
Improving Container Deployment in Edge
Computing Using the Infrastructure Aware

Scheduling Algorithm
Luis Augusto Dias Knob∗†, Carlos Henrique Kayser∗, Tiago Ferreto∗
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Abstract—The increase of applications with low latency re-
quirements has promoted edge computing as an enabler tech-
nology by bringing computational resources closer to end-users.
However, this new paradigm presents several challenges, such
as the fast and continuous provision of applications on geo-
graphically distributed heterogeneous devices at the edge, often
with constraint resources. Currently, there are several strategies
for scheduling applications in edge environments to decrease
application deployment time. However, they do not consider
the network bandwidth available or the download queue on
each node. In this paper, we present a new scheduling strategy
called Infrastructure Aware considering these characteristics. We
validated our proposal through simulation. Results show that
the Infrastructure Aware scheduling algorithm can, on average,
decrease the deployment latency by more than 52% and 40%
compared to the Kube-Scheduler and Layer Locality strategies,
respectively.

Index Terms—Container Management, Edge Computing, Or-
chestration, Container Scheduling

I. INTRODUCTION

With more than 67% of the world’s population owning a
mobile subscription, and with a forecast of over 25 billion
highly connected equipment by 2025 [1], mobile operators
play a key role in the growth of the Internet and the develop-
ment of new services, such as augmented reality and natural
language processing. Among the requirements for enabling
these applications, low latency and processing power near end-
users are the most important ones.

Cloud Computing has a great responsibility in implementing
such applications until today, but it does not meet the require-
ments for their large-scale use. As a result, new paradigms,
such as Multi-Access Edge Computing and Fog Computing,
have emerged to bring the cloud closer to the end-user. These
paradigms, generalized as Edge Computing, are creating a
continuum, where servers or data centers can be deployed
in a variety of locations, such as wireless access points or
radio antennas, to deploy resources like storage and processing
power [2].

However, the geographic distribution, the heterogeneity of
the physical infrastructures, and the requirements of the appli-

cations in these scenarios present management requirements
that are not fully met by any solution currently available. In
several works [3] [4], the use of containers is considered an
essential technology for the implementation of near-to-user
solutions. Still, its orchestration is today firmly focused on
traditional data center infrastructure, with a specific location
and low latency between nodes.

Despite being the de facto standard orchestrator in almost
every cloud, the Kubernetes behavior lies on the same prob-
lems. Its default scheduling algorithm, called Kube-scheduler,
distributes the applications on the topology almost equally
between the set of available nodes without considering the
heterogeneity of the network edge links. Unfortunately, this
approach can increase the total time needed to deploy a given
application (deployment latency), mainly because nodes with
constrained links may receive the same volume of applications
as nodes with high-capacity links. Some methods to decrease
the deployment latency were already proposed in the literature,
with a focus on the cache usage [5] or changes on the container
runtime [6]. In addition, new scheduling algorithms were also
presented by [7] and [8]. These works extend the Kube-
scheduler adding new priorities based on latency and cache
usage, showing promise results in a constrained scenario.

In edge scenarios, the main reason for the deployment
latency lies in the image download from an external registry,
which can take several seconds on constrained-resource nodes.
Therefore, we understand the scheduler must know the band-
width available and the current non-finished requests on each
node to speed up the deployment process on edge computing.
However, existing scheduling algorithms do not consider these
two constraints in their allocation process.

With that in mind, we propose in this paper a new schedul-
ing algorithm, called Infrastructure Aware, that seeks to reduce
the deployment latency through a better container placement
by using the download queue and available network bandwidth
as priorities to the scheduler. Furthermore, we also integrate
the layer match as proposed by [8] in our solution. At last, we
evaluate our scheduling algorithm against the image and layer
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match schedulers, as also the Kube-scheduler, in a simulated
scenario using a large number of applications generated using
the Top 24 downloaded images from DockerHub [9].

The remainder of the paper is organized as follows. Sec-
tion II presents the main container schedule strategies. After,
in Section III, we describe the Infrastructure Aware scheduling
algorithm. Section IV discusses the experiments and results.
Finally, Section V concludes the paper.

II. CONTAINER SCHEDULE STRATEGIES

This section describes the scheduling process of the Ku-
bernetes [10], one of the major frameworks for container
orchestration available currently, and new strategies proposed
in the literature to schedule edge applications.

