
DDoS On Sketch: Spoofed DDoS attack defense with
programmable data planes using sketch in SDN

Kairo Tavares1, Tiago Ferreto1

1PPGCC - Graduate Program in Computer Science
PUCRS - Pontifical Catholic University of Rio Grande do Sul

kairo.tavares@acad.pucrs.br, tiago.ferreto@pucrs.br

Abstract. Distributed Denial of Service (DDoS) attacks are still a major issue
in today’s Internet. Over the last few years, we have observed a dramatic esca-
lation in the number, scale, and diversity of these attacks. Among the various
types, spoofed TCP SYN Flood is one of the most common forms of volumetric
DDoS attacks. Several works explored the flexible management control pro-
vided by the new network paradigm called Software Defined Networking (SDN)
to produce a flexible and powerful defense system. However, these works usu-
ally present an increase in all clients connection time, or vulnerability to buffer
saturation attacks. In this work, we propose the use of sketch-based solutions
to improve the data plane Safe Reset anti-spoofing defense mechanism. We im-
plemented our solution in P4, a high-level language for programmable data
planes, and evaluate our solution against a data plane Safe Reset technique on
an emulated environment using Mininet.

Resumo. Os ataques de negação de serviço distribuı́do (DDoS) ainda são uma
questão importante na Internet nos dias de hoje. Nos últimos anos, observa-
mos um aumento significativo no número, escala e diversidade desses ataques.
Entre os vários tipos, o Spoofed TCP SYN Flood é um dos tipos mais comuns
de ataques de DDoS volumétricos. Diversos trabalhos exploraram o controle
flexı́vel de gerenciamento fornecido pelo novo paradigma de rede chamado SDN
(Software Defined Networking) para produzir um sistema de defesa flexı́vel e
poderoso. No entanto, esses trabalhos geralmente apresentam um aumento
no tempo de conexão para todos os clientes ou vulnerabilidade a ataques de
saturação de buffer. Neste trabalho, propomos o uso de soluções baseadas em
sketch para melhorar o mecanismo de defesa anti-spoofing Safe Reset no plano
de dados. Implementamos nossa solução em P4, uma linguagem de alto nı́vel
para planos de dados programáveis, e avaliamos nossa solução em relação a
uma técnica de Safe Reset no plano de dados em um ambiente emulado usando
o Mininet.

1. Introduction
Despite the extensive industrial and academic efforts, Distributed Denial of Service
(DDoS) attacks are still a major issue in today’s Internet. Over the last few years, we
have observed a dramatic escalation in the number, scale, and diversity of DDoS attacks.
These attacks can be described as a malicious attempt to make the victim unavailable by
depleting its resources, such as CPU cycles, memory, and network bandwidth, or explor-
ing design flaws.



Among the various DDoS attacks, TCP SYN Flood [Wang et al. 2002] is one
of the most common forms of DDoS attacks. In fact, according to a Radware re-
port [Radware 2016], 40% of the organizations experienced a TCP-SYN Flood attack
in 2016. It is a volumetric attack that generates high-volume traffic and aims to exploit an
implementation characteristic of the Transmission Control Protocol (TCP) to make server
processes incapable of answering a legitimate client application’s requests for new TCP
connections. Any service that binds to and listens on a TCP socket is potentially vulnera-
ble to TCP SYN Flood attacks. There are two main causes [Sun et al. 2009] of TCP SYN
Flood attacks: i) the inherent asymmetry feature in TCP three-way handshake protocol,
which enables an attacker to consume substantial resources at the server, while sparing
its resources; ii) the fact that the server cannot control the packets it receives, especially
SYN packets, can easily reach the server without its approval.

A common form of TCP SYN Flood attack uses an spoofed IP address to mask
the attacker’s identity. It is a more complex method where the attacker also needs to
be able to create and inject raw IP packets with valid IP and TCP headers. Nowadays,
popular libraries exist to aid with raw packet formation and injection, so attacks based on
spoofing are fairly easy. An important consideration for this attack variation to succeed is
the address selection, since the machines at the spoofed source addresses must not respond
to the SYN-ACKs that are sent to them in any way. Therefore, attackers may select one
or multiple addresses based on the prior knowledge that the source address is unreachable
by the machine under attack.

