
Community-based Placement of Registries to Speed
up Application Deployment on Edge Computing

Luis Augusto Dias Knob∗†, Francescomaria Faticanti‡§, Tiago Ferreto∗, Domenico Siracusa‡
∗Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil

†Federal Institute of Education, Science and Technology of Rio Grande do Sul, Sertão, Brazil
‡Fondazione Bruno Kessler, via Sommarive, 18 I-38123 Povo, Trento, Italy

§University of Trento, via Sommarive, 9 I-38123 Povo, Trento, Italy

luis.knob@sertao.ifrs.edu.br, tiago.ferreto@pucrs.br, {ffaticanti, dsiracusa}@fbk.eu

Abstract—The use of virtualization techniques, such as con-
tainerization, is rapidly changing how the deployment of ap-
plications is performed at the network edge. Indeed, container
images enable fast instantiation and small footprint. However,
although having smaller size than VMs virtual disks, container
images continue to have hundreds of megabytes and can take
several seconds to be downloaded in an edge node. In fact, the
heterogeneity and resource-constrained infrastructure, typical of
an edge computing scenario, can also increase this latency, by the
several bottlenecks that may occur on the network topology. We
advocate that the use of well-positioned container registries on
the topology can significantly improve the deployment process. To
prove that, in this paper we focus our analysis on the network
requirements of large amounts of container deployments, and
the impact generated on two distinct edge topologies. We also
present a new registries placement solution based on a fluid
communities algorithm. We validated our proposal using simula-
tion and results show that it validates the model and generality
of the proposed solution, showing enhanced performance even
with biased schedulers with large amounts of deployments in a
concentrated set of nodes.

Index Terms—Container Management, Edge Computing, Or-
chestration, Deployment, Container Registry

I. INTRODUCTION

Edge Computing is an enabler technology to the new 5G
networks. These networks seek to implement an infrastructure
that allows applications, like augmented reality and natural
language processing, to be used in real-time through low
latency, positioning awareness, and geo-distributed processing
power infrastructure. Edge applications usually need to be
instantiated in highly distributed and heterogeneous scenarios,
far from the well-managed cloud providers, increasing the
complexity and the management cost.

Although having distinct architectures and being standard-
ized by several consortia with different names, like Fog
Computing [1] and Multi-Access Edge Computing (MEC)
[2], generally speaking, Edge Computing aims at pushing
computational capacity closer to the end-user. Despite its
similarities with Cloud Computing, this creates a scenario
that shows several new challenges in management and or-
chestration. Today, both academia and industry are working
hard to implement solutions that improve the deployment of
applications on the edge [3] [4].

Initially implemented on Virtual Machines (VMs) [5], edge
applications are rapidly changing to use containerization,

enabling faster deployment, smaller footprint, and scalability.
Typically, container images are stored on registries as small
reusable parts or layers requested by worker nodes when a
container image or layer not cached needs to be deployed.
This download phase mostly consists of the time needed to
instantiate a container, and applications that have a large set
of microservices or replicas may require several downloads on
different nodes simultaneously.

It is common sense that current container orchestration
solutions do not present an optimal method for distributing
the applications on Edge Computing. Hence, several works
aim at optimizing it by reducing the amount of time needed to
instantiate, or diminishing the load generated on the infrastruc-
ture, through better usage of the nodes based on peer-to-peer
communication [6], distributed caches [7] or new placement
algorithms [8]. However, these solutions usually propose many
changes in the current orchestration frameworks that are
not so easy to achieve in a multi-tenant infrastructure with
several distinct actors. Moreover, no one of them considers
the importance of the registry placement in this distribution
and the load that it generates on the infrastructure.

In this paper, we present a novel approach to strive the
deployment latency generated on edge infrastructures. The
proposed approach can be used without significant alterations
in the topology or container orchestration. To achieve that, we
focus on a specific component from the container architecture,
i.e., the registry nodes, which are responsible for storing the
images used to deploy the containers on worker nodes. Further,
we study how the registries placement on edge infrastructure
can affect the network load and generate bottlenecks. Given
the NP-hardness of the registries placement problem, we
propose a heuristic solution based on fluid communities to
find the best place to set a k number of registry nodes. To
evaluate our solution’s effectiveness, we carried a series of
experiments on realistic and random networks with distinct
container schedulers.