A. Kubernetes Scheduling Strategy

In this framework, an application (i.e., microservices) is
provisioned and managed by the Kubernetes as a pod. A
pod consists of grouping one or more containers with shared
resources, such as network and storage, and definitions of how
to run each container.

Kube-scheduler [10] is the component responsible for find-
ing the best node to host a pod in the Kubernetes cluster.
It is the default component of the Kubernetes cluster for
scheduling decisions. This scheduling mechanism uses policies
based on predicates and priorities to delimit the eligible nodes
and prioritize them to select the node to host container-based
applications. It determines the most appropriate node in two
phases: a) the filtering process; and b) the scoring process. The
first one selects eligible nodes based on predicates policies,
while the second one ranks nodes based on priorities.

Kube-scheduler supports predicate-based policies. Some ex-
amples include:

1) PodFitsResources: This policy checks if the free com-
putational resources of the node, such as CPU and
memory, are enough to support the pod requirements.
Otherwise, it classifies the node as ineligible and re-
moves it from the ranking step;

2) MatchNodeSelector: This policy allows to filter the set
of nodes based on labels across pod’s node selector and
node’s labels;

3) NoDiskConflict: This policy checks if the node has
capacity enough in terms of volumes requested by the
pod;

After the filtering process, Kube-scheduler uses policies
based on priorities to rank the nodes. Some of the policies
supported are:

1) SelectorSpreadPriority: This policy tends to spread the
pods across nodes, taking into account the pods that
belong to the same service;

2) LeastRequestedPriority: The score of the node is cal-
culated taking into account the amount of free compu-
tational resources, such as CPU and memory, balancing
the workload between nodes;

3) MostRequestedPriority: In this policy, the score of
the node is calculated similarly to the LeastRequested-
Priority policy; the main difference is that this policy
prioritizes the nodes with the most requested resources;

4) NodeAffinityPriority: The node that has the labels
specified by the pod’s node selector are ranked with the
highest scores; that is, this policy favors them;

5) InterPodAffinityPriority: Unlike the previous policy,
this policy favors the nodes that already have some pod
allocated based on pod affinity rules. If the node has
a pod allocated defined in the pod affinity rules of the
requested pod, it will receive a higher score;

At the end of the filtering and ranking process, Kube-
scheduler selects the node with the highest score to provision
the pod. If there is a tie, Kube-scheduler chooses one of these
at random.

However, in an edge computing scenario composed of
heterogeneous devices, these policies may not be enough to
deploy container-based applications. For instance, they don’t
consider potentially scarce resources at the edge, such as
network bandwidth, to meet the requirements of applications
without compromising their quality of service.

B. Dependency Aware Strategy

Fu et al. [8] proposed new dependency scheduling policies
to rank the nodes based on how much their cache overlaps
with those of the requested pod. It aims to take advantage
of the nodes’ local cache and speed up the provisioning
time of container-based applications. The authors proposed
two approaches: a) image-match approach; and b) layer-match
approach.

As the name suggests, the image-match approach favors
the nodes that already have locally the image(s) of the pod
requested. So, for example, considering deploying a pod
composed by the image mongodb:4.4.6, this policy will give a
node that already has this dependency locally a higher score.

The second one, the layer-match approach, has practically
the same behavior. However, this policy favors the nodes with
the most dependencies locally at the layer level rather than the
image level, i.e., the nodes with more dependencies attended
locally will receive the higher scores.

Considering that some dependencies are allocated already
in the node, this strategy presents benefits concerning the
application provisioning time and the overall cluster storage
utilization. That relies on the fact that container images are
created from a base image and may share equal layers.

Although these policies reduce the total provisioning time
of applications, their efficiency may be impacted by network
infrastructure heterogeneity. For instance, it may be faster to
deploy an entire container with all layers in a new node with
high bandwidth capacity instead of sending a single layer to
a constrained node. In addition, these policies do not consider
the download queue on the nodes since more applications
can be waiting to be downloaded at the node, increasing the
provisioning time.
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C. Others Edge Schedulers

Other schedulers were proposed based on distinct objectives
that can also affect an edge infrastructure. For example, in [7]
the authors introduced a policy that makes use of round
trip time (RTT) labels attached to the nodes to decide the
most suitable place to deploy an application based on its
configuration (i.e., target location). Additionally, the policy
checks if the most appropriate node has enough bandwidth
capacity to support the application’s requirements. Results
show that the proposed approach compared to the Kube-
scheduler achieved a reduction of 80% in terms of network
latency. However, it only considers the application’s latency
requirement during execution in a given destination region,
but it does not consider its deployment phase.

