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Abstract—Although IoT delivers several benefits, it also raises
concerns regarding privacy and security, from revenue disruption
in industrial facilities to life-threatening situations caused by
smart houses hacking. As a consequence, anomaly detection
algorithms stand out to improve data reliability. However, little
has been said about the implications of running these com-
putationally expensive programs in hardware-constrained edge
devices. Therefore, in this paper, we present an evaluation of six
anomaly detection algorithms running in an edge device regard-
ing performance, accuracy, temperature, and power consumption.
The results showed that time complexity, resources demand, and
detection approach directly impact on the feasibility of running
anomaly detection algorithms in edge devices. Based on these
results, we present a recommendation on which algorithms would
best satisfy the requirements of several IoT environments.

I. INTRODUCTION

The Internet of Things (IoT) encompasses a variety of ap-
plications. Smart classrooms equipped with embedded devices
containing face recognition algorithms can give educators real-
time feedback on students’ motivation [1]. On agriculture,
smart farms employing distributed sensors can obtain real-
time information about soil moisture and temperature, helping
farmers to improve crop production [2]. As a consequence, the
requirements may vary according to several aspects, such as
the number of users and specific characteristics of applications.

Despite differences in applications’ requirements and de-
mands, one of the most prominent aspects that IoT scenarios
have in common is a large amount of data being generated
rapidly [3] [4]. In order to provide efficient and reliable
feedback, data processing becomes a priority task, while other
tasks are often overlooked. As a consequence, sensors may be
compromised by failures or even manipulated by attackers to
induce erroneous decision-making [5] [6].

In this scenario, anomaly detection algorithms arise to
ensure the integrity of the data. As most of these algorithms are
computationally expensive, one could suggest executing them
in the cloud to take advantage of high processing capabilities.
However, the unstable connectivity of IoT scenarios makes
this alternative unfeasible, as migrating data to the cloud
could demand too much time [7]. Hence, anomaly detection
algorithms are usually executed in embedded devices close to
customers, at the edge of the network [8] [9] [10].

Although anomaly detection is a well-known research topic

from a machine learning point of view [11] [12], little has
been said about the implications of migrating these algorithms
to the edge of the network, wherein devices are resource-
constrained and battery-dependent. Accordingly, in this paper,
we assess how anomaly detection algorithms affect the power
consumption and temperature of embedded devices. We also
highlight the following contributions:

• We present a discussion on the characteristics and
requirements of different IoT scenarios and the role
of anomaly detection algorithms on each of them;

• We analyze how characteristics such as time com-
plexity and detection approach impact on the power
consumption and temperature of embedded devices.

The remainder of this paper is organized as follows. In
Section II we present the theoretical background that discusses
the relevance of performing anomaly detection at the edge
of the network. In Section III, we compare our study with
other several investigations that focus on anomaly detection
in IoT scenarios. In Section IV, we present details on the
methodology we adopted. Section V is reserved for the results
and its discussion, and in Section VI we present final remarks
and directions for future investigations.

II. BACKGROUND

The continuous development of areas such as Telecom-
munications brought about a new wave of electronic objects.
From consumer electronics such as smart-phones to industrial
appliances such as field sensors, networking capabilities are
always present. This common networking capability became
the foundation on which the Internet of Things stands [13].

The Internet of Things paradigm regards promoting the
interaction between different devices in order to obtain, gen-
erate, or exchange data. An internet where every device is
continuously interacting with another entails generating a
tremendous amount of data every moment.

IoT devices can not process such a vast amount of data
because contrary to general-purpose solutions, these devices
are designed for specific purposes and have highly constrained
resources; hence, other alternatives must be considered. Au-
thors on [14] deliberate that Cloud Computing can provide
the infrastructure to analyze, store, and monitor such amount
of data.
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Although Cloud Computing prevails as a solution for
this significant amount of data, other problems arise with
it. Of all possible problems, two might be considered the
most challenging: latency and security. In the case of latency,
applications that depend on obtaining up-to-date information
are highly susceptible to become affected by delayed data
arrival. In some cases, even with a dedicated link to transmit
its data, the device’s constraints might appear as a problem.