To address this problem, DDoS defense mechanisms have been deployed in the
network infrastructure to detect and mitigate the attacks. Usually, these defenses are
enforced by using expensive and proprietary hardware appliances [Dzurenda et al. 2015,
Martinasek 2015] that are fixed in terms of placement, functionality, and capacity. First,
they are typically deployed at fixed network aggregation points (e.g., a peering edge link
of an ISP). Second, they provide fixed functionality with respect to the types of DDoS
attacks they can handle. Third, they have a fixed capacity with respect to the maximum
volume of traffic they can process [Fayaz et al. 2015].

Ideally, a DDoS defense architecture should provide the flexibility to seamlessly
place defense mechanisms where they are needed and the elasticity to launch defenses as
needed depending on the type and scale of the attack. To address those requirements, sev-
eral works [YuHunag et al. 2010, Giotis et al. 2014, Xing et al. 2013, Braga et al. 2010]
explored the flexible management control provided by the new network paradigm called
Software-Defined Networking (SDN) [McKeown 2009, Kreutz et al. 2015]. Among
them, data plane based solutions [Shin et al. 2013, Afek et al. 2017] combined with the
recently flexibility of programmable switches aims to leverage the hardware speed de-
fense against Spoofed Flooding attacks. Usually, they implement anti-spoofing mecha-
nisms that rely on making the switch interact and authenticate the client using techniques
such as TCP Proxy, TCP Reset, and Safe Reset. These techniques allow the infrastruc-
ture to authenticate the TCP SYN request client first, before sending the request to the
destination server. However, those mechanisms have several limitations. First, due to the
required interaction to authenticate the client, they penalize all clients connection time
even without an ongoing attack. Second, they have limited capacity to detect a valid
client ACK or RST, and finally, they are vulnerable to a buffer saturation attack due to



limited data plane resources used to store a whitelist with authenticated users.

Even with this flexibility and speed, solutions in the data plane are restricted due
to the limited capacity of hardware resources in terms of CPU, memory, and storage.
As such, streaming algorithms, or sketches, have been used into network elements (e.g.,
routers or middleboxes) in high-speed networks to handle a high volume of traffic while
maintaining a low consumption overhead of CPU and memory. Several sketches have
been proposed to detect TCP-SYN Flood attacks [Sun et al. 2009, Dodig et al. 2017].
They rely on keeping tracking of the TCP Handshake to detect flooding attacks.

In this paper, we propose SACK3, a sketch-based solution implemented for pro-
grammable data planes, that aims to detect ongoing TCP SYN Flood attacks and only
apply anti-spoofing defenses, e.g., Safe Reset proxy, on client requests to servers under
attack, thus reducing the overhead on legit client connections. Our proposal not only
leverages the hardware speed but also keeps the resources usage within hardware limi-
tations, with the cost of a fixed false positive probability. We implemented our solution
in P4, a high-level language for programmable data planes, and evaluated our solution
against a data plane Safe Reset technique on an emulated environment with Mininet.

In summary, this paper presents the following contributions: (i) a technique, called
SACK3, to detect and mitigate TCP SYN Flood attacks using anti-spoofing techniques
while reducing the overhead of legit clients, (ii) a implementation of the improved version
of SACK2 [Sun et al. 2009] that uses dual counting Bloom Filters [Dodig et al. 2017] for
programmable data planes in P4, and (iii) a comprehensive evaluation of SACK3, which
confirms its effectiveness against TCP SYN Flood attacks. Moreover, the experiments
have shown a significant reduction of connection time against a pure Safe Reset proxy
implemented in the data plane.

The rest of this document is organized as follows. Section 2 presents related work
relevant to our proposal. The SACK3 technique is presented in Section 3. Section 4
presents experimental results. Finally, Section 5 concludes the paper.

2. Related Work
In SDN-based networks, several defense mechanisms against TCP SYN Flood attacks
have been proposed over the years. They mainly focus on two security problems: (i)
the improvement of solutions to detect and mitigate attacks against services on the net-
work, and (ii) the security vulnerabilities introduced by the SDN architecture that can
be exploited by flooding attacks, such as control channel saturation and OpenFlow table
exhaustion. In this section, we classify these mechanisms into three groups: (i) control
plane solutions, (ii) data plane solutions, and (iii) sketch-based solutions.