In [11], the authors propose a greedy scheduling algorithm
called FPA (Fog Placement Algorithm) to improve the total
throughput between all applications in a Fog Computing
scenario. It allocates the Fog modules on the same region
where the control microservice resides, which is usually placed
in a bigger server, in the fog or the cloud. Although the
authors do not use information about the bandwidth on the
scheduler, the paper presents results showing that one of
the main problems to a more significant throughput was
the intra-region connections that can create bottlenecks on
communication. Furthermore, we understand that the same
problem may happen in the instantiation phase, where the
bottlenecks will increase the total amount of time needed to
deploy the applications.

III. INFRASTRUCTURE AWARE SCHEDULING

In Edge Computing, placing container-based microservices
in edge nodes that can guarantee minimal latency is essential.
This characteristic is the main reason for its adoption, instead
of only relying on the cloud. However, choosing the right edge
nodes that minimize the time required to deploy the containers
is also necessary, especially when dealing with microservices
that may present a short-term existence.

Kube-scheduler is the default component in Kubernetes
responsible for choosing the edge nodes to deploy a container.
As presented in Section II, it provides different scheduling
policies to handle several cases. However, no policy considers
metrics, such as the network bandwidth, which may signifi-
cantly impact the deployment time.

We propose the Infrastructure Aware scheduling algorithm
for reducing deployment time while considering different
metrics such as download queue on each node and available
network bandwidth.

The main goal of the Infrastructure Aware scheduling
algorithm is to speed up the application deployment time
while avoiding congesting the network interface of the edge
nodes. Furthermore, it can be easily implemented in container
orchestration frameworks, such as Kubernetes since it does not
require any modification in the infrastructure.

Algorithm 1 presents the Infrastructure Aware scheduling
algorithm. Initially, it creates a dictionary (aL) composed

of the layer digest (key) and the layer size (value) (lines
1-3). After that, it computes, for every eligible node, the
time to instantiate the application (ttInst). It considers the
layers already cached locally, the queue of layers waiting
to be downloaded by the node, and the bandwidth between
the container register (e.g., Docker Hub, GitHub Container
Registry) and the node (lines 4-15). Finally, it rescales the
time to instantiate the application between zero and w, where
w is the weight of this policy on the other predicates (lines
16-24).

Algorithm 1: Least Congested Node Priority
Input: application: application to be scheduled;

chosts: list of the container nodes; w: default
weight

Output: List of the container hosts with updated score
1 aL← {};
2 for layer ∈ applicationimage do
3 aLdigest ← size(layer);

4 ttInst← {};
5 for c ∈ chosts do
6 mL← {};
7 for app ∈ cscheduleApps do
8 for layer ∈ applayers do
9 mLapp ← size(layer);

10 cL← {};
11 for image ∈ ccache do
12 for layer ∈ imagelayers do
13 cLimage ← size(layer);

14 s←
∑

i∈(aL\mL\cL) i;
15 ttInstc ← s÷ bandwidth(c);

16 minTime← min∀t∈ttInst ttime;
17 maxTime← max∀t∈ttInst ttime;
18 if minTime = maxtime then
19 for c ∈ chosts do
20 cscore+ = w;

21 else
22 for c ∈ chosts do
23 score← (w − ((w − 0)÷ (maxTime−

minTime)× (ttInstc −minTime));
24 cscore+ = score;

25 return chosts

Some considerations can be made on the algorithm:
1) Empty cache: If at any time there are no images stored

locally in the nodes’ cache and also no images to be
download in the queue, the algorithm will favor the
nodes with the higher network bandwidth to decrease
the application’s deployment time;

2) Queue with applications: The algorithm gives the
highest scores for nodes that, even having applications
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in their download queue, can download all dependencies
in the shortest time;

3) Node bandwidth: The algorithm considers that the net-
work bandwidth between the edge node and the registry
is periodically calculated since it is hard to determine
with precision the bandwidth between nodes due to the
variability of links’ utilization.

Even if a node has the most bandwidth, it doesn’t mean
it can provision the given application in the shortest time
as other nodes may already have locally or in the download
queue the dependencies of the requested application. However,
since the proposed policy ends up centralizing the applications
on a given set of nodes, the high availability of services
is affected, which also entails the load imbalance between
nodes. In addition, it does not check whether the node has
sufficient bandwidth capacity to support the requirements of
the requested application.