Security is also the subject of constant discussion in IoT.
Due to the nature of the IoT, there exist many attack vectors.
When transmitting data between devices, additional steps must
be taken to ensure that sensitive information is not intercepted
by attacks such as Man-in-the-middle [15]. Also, as many IoT
devices are based far away from operators, ensuring that the
device cannot be physically tampered with is a must. Besides
malicious physical tampering, data might also be corrupted due
to network issues or faulty components.

Considering the problems mentioned above, pre-processing
appears as a solution. The concept of pre-processing is broad
and may consist of several tasks. Simple filtering might reduce
network latency by ensuring that only relevant packages will
be transmitted to other devices. More sophisticated approaches
that use anomaly detection algorithms could provide reassur-
ance that the data being transmitted is secure and was not
corrupted maliciously or not.

The concept of Big Data has bought many new insights
regarding the importance of data analytics for the IoT [16]. The
process of extracting useful information from large amounts
of data provides more in-depth insights on applications and
enables planing further developments [17]. In order to benefit
from such remarkable insights, the data of which they are
based on must be trusted.

Anomaly detection algorithms are used to detect if any data
obtained from a given source could end up being an anomaly.
Anomalies are patterns of data that do not conform with those
around them [18]. They must be identified and purged before
any data analysis takes place; otherwise, the results of such
analysis would be meaningless.

Due to the granularity of data, a wide variety of anomaly
detection algorithms exist. While many employ similar ma-
chine learning techniques, they have different requirements
for the data input. The organization of the data is in regards
to variables (multivariate or univariate), analysis model (on-
line, offline, or both) and dimensional (spatial, temporal, or
spatiotemporal). With such consideration, anomaly detection
algorithms that employ machine learning may separated into
three main groups:

• Supervised Learning: On supervised learning, prior
knowledge, and labeled data about the patterns that
will be explored already exists. These labeled patterns
will be matched, and potential anomalies will be
detected.

• Reinforcement Learning: Contrary to Supervised
Learning has no available labeled data, yet knowledge
of how the data should be labeled exists. As such,
this technique requires the user to give feedback for

every outcome, being positive if current or negative
otherwise.

• Unsupervised Learning: In the case of unsupervised
learning, there exist very few or no knowledge about
the nature of the data. As such, other kinds of tech-
niques must be used. One of which is clustering,
where it is expected that patterns will appear closer
to one another; therefore, nonconforming ones could
be anomalies.

The use of anomaly detection algorithms is a common re-
currence in cloud computing environments. An issue that rises
with using these algorithms on edge devices is their resource
requirements. Such kind of algorithm usually consists of
complex mathematical computations and massive parallelism
being supported by GPUs. In cloud computing environments,
such resources are easily obtainable, but as stated before, IoT
devices have very constrained resources. Even modern devices
with embedded state-of-art GPUs might not be able to take
advantage of some algorithms.

Therefore, in this paper, we are not concerned about the
ends, as we understand that anomaly detection algorithms are
mature enough to deliver accurate results. We are specifically
interested in the means, i.e., what are the implications of
executing these computationally expensive programs on edge
devices’ constrained hardware in terms of power consumption
and heat.

III. RELATED WORK

Several investigations have been undertaken to detect ab-
normal behaviors in different IoT scenarios.

Ukil et al. [8] present challenges and the relevance of
anomaly detection techniques in several IoT health-care sce-
narios. The authors argue that anomaly detection plays an
important role in IoT health-care scenarios. Abnormal data
coming from compromised sensors could profoundly affect the
effectiveness of health-care IoT systems or even put its users’
lives in danger.

Narayanan, Mittal, and Joshi [9] developed OBD-
SecureAlert, an anomaly detection mechanism that detects
abnormal activities in new and ’on-road’ vehicles. The data
collected from different vehicle components is converted into a
sequence of observation vectors. Every time a new observation
is available, a sliding window containing previous observations
moves, and the posterior probability of the new observation
sequence is determined. If the estimated probability is below
a threshold, the observation is perceived as an anomalous state.