To the best of our knowledge, this work is the first to
consider the impact of the application deployment in large-
scale distributed topologies, exploring the possible bottlenecks
that this network load can generate in the infrastructure.
Besides, it is also the first attempt to tackle the challenges
of registries placement in an edge computing environment

147

2021 IEEE International Conference on Cloud Engineering (IC2E)

978-1-6654-4970-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IC2E52221.2021.00029

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 E
ng

in
ee

rin
g

(IC
2E

) |
 9

78
-1

-6
65

4-
49

70
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
2E

52
22

1.
20

21
.0

00
29

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

using infrastructure’s constraints, seeking to decrease the total
amount of time needed, namely the deployment latency, to
fully implement these services on the topology.

The remainder of the paper is organized as follows. In
Section II related work is presented. In Section III, we describe
the problem formulation following by the algorithm solution
in Section IV. The simulation results are presented in Section
V. Finally, Section VI concludes the paper.

II. RELATED WORK

Current solutions that seek to decrease the container deploy-
ment latency distributed their efforts on several distinct areas,
mainly with large modifications on the container runtime [9]
or new service that needs to be added topology [10].

Some approaches propose improvements on how the con-
tainers are stored in or distributed to nodes. Pulling the same
image by multiple registries simultaneously is presented in [6],
which also discusses a cooperative implementation of a set of
registries. Solutions based on peer-to-peer communication are
also presented in [11] [12]. However, these implementations
rely on powerful worker nodes placed on high-speed networks,
usually not replicable on edge scenarios, with geo-distributed
topologies. Furthermore, adding a new daemon on a resource-
constrained node can generate bottlenecks, as shown in [13],
where even simple applications running on it can generate high
latency in the deployment of new applications.

The use of distributed file systems to share images between
several nodes is presented with slight changes in [14], and
[15]. In both papers, the nodes share a given folder that acts
as a centralized cache for the images. This implementation
usually shows a significant improvement on the total amount
of time needed to instantiate a new container, together with a
small redundancy on the layers, since all the shared images
are stored in the same place. However, that solution also relies
on high-speed networks, with negligible downtime and near-
allocated nodes.

There are also proposals of new placement algorithms focus-
ing on geo-distribution [16], and the sharing of microservices
between cloud and edge [8] to decrease the deployment time,
using latency or bandwidth as input to define the application’s
placement. Nevertheless, these works’ primary objective is to
improve the number of containers that can stay active in the
topology. However, no one considers the deployment latency
on the topology and how this latency can cause congestion on
the network and affect the placement results.

In [7], the authors discuss that in edge computing, due to
the limited node storage, it is impossible to have many images
locally stored. Hence, to improve the deployment latency, it
is necessary to retrieve the images on the topology faster.
Therefore, they propose a sharing algorithm called KCBP,
which finds the closest node with a given layer and uses it
to forward it to the requester. Although this paper is the first
to discuss the positioning of the layers on the topology and
its impact on the deployment latency, its implementation has
several limitations. Some of them include the necessity of
direct connections between nodes and assumptions that are
not feasible in the real world, such as nodes sharing images.

Symbol Meaning

G = (V,E) network graph

Bu,v available bandwidth on link (u, v) ∈ E
K set of communities on graph G
K = |K| number of communities in the graph

{Vk}k∈K partition of graph G identified by the com-

munities

Table I: Main notation used throughout the paper

Finally, changes on how the Docker runtime download and
start new images are also proposed in [9], where the authors
suggest a set of tweaks to improve the several steps executed
on the deployment focusing on resource constrained nodes.

III. PROBLEM FORMULATION

A. System Model
We consider a network infrastructure consisting of a set

of nodes V and a set of edges E. Therefore, we represents
the network topology as a weighted graph G = (V,E), where
E ⊆ V×V . Each edge (u, v) ∈ E of the graph is characterized
by the bandwidth available on the link, namely Bu,v . Further,
we indicate a partition of the graph with {Vk}k∈K, i.e., a
family of subsets of V where Vk ⊆ V, ∀k ∈ K, and
Vk ∩ Vk′ = ∅, ∀k �= k′. For the sake of a clear explanation
of the algorithmic solution, we call these subsets communities.
The cardinality of K, |K| = K , also indicates the number
of desired container registries to be deployed on the network
as the algorithm will place a container registry for each
community of the input graph.