IV. EVALUATION

This section presents an evaluation of the Infrastructure
Aware scheduling algorithm. The algorithm is compared to
the Kube-scheduler, and the algorithms presented in [8] (Image
and layer locality) in a simulated scenario based on the Brazil-
ian research network topology using Docker Hub images. The
metrics used for comparison include deployment latency, node
storage utilization, among others.

A. Simulator

In order to perform the evaluation, an edge simulator was
implemented in Python 3. The simulator uses the NetworkX
library and models the orchestration of containers in an edge
computing infrastructure. The main focus of the simulator
is on the deployment process and image distribution from
a registry to the edge nodes considering network topology
behavior. The modeling of the network capacity variability
is based on a fair sharing schedule policy based on the max-
min fairness algorithm. Furthermore, it is implemented using
the algorithm proposed by [12], which focuses on sharing an
infrastructure based on an equal distribution between flows
and maximum bandwidth usage to each link. This approach
results in a more realistic simulation considering the network
bottlenecks when provisioning containers in edge nodes.

The simulator allows the implementation of different
scheduling strategies (e.g., kube-scheduler and random sched-
uler). In the case of the Kubernetes scheduler, we simplify
the implementation presents on the official source code [13],
where our simulator can adding and removing predicates,
priorities, and setting different weights to each one. This
process allows fine-grained control of the simulation scenario
and a better understanding of how priorities affect container
distribution in the infrastructure.

B. Topology

In order to evaluate the policies in a more realistic scenario,
we configured the edge simulator to simulate the Ipê (Brazilian

Research Network) network topology; that is, we set up the
simulator with all the points of presence, network connec-
tions, link speed, and other network topology features. This
topology interconnects all Brazilian universities and research
institutes through 28 Points of Presence (PoPs) distributed
over the country (Figure 1). The topology also connects to
several international research networks, such as Clara (Latin
America), Internet2 (United States), and Géant (Europe). In
the experiments, the actual bandwidth and latency for each
link were used, as described in [14].

Figure 1: Ipê Brazilian Research Network Topology

To enable the comparison with the other scheduling algo-
rithms (Kube-scheduler, Image and Layer locality [8]), we
extended the Ipê topology. Each PoP included a large node
named Server Node and five small nodes named Edge Nodes.
The nodes differ in the bandwidth available on each one.
For instance, the server node has 100 Mbps, and the smaller
nodes have between 10 and 60 Mbps of bandwidth (distributed
uniformly). For simplicity, the simulation only considers the
network utilization for container provisioning, from the reg-
istry to the server or edge nodes. Any other communication
that would be active in a real network is ignored.

The registry, where all container images are located, was
placed on PoP-São Paulo (SP). This PoP is a central one in the
topology and is the primary connection to cloud providers [15].
It was given a bandwidth of 10Gbps to avoid having the
Registry Node as a bottleneck on the simulation.

C. Workload

The workload used in the simulation is based on real
images on the Docker Hub [9]. Therefore, we selected the
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twenty-four most downloaded images, excluding base images,
and allocated them in the Registry Node. The images have
a total size of 3436.45 MB (an average of 143.19 MB
per image). However, since several images share layers, the
maximum amount that a given node needs to download to have
all applications is 2152.78 MB (37% of similarity between
images). A random number of applications between 5 and
25 (distributed uniformly) is created for each image. And
for each application, a random number of replicas between
2 and 5 (distributed uniformly). Furthermore, each application
has a random scheduling time between 0 and 1000 seconds
(distributed uniformly), which defines when the application
will be considered for scheduling in the topology. Table I
presents the parameters used in the experiments.

Parameter Value
Server Nodes 28
Server Links 100 Mbps
Edge Links 10 - 60 Mbps

Number of Images 24
Number of Applications 350

Number of Replicas 1250

Table I: Simulation parameters

D. Results

Figure 2: Provision time by scheduling algorithm

1) Deployment Latency: Figure 2 presents the CDF of
the deployment latency for each application replica on the
topology. The results show the gains of using information
about the infrastructure on the container scheduling in edge
computing. Even with a small number of containers allocated
in each host node, all algorithms present a better result than the
default behavior on the Kube-scheduler. As expected, when we
increase the information’s granularity used by the scheduler,
the total amount of time needed to instantiate the applications
decrease. On average, the Image Locality deploys the replicas
6% faster than the Kube-scheduler, while the Layer Locality

is 25% better. Furthermore, with the download queue and
the expected download duration predicates, the Infrastructure
Aware is 37% and 52% smaller than the Layer Locality and the
Kube-scheduler, respectively. Almost the same results can also
be seen on the 99% percentile. The containers are deployed at
most in 90.69 seconds in the Infrastructure Aware, while spent
192.11 and 207.27 seconds to deploy the same application with
Layer Locality and Kube Scheduler.