On Trilles et al. [10], an environmental anomaly detection
system is proposed. The system consists of three layers:
content, services, and application. The content layer consists
of multiple field sensors that are used to obtain air quality
data. The sensors’ data are sent to the services layer, where
anomalies may be detected separately on each data stream
using the CUSUM algorithm. The application layer provides a
web interface were each sensor status is displayed along with
any anomalous warning.

Due to the popularization of areas such as machine learn-
ing, several algorithms to detect anomalous sensor data have
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been proposed. However, choosing the wrong algorithm may
delay or even compromise the detection process. Some studies
also compare anomaly detection algorithms [19] [20] [6].
However, their analysis does not cover important aspects such
as the impact of running anomaly detection algorithms in edge
devices regarding temperature and power consumption. Both
of these are relevant since edge devices usually operate in strict
conditions.

IV. METHODOLOGY

A. Analyzed Algorithms

In this study, we did choose six anomaly detection algo-
rithms with support to multivariate data sets from PyOD [21]
(an overview of these algorithms is presented in Table I):

Isolation Forest (iForest) [22]. Uses random trees to detect
anomalies based on the premise that after constructing isolation
trees for a given data set, anomalies are isolated closer to the
root of the tree while normal points are isolated in the further
nodes. The anomaly detection is composed of two stages:
training and evaluation. In the training stage, a given data set
is separated into disjoint sub-sets from which isolation trees
are constructed through continuous sub-sampling until either
no more data is available or a cutoff value (tree height limit)
is reached. The sub-sampling consists of designating points as
left or right sub-trees using a randomly chosen attribute from
the data set along with a randomly picked split-point between
its minimum and maximum values. In the evaluation stage,
test instances are passed through the isolation trees, and their
anomaly scores are obtained.

K-Nearest Neighbors (kNN) [23]. Computes for each
point of a data set the distance from its K

th nearest neighbor.
Then, it selects the top N points with the maximum distances
as outliers. In order to minimize the computational cost, a
clustering algorithm is used to partition in disjoint subsets the
input data. Partitions that cannot contain outliers are pruned.
On the remaining partitions, outliers are computed.

Local Outlier Factor (LOF) [24]. Applies the concept
of local density to determine if a point is an outlier. The
local density of a point is calculated using the distance of
its k-nearest neighbors. A point is considered an outlier if, by
comparison, it has a lower density than its neighbors.

FindCBLOF [25]. Uses the Squeezer algorithm [26] on a
given data set to obtain a set of clusters. Using the obtained
clusters and two numerical parameters that are used to define
a boundary, two new sets of clusters are derived: LC (Large
Clusters) and SC (Small Clusters). For each record of the data
set, if the record’s cluster belongs to LC, the CBLOF value is
calculated using the distance between the record and its cluster,
otherwise (its cluster belong to SC) the distance is calculated
using the minimal distance between the record and a cluster
belonging to LC.

The Histogram-Based Outlier Score (HBOS) [27].
Firstly creates a univariate histogram for each feature on the
data set. The histogram is created using different techniques
considering the type of data that was provided (categorical or
numerical). Then it normalizes the maximum height of each
histogram to 1.0, which ensures an equal weight of each feature

to the outlier score. Finally, the HBOS value (outlier score) of
each instance of the data set is calculated using a formula that
may be interpreted as the inverse of a discrete Naive Bayes
probability model.

Angle-Based Outlier Detector (ABOD) [28]. Focuses
on high-dimensional data, were common approaches tend to
deteriorate due to the "curse of dimensionality." Contrary to
popular algorithms, ABOD considers the variance of the angles
between the different vectors of data objects as a property
to measure if an object is an outlier. If the spectrum of
observed angles for a point is broad, the point is surrounded
by others and is probably located inside a cluster. Otherwise,
it is believed to be outside of grouped sets of points; thus, it is
considered an outlier. The measured distance between objects
is used to normalize the results.

Table I. SPECIFICATIONS ABOUT THE EVALUATED ANOMALY
DETECTION ALGORITHMS.