B. Registries Placement Problem
This paper’s main objective is to design an efficient algorith-

mic solution for the placement of container registries among
the network nodes to speed up the download time in each node
from the placed registries. The main objective is represented
by the minimization of the maximum download time from the
registries to each node of the network. Deeply thinking to this
problem, the reader may think to a vertex k-center problem
[17], where a set of facilities must be deployed on a complete
graph in order to minimize the maximum distance between
each node and its closest facility. In our case, the concept of
distance can be viewed as the download time from a container
registry and each node in the network. However, there are
some differences concerning the problem we need to solve.
The first is the type of graph we are dealing with. Indeed,
the vertex k-center requires a complete graph, whilst, in our
case, we do not always have such a case. The second main
difference is represented by the computation of the download
time between each node and the facilities placed on the graph.
In fact, this time is not easily computable since it depends
on the placement of facilities and the bandwidth occupation
of each link leading to a combinatorial explosion of possible
configurations.

For this reason, we tackle the problem from a different
perspective. We aim to partition the network graph placing a

148

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

container registry in each subset (community) of the partition.
The graph partitioning should be performed in such a way
that the total bandwidth of the graph is fairly balanced among
the partition. The graph partitioning and the bandwidth load
balancing should be performed in order to: i) speed up the
download time for each node inside each community and ii)
avoid bottlenecks in the network, such as putting containers
registries in a few and close nodes of the network. Hence, the
main question that we want to answer in this problem is the
following: where can we place container registries in order
to have load-balanced distribution, in terms of bandwidth, of
containers among the network’s nodes?

In order to tackle the problem described above, we assume
that the desired number of communities in the graph is given
as input of our problem. In order to have a load-balanced
solution in terms of bandwidth, we use the concept of standard
deviation between the total bandwidth of each community. We
provide a formal description of the problem.

1) Variables: We introduce the following decision variables
for each node of the network:

xv,k =

{
1, if node v is placed in community k

0, otherwise,

∀v ∈ V .

2) Objective: The objective function is represented by the
standard deviation of the total bandwidth available in each
community: √∑

k∈K(αk − ᾱ)

K − 1
, (1)

where
αk =

∑
(u,v)|u,v∈Vk

Bu,v ∀k ∈ K, (2)

and

ᾱ =

∑
k∈K αk

K
. (3)

Summarizing, the problem we aim to solve is the following

minimize

√∑
k∈K(αk − ᾱ)

K − 1
(Prob. 1)

subject to:

αk =
∑

(u,v)∈E

Bu,v xu,k xv,k, ∀k ∈ K, (4)

αk > 0, ∀k ∈ K, (5)∑
k∈K

xu,k = 1, ∀u ∈ V, (6)

xu,k ∈ {0, 1}, ∀u ∈ V, ∀k ∈ K, (7)

where constraint (5) ensures that each community has at
least two adjacent nodes, i.e., the total bandwidth inside
the community is greater than zero. Constraint (6) imposes
that each node of the network is assigned to exactly one
community.

3) Computational Complexity: Looking at the formulation
of Prob. 1, it is easy to see that our problem falls under the

class of graph partitioning problems [18]. These particular
problems are typically NP-hard requiring approximated solu-
tions to be solved. Furthermore, defining the optimal number
of communities to cover all the network graph adds another
complexity dimension to the problem. The investigation of the
optimal number of communities is left for future works.

IV. ALGORITHMIC SOLUTION

Given the NP-hardness of the problem described in the
previous section, we propose a heuristic method based on
general search algorithms such as Hill-Climbing [19].

For the graph partition problem we resort on the fluid
communities algorithm [20], namely FluidC. The algorithm
takes in input a graph G = (V,E) and the desired number K
of communities. Initially, it randomly selects K vertices from
V . These single vertices form the initial K communities. Each
community has a density δ ∈ (0, 1]. For each community k,
its density is given by

δ(k) =
1

|v ∈ Vk| .

At each step of the algorithm, the community of each vertex
is updated and when the assigned communities to vertices do
not change for two consecutive steps the procedure terminates.
The update rule for each vertex v computes the community
with maximum total density within the neighbourhood of v
(including v as well). If more than one community is found
for a vertex v, then a random community is chosen within the
candidate ones [20].