2.1. Control plane solutions
SPHINX [Dhawan et al. 2015] is a framework which has been proposed to detect security
attacks in SDN. SPHINX is implemented on the control plane and can detect TCP SYN
Flood attacks by investigating the rate of packet-in messages which correspond to the
new SYN requests. If the rate of a new SYN request is above the administrator-specific
threshold, SPHINX raises an alert. The downside is that SPHINX does not investigate the
SYN requests to distinguish the legitimates from non-legitimate requests and only strictly
controls SYN requests with a predefined threshold.



OPERETTA, proposed by Fichera et al. [Fichera et al. 2015], is an OpenFlow-
based approach implemented in the controller that investigates new SYN requests for
detecting and rejecting malicious requests. It acts as a proxy between the TCP client
and server. This solution listens for TCP SYN packet-ins from the switch and sends a
forged SYN-ACK to the client. If the client sends the ACK message, therefore being
authenticated, the controller sends an RST message to the host and installs a rule between
the client and server on both sides. In this approach, the first attempt to establish a TCP
connection is always rejected even for legitimate requests. Moreover, an adversary might
flood the controller with complete TCP handshakes and impose the controller to install a
new rule.

Finally, SLICOTS [Mohammadi et al. 2017] was proposed as an alternative to
OPERETTA that does not penalize legitimate connections. It is implemented as a
lightweight OpenDayLight (ODL) extension, and it monitors all ongoing TCP connec-
tions in the network for detecting and preventing SYN flood attacks. For each TCP
connection request, SLICOTS installs temporary forwarding rules during the TCP hand-
shaking process, and after validation of a request, it installs permanent forwarding rules
between the client and server. Moreover, SLICOTS blocks the attacker that makes a large
number of half-open TCP connections. However, it is vulnerable to table saturation in
cases of spoofed attacks that generate a significant number of different client IP addresses
that need to be routed or blocked.

2.2. Data plane solutions

AVANT-GUARD [Shin et al. 2013] has been proposed as a solution for detection and
prevention of TCP SYN Flood attack. AVANT-GUARD uses a connection migration
mechanism in data plane switches as a proxy for incoming SYN packets and limits the
effect of the control plane saturation attack. Although AVANT-GUARD is beneficial in
a general case, it causes a long delay in establishing new connections for legitimate TCP
requests. Moreover, it is vulnerable to the buffer saturation attack [Ambrosin et al. 2017]
and limits the number of connections that a data plane switch can proxy to the number
of available TCP port numbers. It also requires upgrading the data plane equipment to
support AVANT-GUARD features.

LineSwitch [Ambrosin et al. 2017] is an efficient solution that removes the lim-
itations of AVANT-GUARD and tackles buffer saturation attack. Similar to AVANT-
GUARD, LineSwitch uses the SYN proxy technique in data plane switches. However,
LineSwitch implements probabilistic blacklisting of network traffic for mitigating the
buffer saturation attack. The use of probabilistic blacklisting decreases the size of needed
memory for storing the state of ongoing connections. Since LineSwitch mediates a mini-
mum number of connections as compared to AVANT-GUARD, the limitation of the num-
ber of connections is reduced. LineSwitch is an effective solution against control plane
saturation attack, but as well as AVANT-GUARD, it also requires an upgrade on data
plane switches to be applied.

An anti-spoofing data plane solution proposed by Afek etal. [Afek et al. 2017]
aims to explore the switch data plane to reduce the CAPEX, latency, and complexity
of traditional DDoS anti-spoofing scrubbers that require dedicated middleboxes in the
network. It starts showing that the current SDN OpenFlow match-and-action model is



rich enough to implement a collection of anti-spoofing methods. Secondly, they utilize
advanced methods for dynamic resource sharing to distribute the required mitigation re-
sources over a network of switches. The anti-spoofing methods include TCP Proxy, HTTP
Redirect, TCP Reset, Safe Reset, and DNS Spoofing Cookie.

Among the anti-spoofing techniques implemented, the Safe Reset is the only one
that can be applied to all TCP clients connections without compromising the TCP options
required for performance, with no application-level awareness or requiring modifications
on the client side. It is described as the weak version of the SYN cookie, where the
switch responds to the initial SYN message with an SYN-ACK packet containing a bogus
ACK number. If the client is compliant with RFC 793 (TCP), it immediately responds
to the bogus ACK number with a RST packet containing the bogus ACK number as its
sequence number (thus being authenticated). Then, after one second, the client initiates a
new connection by sending a new SYN request.