Algorithm Type Time
Complexity

Angle-Based Outlier Detector Probabilistic O(n3)

Local Outlier Factor Proximity-Based O(n2 ⇥ k)

K-Nearest Neighbors Proximity-Based O(n2)
Isolation Forest Outlier Ensembles O(n)

Cluster Based Local Outlier Factor Proximity-Based O(n)
Histogram-Based Outlier Score Proximity-Based O(n)

B. Experimental Setup

During the tests, we used the ForestCover [29], which is
a well-known multivariate data set. This data set contains the
forest cover type from cartographic variables from four areas
with minimal human-caused disturbances of the Roosevelt Na-
tional Forest (United States). Its data is useful for researchers
interested in aspects such as biodiversity.

Our experimental setup comprises an NVIDIA Jetson
TX2 Developer Kit1, which is a power-efficient embedded
AI computing device suitable for several IoT applications
such as robots, drones, smart cameras, and portable medical
devices [30]. Besides, Jetson TX2 has thermal and power con-
sumption sensors that make it suitable for our experimentation.
Table II presents more details about this embedded platform.

Table II. TECHNICAL SPECIFICATIONS OF THE NVIDIA JETSON TX2
DEVELOPER KIT.

Components Specifications
Processors HMP Dual Denver 2/2MB L2 + Quad ARM A57/2MB L2

GPU NVIDIA PASCAL (256 CUDA cores)
Memory 8GB 128bit LPDDR4 59.7GB/s

Networking 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth
Operating System Linux Ubuntu 16.04.5 LTS (kernel 4.4.38-tegra)

V. RESULTS AND DISCUSSION

The results presented next are the average of 5 executions
of each algorithm with a standard deviation lower than 3%.
The assets of our experimentation are available in our GitHub
repository2. We also monitored CPU and memory usage during
the execution of the algorithms. Besides, we used the Pearson

1Jetson TX2. <developer.nvidia.com/embedded/buy/jetson-tx2>.
2Experiments assets. <github.com/paulosevero/outlier_detec_comp>.
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Correlation Coefficient to verify the impact of resources usage
on the results of performance, power consumption, tempera-
ture, and EDP. Table III summarizes the correlations among
each of these metrics.

Table III. CORRELATION AMONG DIFFERENT METRICS.

Metrics Pearson Correlation
Coefficient

Temperature and Execution Time 0.99
Temperature and EDP 0.92

RAM Usage and Power Consumption 0.87
CPU Usage and Temperature 0.82

CPU Usage and Execution Time 0.77
CPU Usage and Power Consumption 0.75
Temperature and Power Consumption 0.33

RAM Usage and Temperature -0.03
RAM Usage and Execution Time -0.07

A. Accuracy

We adopted Precision at n (P@n) as the accuracy measure,
which is given by Equation 1 and shows the number of
relevant instances among the retrieved results. The algorithm
that presented the best accuracy results was Isolation Forest,
with P@n = 0.11. This result shows the effectiveness of
Isolation Forest in handling problems widely discussed in
anomaly detection landscape such as Swamping and Masking
effects [22]. Swamping consists of identifying normal in-
stances as anomalies. It usually occurs when normal points are
too close to the anomalous ones. Masking refers to considering
anomalous instances as normal data and often occurs when
there are too many anomalies.

Precision =
|Relevant Data \ Retrieved Data|

|Retrieved Data| (1)

Different from the other algorithms like Local Outlier Fac-
tor, which presented the worst accuracy result (P@n = 0.56),
Isolation Forest focuses on identifying anomalies rather than
profiling normal points. Since anomalies are less frequent and
different from normal observations, Isolation Forest randomly
partitions data in decision trees (called isolation trees), so
anomalies can be identified as the instances closer to the root
of the tree since fewer splits are necessary to isolate them.
Figure 1 [A] presents the accuracy results of the evaluated
algorithms.

B. Performance

According to the results presented in Figure 1 [B], the
algorithm that presented the best performance results was
HBOS, being able to detect the outliers in 3.83s. As presented
in Table I, this algorithm has a linear time complexity O(n),
which we believe was the main reason for such a result.

It is worth noting that CBLOF and iForest also have
linear time complexity. However, as stated by Goldstein and
Dengel [27], HBOS can detect outliers in large multivariate
data sets faster than other algorithms by computing a histogram
to each feature of the data set, scoring them individually, and
combining them in the end. On the other hand, ABOD pre-
sented the worst performance due to its cubic time complexity

O(n3), which is caused since several iterations are required
for computing the anomaly score of each instance in the data
set.