As shown in [20], the main advantage of the FluidC algo-
rithm is the scalability. Indeed, this algorithm provides good
communities for large graph in reasonable time. However, this
kind of solution is not thought to work with weighted graphs.
For this reason, we perform a Hill-Climbing search to find the
partition of the graph that has the best standard deviation of the
total bandwidth available on each community. The pseudocode
of our main algorithm is shown in Algorithm 1.

In the first part of Algorithm 1, lines 5-17, the FluidC
algorithm is repeatedly applied to the input graph until no
better communities are found in terms of bandwidth available
on each single community. This part follows the Hill-Climbing
search approach where we always move towards a better
configuration until a termination condition is met. In the
second part of the algorithm, lines 18-25, for each community
computed in the previous step, a particular node for the registry
placement is selected. In this case, the algorithm selects the
node with the highest eigenvector centrality degree [21]. This
kind of measure provides, for each node, an indication about
the centrality of the node and the connectivity of the node
towards nodes with high centrality degree within the same
community.

Time Complexity. The complexity of the algorithm is mainly
dominated by the number of iterations required to reach the
last local maximum from the starting point (as it can be noticed
from Algorithm 1, if after 100 iterations no better move is
performed the while loop is terminated) in the first part. How-
ever, all the operations inside the while loop are polynomially

149

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: FluidC-Placement
Input: G = (V,E): network graph; k: desired number of

communities

Output: Set of nodes where to place container registries

1 place← ∅;
2 final_comm← ∅;
3 sd← +∞;

4 it← 0;

5 while True do
6 b̄← [];
7 {Vk}k∈K ← FluidC(G,K);
8 for k ∈ K do
9 Bk ←

∑
(u,v)|u,v∈Vk

Bu,v;

10 b̄.append(Bk);

11 if stdv(b̄) < sd then
12 final_comm← {Vk}k∈K;

13 it← 0;

14 else
15 it← it+ 1;

16 if it ≥ 100 then
17 break;

18 for k ∈ final_comm do
19 c̄← [];
20 Gk ← (Vk, {(u, v) ∈ E|u, v ∈ V });
21 for v ∈ Vk do
22 cv ← eigenvector_centrality(Gk);
23 c̄.append(cv);

24 u← sort(c̄).pop();
25 place← place ∪ {u}
26 return place

bounded. Indeed, the FluidC algorithm presents a linear cost
equal to O(E) [20]. In the second part of the algorithm, to
compute the eigenvector centrality, it is sufficient to solve a
linear system of equation of the size of subgraph Gk. Finally,
the sort operation has a cost of O(|V | log(|V |)) in the
worst case. Hence, assuming a constant number of iterations
required to reach a local maximum, Algorithm 1 presents
a polynomially bounded time complexity. This confirms the
scalability of the proposed algorithm.

V. EVALUATION

A. Simulator

To evaluate the FluidC algorithm, we developed a sim-
ulator in Python 3 and NetworkX library that models an or-
chestrated container infrastructure and simulated the message
exchange between nodes and registries. We also implemented
the image distribution as layers on the topology and the
simultaneous download and cache size parameters of each
node.

We used a fair sharing schedule policy based on max-min
fairness (MMF) to simulate the network behavior. This flow

control algorithm presents an acceptable degree of approxima-
tion with real networks [22], based on the following properties:
i) flows have the same priority over the available bandwidth,
ii) flows get an equal share of the link bandwidth, iii) links
are always using the maximum bandwidth possible based on
the active flows. Figure 1 presents an example of the MMF
model, where four flows need to be transmitted simultaneously,
generating bandwidth limitations between routers R3, R4, and
R5.

Figure 1: Max-min Fairness

Given a set of network links with respective bandwidths, and
a set of paths, it is possible to obtain the available bandwidth
for each transmission in a given time using a progressive
filling algorithm which respects the MMF model. In our
implementation, we use a solution close to that presented in
[22]. The algorithm initializes the bandwidth available to each
flow with 0. Then, it proceeds to calculate the MMF to all
interfaces with active flows and updates the bandwidth equally
to each transmission until one link becomes saturated or the
total amount of data to a given transmission is satisfied. The
saturated links serve as a bottleneck for all transfers using
them, and the transmissions that do not need all the bandwidth
available transfer the free space to the biggest ones. The
algorithm executes until all links are saturated, or all flows
are satisfied.

We use events to control the simulation and each time a new
event occurs (start or finish of a given flow), the MMF needs
to be recalculated in the network. The simulation runs until
there is no more scheduled flow to be added to the topology.