2.3. Sketch-based solutions
Kompella et al. [Kompella et al. 2004] introduced a modified counting Bloom Filter
called Partial Completion Filter (PCF) to keep track of the differences between SYN and
FIN packets. However, a spoofed FIN RST packet can obstruct the algorithm.

Chen and Yeung [Chen and Yeung 2006] proposed using SYN-ACK pairs with
the counting Bloom Filter. They did support differentiating between ACK and Data ACK
packets. Nevertheless, a spoofing SYN and ACK packets may still obstruct the algorithm.

An accurate and efficient way of using counting Bloom Filters to keep track
of TCP SYN Flood attacks, even from a spoofed source, is proposed in SACK2
[Sun et al. 2009]. SACK2 exploits the behavior of the SYN/ACK-CliACK pair to identify
the victim’s server and the TCP port being attacked, where a SYN/ACK packet is sent by a
server when receiving a connection request, and a CliACK packet is the ACK packet sent
by the client to complete the three-way handshake. Experiments shown that the memory
cost of SACK2 for a 10Gbps link is 364KB and can be easily accommodated in mod-
ern routers. An improved version of SACK2 was proposed in [Dodig et al. 2017] that is
able to use dual counting Bloom Filter (DCBF) to decrease false detection of matching
packets.

3. Proposed Solution
As previously discussed, data plane anti-spoofing mechanisms that rely on making the
switch to interact and authenticate the client have several limitations. We choose to focus
on the Safe Reset proxy because it is the technique, among the others implemented in
the data plane by [Afek et al. 2017], that can be applied to all TCP client connections,
without compromising the TCP options required for performance, with no application-
level awareness or modifications on the client side. This technique has limitations as
follows: (i) it penalizes all clients connection time, even without an ongoing attack, (ii)
it has limited capacity to detect a valid client ACK or RST, and (iii) it is vulnerable to
a buffer saturation attack due to limitations in memory capacity to store the whitelist of
authenticated users.

In this paper, we propose SACK3, which uses sketch-based solutions to address
those limitations while leveraging the hardware speed and maintaining a low usage of



resources in the data plane. We implemented it in the P4 language for programmable data
planes. It detects ongoing spoofed TCP SYN Flood and applies anti-spoofing techniques
only for clients that try to connect to servers under attack. As mentioned before, due to
the advantages of the Safe Reset proxy method, we choose this anti-spoofing technique to
authenticate clients in SACK3 as well. Figure 1 presents a flowchart with the functioning
of SACK3.

Figure 1. SACK3 flowchart

To solve the first limitation, we added a sketch-based algorithm to detect spoofed
TCP SYN Flood on the data plane in order to choose suspicious clients to be authen-
ticated. From the algorithms to detect ongoing spoofed TCP SYN Flood attacks listed
in Section 2, we choose to implement an improved version [Dodig et al. 2017] of the
SACK2 algorithm due to its effectiveness, low resource usage, and simplicity. We imple-
mented the DCBF (Dual Counting Bloom Filter), composed by CBF1 and CBF1 INV, to
track the SYN-ACK/CliACK pair.

DCBF uses as input the hashing of 6-tuple called Psyn/ack (1) to increment the
filter counters. CBF1 utilizes the 6-tuple as it is, while CB1 INV uses the inverted 6-
tuple values as input. This 6-tuple input structure consists of Source IP (SIP), Destination
IP (DIP), Source Port (SP), Destination Port (DP), Sequential Packet Number (SEQ),
and an Acknowledge Sequential Packet Number (ASEQ). This data is obtained from a
SYN/ACK packet header and is hashed as follows:

Psyn/ack =< SIP,DIP, SP,DP, SEQ,ASEQ > (1)

Detecting a matching pair of SYN/ACK and ACK packets starts with the detection
of the ACK packet. For each detected ACK or DACK packet, a new hash of the 6-tuple
named Pack (2) is used to decrement the filter counts. Different from increment, this
sketch will only decrement the CBF1 INV when a matching pair in CBF1 is detected.
This 6-tuple consists of the same members stored in a different order:



Pack =< DIP, SIP,DP, SP,ASEQ− 1, SEQ > (2)