C. Power Consumption

Regarding power consumption (Figure 1 [C]), Histogram-
based Outlier Score was the algorithm with better results,
consuming 170.91mW . Considering the high correlation be-
tween resource usage and power consumption presented in
Table III, we can see that the energy-saving achieved by
HBOS was influenced by its low CPU (71.04%) and memory
(1144.08MB) demand. On the other hand, Isolation Forest,
that presented the worst power consumption result, was the
algorithm that most impacted in the device’s memory usage
(1386.98MB).

D. Temperature

As resource usage affects the device’s temperature, we
realized that CPU usage impacted the device’s heat during
the algorithm’s execution (Correlation = 0.82, as shown in
Table III). Besides, we found a high correlation between execu-
tion time and temperature, i.e., the longer the algorithms took
to execute, the higher was their impact on the device’s heat
since the evaluated algorithms involve computing-intensive
tasks.

As a consequence of such correlations, the algorithm that
presented less impact on the device’s temperature was CBLOF,
which uses the Squeezer algorithm to define the number of
clusters without imposing a bottleneck to IO operations and
requires only one scan over the data set for computing the
anomaly score of instances. On the other hand, ABOD was
the algorithm that most generated heat to the embedded device
due to its higher execution time. All the results regarding
temperature are shown in Figure 1 [D].

E. Energy-Delay Product

One of the well-known strategies to prolong the battery
life of embedded systems is through power-saving modes that
focus on minimizing the device’s power consumption at the
cost of reducing the application’s performance. In this context,
there is a concern regarding the balance between performance
and power saving [31]. Therefore, in our analysis, we also
considered the Energy-Delay Product (EDP), which is given
by Performance ⇥ Power Consumption, to evaluate the
impact of the chosen algorithms to this trade-off.

The results showed that performance was the metric that
most impacted in the EDP results, since HBOS, which was the
algorithm that demanded less time to process data, achieved the
best results, and ABOD, that presented the poorer performance
was the algorithm with worst EDP index. Besides, as shown
in Figure 1 [E], the EDP results presented a high correlation
with the heat imposed on the device, which showed that as
better the algorithms manage to balance the trade-off between
performance and power saving, the better they can achieve
thermal-efficiency.
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[A] [B]

[C] [D]

[E]

Figure 1. Comparison of six anomaly detection algorithms running on an embedded device regarding accuracy, performance, power consumption, and temperature.

VI. CONCLUSIONS AND FUTURE WORK

The advances of areas like computing and engineering
drove into the advent of the Internet of Things, in which
electronic devices called embedded systems such as sensors
and actuators are distributed across the environment in order
to collect data and help in decision-making based on events.
In this context, there is a concern about ensuring the security
of IoT networks since embedded systems used to collect and
pre-process data usually are not physically protected against
attackers. Thus, anomaly detection techniques have been used
to improve the security of embedded systems and the reliability
of the data being processed.

Embedded systems usually have constrained resources that
may hamper the use of too expensive anomaly detection algo-
rithms. Besides, these devices are typically battery-dependent,

and high operating temperatures may impact their efficiency
or even reduce their lifetime. Some previous investigations
compared anomaly detection techniques; however, to the best
of our knowledge, none of these studies cover the analysis of
power consumption and temperature. In this sense, we present
an analysis of six anomaly detection algorithms running on
an embedded device, and we discuss the impact of each of
these techniques regarding power consumption, temperature,
accuracy, and performance.

The Histogram-Based Outlier Score algorithm presented
the best results regarding performance and power consumption
due to its lower resources requirements and its linear time
complexity. On the other hand, Isolation Forest presented the
highest accuracy due to its approach that focuses on identifying
anomalies instead of profiling normal points.
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As future work, we intend to develop a resources man-
agement tool that will employ anomaly detection techniques
to analyze the resource usage of multiple inter-connected
edge devices. Based on the feedback of anomaly detection
algorithms, our tool will use consolidation and load balancing
strategies to improve devices’ resource utilization.
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