B. Simulation Scenarios
To perform the simulations, we used two topologies. The

first one is a random topology with 100 nodes using the Erdös -
Rényi model [23]. The topology is fully connected, and each
node has a downlink and uplink with the same bandwidth
(1 Gbps). This topology is also highly connected with 242
links, and each registry added in the topology has bandwidth
available 10 times bigger than the worker nodes (10 Gbps).
This guarantees that registries do not represent a bottleneck for
the simulation. We also validated the placement algorithm with
the Italian education and research network (GARR) topology.
The GARR topology is composed by 70 operational zones
and 112 links and covers all the Italian territory. The topology
is presented in Figure 2. We used the GARR topology as an
isolated network, and we assumed that each operational zone
is a worker node available to deploy a new application. Each
operational zone can also be used to deploy a registry using
the FluidC algorithm. We also set the bandwidth available

150

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

Figure 2: GARR Network Topology

to the registries node as 10 Gbps. Besides, we limited the
total capacity used by the communication between the nodes
to 10% of the total bandwidth described in [24], and even with
that limitation, the average size to each link is close to 2Gbps.

Each node has a cache of fixed size that reduces the
amount of data that needs to be transmitted. As we want to
verify the impact of a large amount of containers deployment
on the topology, we set a cache size of 600MB in all the
nodes in all the simulations. For the sake of simplicity, each
container image has only one layer, and all the images have
the same size (200 MB). In these scenarios, the impact
caused by an application on a node is not considered, so
we used a small number of specific applications (13). With
that, the cache corresponds to 23% of the total (2.6GB). The
policy usage to replace the current images on cache is the
LeastRecentlyUsed. Whenever a new container download is
requested, if the image is already in the cache, the application
starts instantaneously, and the cache is updated.

One of the limitations of our simulation is that the cache
takes into account only the download phase, regardless of
whether the application continues to run on the node or not.
The parameters used for all the simulations as summarized in
the table II.

Parameter Value

Number of distinct containers 13
Size of each container 200 MB

Cache size 600 MB
Cache policy LRU

Worker node bandwidth 1 Gbps
Registry node bandwidth 10 Gbps

Table II: Simulation parameters

C. Application Scheduler

To understand the impact of a high density of applications
on the topology, we use two distinct schedulers to instantiate
an application on the edge nodes. In both cases, we run
the scheduler by one simulated hour (3600 seconds) with an
average number of requests close to 5 operations per second.

Each deployment may have a deadline time, that is, the
instant wherein the application no longer needs the container.
By default, the smallest deadline possible in our simulation
was 25 seconds. If this value is not present, we understand that
this container will run until the end of the simulation. If the
simulation time is longer than the deadline to a given container,
it returns as an error to the simulation, and the container is
counted as non-started.

The placement algorithms selected to choose each con-
tainer’s destination node are: Random and the PESS Scheduler
presented in [25]. The Random scheduler tries to show a non-
bias distribution on the topology with a fair amount of con-
tainers between all worker nodes. With the PESS Scheduler,
we want to validate the same algorithm with a more realistic
scenario focused on the application placement at the Edge,
improving the node utilization.

D. Experimental Results

We executed three simulations. The first one was the Ran-
dom Topology with a Random Scheduler. Then we run both
PESS and Random Scheduler with the GARR Topology. In
all the cases, we executed our FluidC-based algorithm in
contrast with a random selection of nodes to distribute 1,
2, 4, and 8 registries on the network, and on the GARR
Topology scenarios we used the same placement results to both
schedulers. This number of registries was manually defined to
understand the impact of an increasing number of registries
on several points, such as the total deployment time, the
distribution of requests among distinct registries, and the
bottlenecks generated on the network. When the simulation
runs with more than one registry, each worker node chooses
the registry with the shortest path based on the bandwidth.

1) Random Topology: In Figure 3c we have depicted
the CDF of the container deployment latency according to
the Random Scheduler. As expected, when the number of
registries on the topology increases in both cases, random
or FluidC algorithm, we have an improvement on the de-
ployment latency, and the difference between them decreases
as we increase the number of registries that are located on
the network. However, the FluidC algorithm presents a
deployment latency 1.59 and 1.55 times smaller in scenarios
with 1 or 2 registries and 12.5% in the eight registries scenario.
As the Random Topology is highly connected, in a scenario
with more than 4 registries, more than 90% of the containers
start with less than 10 seconds. However, it is important to
note that we used all the available bandwidth to deploy the
containers, which is not feasible in real infrastructures.