In order to detect which server is being attacked, every time a server answer a
SYN/ACK, the CBF2 uses a 2-tuple hash named Pserver (3) to increment the filter coun-
ters. It will only decrement if the DCBF receives a valid CliACK. Therefore, CBF2 will
have a counting estimation of how many unanswered SYN/ACK the server has. The min-
imum value of all counters can be used to compare against a threshold K to detect an
ongoing attack. Notice that this technique will only detect ongoing TCP SYN Flood at-
tacks that impact a real server. If the attacker is generating TCP SYN packets to a server
that does not exist, there will be no SYN/ACK to increment and therefore no detection.
This approach aims to authenticate only client requests that impact a real server, reducing
the use of anti-spoofing techniques resources.

Pserver =< ServerIP, ServerPort > (3)

If the threshold K is exceeded, a bogus SYN-ACK is generated to authenticate
the client. The bogus SYN-ACK is made by setting ASEQ to a bogus number. It is sent
back to the same port that it arrived. To keep track of the RST that is expected due to
the bogus SYN-ACK that was sent, we proposed and implemented a similar DCBF only
for authentication requests. It uses the hash of the SYN-ACK 5-tuple named Pforged (4)
as input to increment this custom Authentication DCBF (ADCBF), composed by ACBF1
and ACBF1 INV. Once we receive the RST from the client that matches the forged SYN-
ACK, we decrement the Authentication DCBF filter counters using the SYN-ACK 5-tuple
named Prst (5) as input. Finally, once the client is successfully authenticated, we add the
2-tuple named Pclient to the whitelist Bloom Filter (WBF). The connection is allowed
and all subsequent packets are forwarded. Pforged, Prst, and Pclient (6) are presented as:

Pforged =< SIP,DIP, SP,DP,ASEQ > (4)

Prst =< DIP, SIP,DP, SP, SEQ > (5)

Pclient =< ClientIP, ClientPort > (6)

In summary, the proposed solution can be described as follows:

1. It uses an improved version of the SACK2 algorithm to detect the victims address
and port under attack. We only authenticate clients that interact with victims’
servers, thus adding a time overhead only to suspect clients.

2. We implement a similar sketch to the SACK2 algorithm to improve the capacity
to detect valid ACK or RST that authenticate clients.

3. We use a space-efficient data structure, a Bloom Filter, to query for authenticated
users, therefore reducing the chances of a buffer saturation attack.



4. Evaluation

In this section, we conduct a comprehensive simulation experiments and analyze the re-
sults to evaluate the performance of SACK3 against Safe Reset proxy switch and a basic
switch. Using only the authentication mechanism as a Safe Reset proxy penalizes all
clients connection time. We show that SACK3 can improve the connection time to other
servers not under attack while maintaining the same level of protection.

4.1. Experimental Setup

We implemented SACK3 using the P4 programming language targeting the second ver-
sion of the P4 software switch, also known as behavioral model or BMV2. BMV2 also
provides a framework that allows developers to implement, deploy, test, and debug P4
switch implementations. To create our testbed for the experiments, we used BMV2
with Mininet [min ], a popular SDN emulation tool. We ran our experiments on a ded-
icated server running an Ubuntu Server 16.04 with the following configuration: Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60GHz 32 Cores, 128GB of RAM, and 1TB of disk space.

As mentioned in 2, the Safe Reset proxy is a state-of-art solution that has been im-
plemented in the data plane as an anti-spoofing mechanism to mitigate spoofed TCP SYN
Flood attacks. Since SACK3 is also implemented in the data plane, we compare it against
a switch implementation with a Safe Reset proxy defense mechanism. We implemented
both SACK3 and Safe Reset on P4 16 for the BMV2 switch using the v1model. In order
to make a fair comparison, we used the same Safe Reset implementation used in SACK3
but applied it to all new TCP connections. Nonetheless, to better compare the overhead
caused by both implementations, we also implemented a basic switch implementation
that parses Ethernet, IPv4, and TCP, to be used as the baseline that only does packet rout-
ing and does not present any DDoS protection. For the implementation of each sketch
we choose to use 3 different hash function among the functions already supported in the
P4 16 data plane: crc16, csum16, and crc32. The parameters chosen for each sketch (k is
the number of hash functions, n is the number of elements, m is the amount of bits used in
the sketch, b is the amount of bits used in each sketch counter, and ε is the false positive
rate) and its total memory usage are listed in Table 1. We choose this parameters to not
exceed the maximum false positive rate of 5% while using less the 1MB of memory space
for all application.

