-components control for phylogeny non-independency.
*p < .05. 

TA B L E  4   Linear models relating 
phylogenetic and functional diversity to 
agricultural area and pond depth in the 
Uruguayan savanna, Brazil



     |  1293MOREIRA Et Al.

impacts result from the input of agrochemicals, periodic land prepa-
ration, and pond water consumption (Mann, Hyne, Choung, & 
Wilson, 2009; Schiesari & Corrêa, 2016). Thus, part of the lack of an 
influence of the land use on the tadpole functional metrics might be 
derived from constraints influencing juveniles and adults, because 
tadpoles do not choose the pond where they will live—only the mi-
crohabitat they use within a pond.

Studies that investigate community assembly in amphibians 
have observed divergent results according to the used null model 
(Both, Melo, et al., 2011; Moreira & Maltchik, 2012; Tsianou & 
Kallimanis, 2019). Our choice of null model was based on a specific 

biological hypothesis (i.e., habitat filtering) and statistical prop-
erties (i.e., low type I error rates). However, the performance of 
null models against different assembly processes is an ongoing de-
bate and may depend on the choice of the metric (Miller, Farine, 
& Trisos, 2017). In this sense, we highlight that other mechanisms 
like negative biotic interaction may have contributed to our re-
sults. Two other subtle issues must be recognized here. First, it 
is possible that imperfect detectability could have influenced our 
results. For example, tadpoles that swim in head-up posture and 
form schools can be more easily sampled than solitary benthic spe-
cies. Functional metrics seem to be robust to imperfect detection, 

F I G U R E  2   Relationship between phylogenetic/functional measures and environmental descriptors. (a) Mean phylogenetic relatedness 
(SES MNTD: standard effect size for mean nearest taxon distance) and landscape agricultural area; (b) functional evenness (SES FEve: 
standard effect size for functional evenness) and pond water depth. Hatched lines represent the 95% confidence boundaries
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although detectability has the potential to bias trait–environment 
relationships (Roth, Allan, Pearman, & Amrhein, 2017). We were 
not able to correct functional composition without repeated sur-
veys in the same pond. Yet, detection-adjusted occupancy models 
indicated a relationship between occupancy and agricultural ac-
tivities and/or livestock management in the study area (Moreira 
et al., 2016). Second, the unavailability of information before con-
version to productive lands is another limitation of this study. This 
issue is particularly hard to consider when working in the Brazilian 
Pampa, because untouched native grasslands and forests have 
been reduced by almost 90% (Cordeiro & Hasenack, 2009) and 
most sampling designs, such as the one used in our study, usually 
underestimate biodiversity losses (França et al., 2016).

In conclusion, this study showed that phylogenetic relatedness 
mediates most responses of anuran species to land use intensi-
fication in South American subtropical grasslands. Because tad-
poles are often key consumers in freshwater wetlands, our results 
have direct effects on ecosystem structure. Under a scenario of 
land sharing (i.e., integrating biodiversity conservation and food 
production on the same land), our observations highlight that ex-
tensive cattle grazing over wide native pastures may provide an 
alternative more compatible with conservation than intensive 
short-term crops. However, reconciling biodiversity conservation 
with economic gains is a tough task, which minimally should in-
volve strategies of land sharing and land sparing (Phalan, Onial, 
Balmford, & Green, 2011). We hope that our results contribute to 
the current debate about management practices that help main-
taining biodiversity in productive areas.
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