It is important to notice that the Image and Layer local-
ity will only present consistent results after a long period
on the topology, i.e., after several containers become fully
downloaded on the edge nodes and the layers be available
on the cache. Furthermore, cache substitution policies can
also decrease the performance of these schedulers, while pre-
cached images can positively influence that. However, these
problems do not affect Infrastructure Aware since it can
reduce the deployment latency even when the container is not
available in any node of the region by allocating them to a
less congested node.

Figure 3: Node storage utilization by each scheduling algo-
rithm

2) Node Storage Utilization: Usually, Kube-scheduler has
as default behavior the equal distribution of containers between
nodes that surpass the filtering phase on the scheduler. In Fig-
ure 3, this can be seen by the well-distributed percentiles pre-
sented by this algorithm on the node storage usage. However,
the Image and Layer Locality schedulers tend to centralize on
few nodes that already contain the image or layers from that
given application. It can be identified by the decrease of the
average storage used on each node, with the Layer Locality
having the best results in comparison to the Kube-scheduler,
using only 595.535 MB instead of 749.31 MB. This result is
also present in the network utilization, with the total amount
of data transferred on the infrastructure been 25% bigger on
the Kube-scheduler than the Layer Locality. However, the
Infrastructure Aware scheduling has a more dynamic behavior,
adapting between both trends, sometimes spreading the appli-
cations to ensure the best network utilization and sometimes
using the cache nodes to decrease the provision time. This
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Algorithm Provision time (s) Cache (un) Storage Usage (MB) Distribution (un)
avg 99% max hit miss min avg max stdDev min max used nodes

Kube-scheduler 28.03 207.27 279.31 2042 8169 9.94 749.31 1423.77 2.57 2 12 168

Image Locality 26.56 221.84 279.31 2618 7593 9.94 701.40 1266.60 2.60 2 12 168

Layer Locality 22.20 192.11 279.31 3808 6403 9.94 595.35 1314.16 3.09 2 16 168

Infrastructure Aware 13.47 90.69 136.04 3913 6248 0.00 584.31 1490.30 5.46 0 16 150

Table II: Additional statistics from the simulations

behavior is represented in the figure by the most significant
differences between percentiles, where the storage utilization
was largely distinct on each node. However, even with this,
the total amount of data transferred on the network was only
0.8% bigger, and the average storage used was more than 11
MB smaller than the Layer Locality.

3) Additional Metrics: We also verified the distribution
in applications deployed per node. The Layer Locality and
the Infrastructure Aware present the worst distribution with
a standard deviation of 3.09 and 5.46 from the average,
respectively. Finally, we also collected the cache hits and
misses from the simulation, i.e., when a layer can be found in
the nodes’ cache during provisioning. As expected, the best
results also occur on the Layer Locality and the Infrastructure
Aware, with 37.29% and 38.31% of the cache hit, respectively.
Table II summarizes the results obtained in the simulation.

V. CONCLUSION

This paper presents the Infrastructure Aware scheduling al-
gorithm, a novel approach to decrease the deployment latency
of containers on an edge topology. It excels current algorithms
by using the network bandwidth and the downloading queues
on each node as priorities for the scheduling process. Together
with the Layer locality algorithm [8], these new priorities can,
on average, decrease the deployment latency by more than
52% compared to the Kubernetes default behavior. Notwith-
standing, Infrastructure Aware is 40% better than using just
the Layer locality priority, mainly because it optimizes the
deployment process even in regions where a given image has
no cached layers.

We understand that the Infrastructure Aware scheduling
algorithm may lead to an over-utilization of nodes with a large
number of network resources, limiting the benefits shown by
adding more constrained nodes in a given region. We also
evaluated that, as we score the network priority by a snapshot
in a given moment on the bandwidth usage, this may lead
to undesired results. In the future, these problems can be
addressed by tweaking the ratio used by each priority on the
scheduler and the substitution from instantaneous bandwidth
snapshot by the network usage average on the policy. Besides
that, we also want to improve the simulation scenarios, adding
more constraints and node limitations, like limited cache size,
and will implement the predicate on Kubernetes to evaluate
our scheduler in a real cluster.
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