Table 1. Sketches Parameters

Sketch k n m b ε Total Size (KB)
DCBF 3 50000 400000 4 3,05 400
CBF2 3 10000 80000 4 3,05 40

ADCBF 3 50000 400000 4 3,05 400
WBF 2 100000 800000 1 4,89 100

According to Figure 2, the testbed network is composed of one BMV2 switch. The
servers are connected to the network using 1 Gbps link, while the other host is connected
to the network with 100 Mbps links. In addition to the two servers, there are 31 hosts with
30 potential attackers and one host being the legitimate or benign user. Furthermore, the
benign host requests a 10Kb Web page from the server as soon as it finishes the previous



Figure 2. Topology

request. One of the main parameters which affect the efficiency of SACK3 in attack
detection is the threshold K. In fact, choosing a proper value for threshold K can improve
the efficiency of SACK3, since setting a larger value for K increases the attack detection
time. On the contrary, setting a small value might also cause detecting a legitimate user
as an attacker. Therefore, we fixed the threshold parameter K to 100, since we do not
want to compare how fast the solution can detect a DDoS attack, but instead we want to
compare the impact of the anti-spoofing mechanism on the client connection.

Mininet uses a real network stack with small and isolated process that can run
real applications to emulate the hosts. Therefore, we define the following setup to the
hosts: servers use a simple python server (SimpleHTTPServer) to serve a 10Kb Web
Page; clients use the Curl tool to make legitimate HTTP requests and log the connection
measurements; and attackers use hping3 to generate a flood of spoofed TCP SYN re-
quests to the servers. It is worth to mention two additional configurations in the curl tool:
(i) we configured the connection timeout, maximum time allowed to get a SYN-ACK re-
sponse, to 15 seconds in order to run the experiment faster when the server has become
unavailable, and (ii) we used curl version 7.52 in order to have more precision in the time
measurements, from 3 to 6-digit precision, due to the small values of connection time in
the basic switch measurements. The testbed topology and tools used in this experiment
setup were based on the experiments of OPERETTA [Fichera et al. 2015] and SLICOTS
[Mohammadi et al. 2017].

Table 2. Experiments summary

Scenario Type Servers Attackers Rate (pps)
S1 Normal 1 0 0
S2 DoS 1 1 1000
S3 DDoS 1 30 1000
S4 Variable pps DDoS 2 30 1 to 100000

Table 2 lists each experiment and its parameters. We conducted simulations in
four different scenarios using all three implementations of the switch as follows:

• Scenario S1: using only one server and one legitimate client, is meant to mea-
sure the overhead of each implementation in normal conditions when there are no



ongoing attacks.
• Scenario S2: using only one server, one legitimate client and only one attacker

generating spoofed TCP SYN packets with a rate of 1000 pps (packets per sec-
ond), aims to measure how each implementation behaves under a simple DoS
attack, that is not enough to make the server unavailable.

• Scenario S3: similar to scenario S2, but with 30 hosts as attackers - this scenario is
meant to measure how each implementation behaves under a DDoS attack capable
of making the server unavailable.

• Scenario S4: similar to scenario S3, but varying the spoofed attack rate from 1
to 100000 packets per second (pps) in increments of 10 times the previous value.
This scenario is meant to evaluate how each implementation behaves with differ-
ent DDoS attack rates.

We evaluate the experiments using the following performance metrics: Connec-
tion Time denotes the time for initiating a TCP connection. More specifically, it denotes
the time between a TCP SYN request and the TCP SYN-ACK response; Download Speed
denotes the overall connection speed in Kbps when downloading a Web Page or a file.

4.2. Experimental Results

In this section we discuss and analyze the results for the two scenarios under different
number of attackers and attack rates. First of all, we utilize scenario S1 under normal
conditions to measure the overhead of each implementation. Figure 3-A shows the con-
nection times difference, in log scale, among the three implementations. Safe Reset proxy
implementation imposes a significant overhead due to the additional delay of one second
fixed by the implementation, in comparison to the basic and SACK3 switch implementa-
tions. Since scenario S1 is composed of only legitimate client requests, SACK3 does not
detect or trigger any defense mechanism that would penalize the legitimate client request.
In contrast, Figure 3-B shows a close comparison of the connection times in seconds be-
tween the basic switch and SACK3. Results have shown an overhead of 115% in the
connection time due to the TCP SYN Flood sketch-based detection mechanisms. Basi-
cally, it is the overhead caused by the Lookup and Insertion operations in the standard
and Counting Bloom Filters. However, even with this additional overhead caused by the
detection, it is still 890 times faster than Safe Reset.