Results show that in this scenario, with 4 or more registries,
the number of non-started containers is zero, and FluidC has
slightly better results with two or one registries. Finally, we
can see that the highly number of connections on the random

151

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

(a) GARR Topology - Random Scheduler (b) GARR Topology - PESS Scheduler (c) Random Topology - Random Scheduler

Figure 3: Instantiation time to each scenario

topology enable a good distribution of the deployment requests
between the registries with the FluidC performing better in
all number of registries.

2) GARR Topology: In Figure 3a and Figure 3b we present
the results from the simulations made on the GARR Topology.
The first one used the random scheduler to distribute the
containers. We can see that the faster 80 percent requests
are deployed in less than 100 seconds in all scenarios un-
til four registries, in a pretty similar distribution. However,
the network generates specific bottlenecks as we place the
registries with both placement heuristic, showing that the 20
percent slower requests have better results consistently with
the FluidC in contrast with the random placement.

Further, with four and eight registries, the FluidC almost
mitigates the bottlenecks on the network, showing a decrease
of 58% and 78%, respectively, in deployment time. At last,
with one registry, both placements present the same results. In
these cases, the bottleneck is the connection between the node
where the registry is connected with the rest of the network.

The PESS Scheduler tends to schedule the application on the
center of the network with the largest bandwidth connection
possible. In fact, in our simulation, 67% of all containers
are scheduled in only 6 worker nodes. Even with that small
distribution on the network core, as shown in the Figure 3b,
the FluidC presents consistently increase results, that besides
the scenario with one registry, the deployment time was 24%,
65%, and 80% smaller using 2, 4, and 8 registries than in the
random scheduler.

Finally, from these figures, we can notice our placement
algorithm’s independence with respect to the scheduling algo-
rithm. Indeed, e.g., we can notice that the curves of FluidC
related to 4 and 8 registries in both cases (Random Scheduler
and PESS Scheduler) are pretty similar. This confirms that
our container registries placement algorithm is agnostic to the
specific scheduler used to distribute applications among the
network. This confirms the possibility of improving the appli-
cations’ instantiation time without modifying the orchestration
mechanisms of the applications.

Both experiments present results similar to the random
topology, showing the decreasing of non-started containers and
a shorter average deployment time in every scenario using
FluidC. We can highlight the cases with 4 and 8 registries

that have in average 32% better results with the random
scheduler, and 71% with the PESS scheduler.

VI. CONCLUSION

In this work, we present a novel deployment community-
based placement to distribute container registries on an edge
topology. Our solution optimizes the registries’ distribution on
the topology like communities in a relation graph. To do that,
we implement a two-phase algorithm that first generates a set
of communities based on the fluid communities algorithm and
then chooses, in each community, the most central node that
will be used as the host for the new registry. We validated
the solution with a series of simulations using two distinct
topologies and a random and realistic application scheduler,
showing enhanced performance in both cases. The total in-
stantiation time was optimized in the best case in more than
70%, and the small number of non-started containers can be
noted even with the best placement of just two registries.

We also consider this work as a starting point to understand
the management phase cost on a shared network with many
applications and how this impact can be diminished with a
better allocation of layers without fundamentally changing
the existing solutions on the container orchestration. In future
works, we want to improve the simulation scenarios, adding
more constraints and node limitations to establish the optimal
number of registries for a given topology.

VII. ACKNOWLEDGEMENTS

This study was supported by the Federal Institute of Educa-
tion, Science and Technology of Rio Grande do Sul (IFRS) and
the PDTI Program, funded by Dell Computadores do Brasil
Ltda (Law 8.248/91). The authors acknowledge the High-
Performance Computing Laboratory of the Pontifical Catholic
University of Rio Grande do Sul (LAD-IDEIA/PUCRS,
Brazil) for providing support and technological resources,
which have contributed to the development of this project and
to the results reported within this research. This study was
financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nvel Superior – Brasil (CAPES) – Finance Code
001. This work has received funding from the EU H2020 R&I
Programme under Grant Agreement no. 815141 (DECENTER:
Decentralised technologies for orchestrated Cloud-to-Edge in-
telligence).