Figure 3. Connection time baseline without an ongoing attack



Figure 4. Connection Time in scenarios S1, S2, and S3

Figure 4 illustrates the connection times in scenarios S1, S2, and S3. The mea-
surements were made using a request made to the server under attack. It is possible to
notice that, even under the DoS scenario with no protection with the basic switch imple-
mentation, the server can still go unaffected. Although, when we scale the number of
attackers to 30, making it a DDoS attack, we observe that all connection times goes to
the connection timeout of 15 seconds as specified in the curl tool. Meaning that, under
scenario S3, we can successfully attack the server making it unavailable. SACK3 presents
a similar performance to Safe Reset, since in scenarios S2 and S3 it is able to successfully
detect the ongoing attack to the server and apply the counter-measurement, in this case,
authenticating the client with the same Safe Reset proxy mechanism. Therefore, SACK3
presents better connection times for legitimate users while maintaining the same level of
protection.

In scenario S4 we measured legitimate client connection times for two different
servers: 1) a server under attack as the previous experiments, and 2) a normal server not
under attack while there is an ongoing attack in parallel. With this experiment we want to
validate that SACK3 will have a better performance than Safe Reset for servers not under
attack, while an ongoing attack on other servers is happening in the network. Figure 5
shows the connection time difference, in log scale, between SACK3 and Safe Reset when
under a small DDoS attack. When clients connect to a normal server not under attack
while an attack is ongoing in the network, SACK3 can maintain a small overhead similar
to scenario S1 where there are no ongoing attacks.

In order to evaluate how the overhead in each switch implementation change over
different attack rates, we also variate the rate in pps of Spoofed TCP SYN packets that
each host generates. In Figure 6 it is possible to verify that the server under attack starts to
become unavailable when the attack reaches 1000 pps. While the basic switch implemen-
tation does not provide any protection, SACK3 and Safe Reset maintain similar connec-
tion times over the increase in the attack rates. A spike may be observed when reaching
the maximum attack rate. It happens due to the overhead of the detection mechanism
that becomes more significant at higher attack rates. Although, since all experiments are
performed using emulated software switches, this overhead may not be significant when
deployed in a hardware data plane. Nevertheless, SACK3 always performs better than



Figure 5. Connection time over 1 pps attack

Safe Reset for legitimate client connections to a normal server, or even with an ongoing
attack on the network.

Figure 6. Connection time over different rates of DDoS attack

Finally, to better understand the impact of each switch implementation on the
overall connection, we measured the download speed of a fixed 10Kb Web Page during
scenario S1. Figure 7 shows that SACK3 has better performance if compared to Safe
Reset. The significant decrease in download speed on the Safe Reset implementation is
mainly due to its initial connection delay.

5. Conclusion
Several works explored the flexible management control provided by the SDN architec-
ture to produce a flexible and powerful defense system against TCP SYN Flood attacks.
Among them, data plane based solutions aim to leverage the hardware speed and the re-
cent flexibility of programmable switches. Due to the limited resources on the data plane,
defense system implements techniques that rely on authenticating the client before for-
warding the request to the server. However, these techniques, such as Safe Reset, comes
with an additional overhead to the client’s connection even without an ongoing attack.



Figure 7. Download speed without an ongoing attack

To solve this problem, we proposed SACK3 that relies on sketches, probabilistic
data structures, to detect ongoing attacks with a small usage of the hardware resources.
By detecting the attacks, we can only apply these authentication techniques to suspicious
clients that connect to servers under attack. Results have shown that our solution allowed
clients that connect to normal servers to have only a small overhead on the connection
time and download speed if compared to Safe Reset. While in experiments under DoS
and DDoS attacks it presents a performance similar to the Safe Reset defense technique.
Future work includes the use of other sketch-based algorithms to track suspicious clients
to reduce resource consumption and increase accuracy, validate SACK3 on P4 hardware
platforms (e.g. NetFPGA), and explore other tests scenarios for TCP SYN Flood attacks.

References

Mininet. http://www.mininet.org/. (visited on Mar. 10, 2018).

Afek, Y., Bremler-Barr, A., and Shafir, L. (2017). Network anti-spoofing with sdn data
plane. In INFOCOM 2017-IEEE Conference on Computer Communications, IEEE,
pages 1–9. IEEE.

Ambrosin, M., Conti, M., De Gaspari, F., and Poovendran, R. (2017). Lineswitch:
tackling control plane saturation attacks in software-defined networking. IEEE/ACM
Transactions on Networking, 25(2):1206–1219.

Braga, R., Mota, E., and Passito, A. (2010). Lightweight ddos flooding attack detection
using nox/openflow. In Local Computer Networks (LCN), 2010 IEEE 35th Conference
on, pages 408–415. IEEE.

Chen, W. and Yeung, D.-Y. (2006). Defending against tcp syn flooding attacks under
different types of ip spoofing. In Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Technologies,
2006. ICN/ICONS/MCL 2006. International Conference on, pages 38–38. IEEE.

Dhawan, M., Poddar, R., Mahajan, K., and Mann, V. (2015). Sphinx: Detecting security
attacks in software-defined networks. In NDSS.



Dodig, I., Sruk, V., and Cafuta, D. (2017). Reducing false rate packet recognition using
dual counting bloom filter. Telecommunication Systems, pages 1–12.

Dzurenda, P., Martinasek, Z., and Malina, L. (2015). Network protection against ddos
attacks. International Journal of Advances in Telecommunications, Electrotechnics,
Signals and Systems, 4(1):8–14.

Fayaz, S. K., Tobioka, Y., Sekar, V., and Bailey, M. (2015). Bohatei: Flexible and elastic
ddos defense. In 24th USENIX Security Symposium (USENIX Security 15), pages 817–
832.

Fichera, S., Galluccio, L., Grancagnolo, S. C., Morabito, G., and Palazzo, S. (2015).
Operetta: An openflow-based remedy to mitigate tcp synflood attacks against web
servers. Computer Networks, 92:89–100.

Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., and Maglaris, V. (2014).
Combining openflow and sflow for an effective and scalable anomaly detection and
mitigation mechanism on sdn environments. Computer Networks, 62:122–136.

Kompella, R. R., Singh, S., and Varghese, G. (2004). On scalable attack detection in the
network. In Proceedings of the 4th ACM SIGCOMM conference on Internet measure-
ment, pages 187–200. ACM.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and
Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76.

Martinasek, Z. (2015). Scalable ddos mitigation system for data centers. Advances in
Electrical and Electronic Engineering, 13(4):325.

McKeown, N. (2009). Software-defined networking. INFOCOM keynote talk, 17(2):30–
32.

Mohammadi, R., Javidan, R., and Conti, M. (2017). Slicots: an sdn-based lightweight
countermeasure for tcp syn flooding attacks. IEEE Transactions on Network and Ser-
vice Management, 14(2):487–497.

Radware (2016). 2017-2018 global application network security report. URL
https://www.radware.com/ert-report-2017. (visited on Dec. 10, 2017).

Shin, S., Yegneswaran, V., Porras, P., and Gu, G. (2013). Avant-guard: Scalable and
vigilant switch flow management in software-defined networks. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages 413–
424. ACM.

Sun, C., Hu, C., Zhou, Y., Xiao, X., and Liu, B. (2009). A more accurate scheme to detect
syn flood attacks. In INFOCOM Workshops 2009, IEEE, pages 1–2. IEEE.

Wang, H., Zhang, D., and Shin, K. G. (2002). Detecting syn flooding attacks. In INFO-
COM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, volume 3, pages 1530–1539. IEEE.

Xing, T., Huang, D., Xu, L., Chung, C.-J., and Khatkar, P. (2013). Snortflow: A openflow-
based intrusion prevention system in cloud environment. In Research and Educational
Experiment Workshop (GREE), 2013 Second GENI, pages 89–92. IEEE.



YuHunag, C., MinChi, T., YaoTing, C., YuChieh, C., and YanRen, C. (2010). A novel de-
sign for future on-demand service and security. In Communication Technology (ICCT),
2010 12th IEEE International Conference on, pages 385–388. IEEE.