152

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 1316.
[Online]. Available: https://doi.org/10.1145/2342509.2342513

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5g.”

[3] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy:
A platform for workload orchestration in a fog computing environment,”
in 2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), 2017, pp. 231–234.

[4] K. Wang, F. Xu, Y. Ding, and L. . Xing, “Kubeedge.io,” Oct 2017.
[Online]. Available: https://kubeedge.io/en

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[6] S. Nathan, R. Ghosh, T. Mukherjee, and K. Narayanan, “Comicon: A
co-operative management system for docker container images,” in 2017
IEEE International Conference on Cloud Engineering (IC2E), 2017, pp.
116–126.

[7] J. Darrous, T. Lambert, and S. Ibrahim, “On the importance of container
image placement for service provisioning in the edge,” in 2019 28th
International Conference on Computer Communication and Networks
(ICCCN), 2019, pp. 1–9.

[8] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
“Cutting throughput with the edge: App-aware placement in fog comput-
ing,” in 2019 6th IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference
on Edge Computing and Scalable Cloud (EdgeCom), 2019, pp. 196–203.

[9] A. Ahmed and G. Pierre, “Docker container deployment in fog com-
puting infrastructures,” in 2018 IEEE International Conference on Edge
Computing (EDGE), 2018, pp. 1–8.

[10] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
14th USENIX Conference on File and Storage Technologies (FAST
16). Santa Clara, CA: USENIX Association, Feb. 2016, pp. 181–195.
[Online]. Available: https://www.usenix.org/conference/fast16/technical-
sessions/presentation/harter

[11] Uber, “Kraken - p2p-powered docker registry.” [Online]. Available:
https://github.com/uber/kraken

[12] W. Kangjin, Y. Yong, L. Ying, L. Hanmei, and M. Lin, “Fid: A
faster image distribution system for docker platform,” in 2017 IEEE
2nd International Workshops on Foundations and Applications of Self*
Systems (FAS*W), 2017, pp. 191–198.

[13] A. Ahmed and G. Pierre, “Docker-pi: Docker container deployment
in fog computing infrastructures,” International Journal of Cloud
Computing, vol. 9, no. 1, p. 6, 2020. [Online]. Available:
https://doi.org/10.1504/ijcc.2020.105885

[14] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L. Rupprecht,
D. Skourtis, M. Mohamed, H. Ludwig, Y. Cheng, and A. R. Butt, “Bolt:
Towards a scalable docker registry via hyperconvergence,” in 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE,
Jul. 2019. [Online]. Available: https://doi.org/10.1109/cloud.2019.00065

[15] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed,
D. Skourtis, A. S. Warke, and D. Hildebrand, “Wharf,” in Proceedings
of the ACM Symposium on Cloud Computing. ACM, Oct. 2018.
[Online]. Available: https://doi.org/10.1145/3267809.3267836

[16] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer
Communications, vol. 159, pp. 161–174, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419317931

[17] W.-L. Hsu and G. L. Nemhauser, “Easy and hard bottleneck location
problems,” Discrete Applied Mathematics, vol. 1, no. 3, pp. 209–215,
1979.

[18] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of
Computing Systems, vol. 39, no. 6, pp. 929–939, 2006.

[19] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[20] F. Parés, D. G. Gasulla, A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta,
U. Cortés, and T. Suzumura, “Fluid communities: A competitive,
scalable and diverse community detection algorithm,” in International
Conference on Complex Networks and their Applications. Springer,
2017, pp. 229–240.

[21] V. Latora, V. Nicosia, and G. Russo, Complex networks: principles,
methods and applications. Cambridge University Press, 2017.

[22] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[23] P. ERDOS, “On the evolution of random graphs,” Bulletin of the
Institute of International Statistics, vol. 38, pp. 343–347, 1961.
[Online]. Available: https://ci.nii.ac.jp/naid/10025454140/en/

[24] C. GARR, “Consortium garr.” [Online]. Avail-
able: https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-
rete-nazionale

[25] R. Doriguzzi-Corin, S. Scott-Hayward, D. Siracusa, M. Savi, and E. Sal-
vadori, “Dynamic and application-aware provisioning of chained virtual
security network functions,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 294–307, 2020.

153

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:17:36 UTC from IEEE Xplore. Restrictions apply.

