
1

Characterizing network performance of single-node
large-scale container deployments

Conrado Boeira
Faculty of Computer Science

Dalhousie University
Conrado.Boeira@dal.ca

Miguel Neves
Faculty of Computer Science

Dalhousie University
mg478789@dal.ca

Tiago Ferreto
School of Technology

PUCRS
tiago.ferreto@pucrs.br

Israat Haque
Faculty of Computer Science

Dalhousie University
israat@dal.ca

Abstract—Cloud services have shifted from complex monolithic
designs to hundreds of loosely coupled microservices over the
last years. These microservices communicate via pre-defined APIs
(e.g., RPC) and are usually implemented on top of containers. To
make the microservices model profitable, cloud providers often
co-locate them on a single (virtual) machine, thus achieving high
server utilization. Despite being overlooked by previous work,
the challenge of providing high-quality network connectivity to
multiple containers running on the same host becomes crucial
for the overall cloud service performance in this scenario. For
that reason, this paper focuses on identifying the overheads
and bottlenecks caused by the increasing number of concurrent
containers running on a single node, particularly from a net-
working perspective. Through an extensive set of experiments,
we show that the networking performance is mostly restricted
by the CPU capacity (even for I/O intensive workloads), that
containers can largely suffer from interference originated from
packet processing, and that proper core scheduling policies
can significantly improve connection throughput. Ultimately, our
findings can help to pave the way towards more efficient large-
scale microservice deployments.

Index Terms—Cloud networking, Docker, microservices, per-
formance evaluation.

I. INTRODUCTION

Cloud services have progressively shifted from monolithic
designs to hundreds of interconnected microservices over the
last few years. Microservices are an appealing paradigm for
several reasons, including modular application deployment,
simplified debugging, and flexible coding as each microservice
can be written in the programming language that best suits its
needs. These benefits led several large cloud providers such as
Amazon, Google, Twitter, Netflix and eBay to adopt this new
application model.

Normally, each microservice runs on a separate container
[1], [2]. In addition, to make the microservices model more
profitable, cloud providers often co-locate them on a single
(virtual) host, thus achieving high server utilization. One can
easily expect a single machine to host dozens to hundreds
of frequently launched and terminated containers as part of
a microservice-based application [3], [4]. In this context, pro-
viding high-quality network connectivity to multiple containers
running on the same host becomes crucial for the overall
cloud service performance. Particularly, the high-density of
containers on a single server requires that the network incurs
minimal performance degradation to individual connections.

Previous research efforts have explored the performance
of container network deployments while considering different
networking drivers1 and allocation scenarios (e.g., containers
running on the same VM, same host, or different hosts). For
example, Suo et al. [5] study the performance of various virtual
network solutions to implement overlay networks (e.g., Docker
overlay, Weave, Flannel, Calico) connecting containers spread
among multiple VMs hosted on the same server. Later, Mentz
et al. [6] extended their analysis to also encompass a real-
world, data center oriented, traffic scenario. Unfortunately, both
assume a small number of containers at each node (often
only a single communicating pair) and overlook the challenges
associated to single-node large-scale container deployments
(i.e., when a large amount of containers is running on the same
node).

Contribution. In this work, we conduct an extensive evalua-
tion study of the network bottlenecks caused by the increasing
number of concurrent containers running on a single virtualized
host. Through a series of throughput and latency stress tests
using traditional benchmarking tools (e.g., iperf, netcat, sock-
perf), we assess the performance of the virtualized network on
a Docker environment while running three different drivers,
namely bridge, macvlan and OVS. Our main findings show
that:

• the network performance is mostly restricted by the CPU
capacity under large numbers of containers (even for I/O
intensive workloads). Moreover, OVS performed the best
among the evaluated drivers, mainly due to its fast-path
mechanism.

• containers can largely suffer from interference origi-
nated from packet processing overhead. More specifically,
throughput among communicating containers can vary up
to 3x and the flow completion time more than 2x as we
increase the number of instances running on a VM.

• proper CPU core scheduling policies can significantly
improve connection throughput. In particular, pinning
communicating containers to different cores can hike
throughput more than 20% for an OVS-based interface.

Organization. Section II provides necessary background
and the motivation for this work. Section III-A describes
the evaluation setup. Section III-B presents the evaluation

1We use the terms driver and interface interchangeably throughout the paper.

Copyright © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

results and key takeaways, followed by a literature review in
Section IV. Section V discusses potential extensions to our
work. Finally, we conclude the paper in Section VI.

II. BACKGROUND

This section presents the necessary background to under-
stand the proposed work. Usually, we need an abstraction of
the physical resources (e.g., NIC) to deploy VMs or containers.
There are different network drivers, which we briefly introduce
below.

Bridge. Linux Bridges [7] can function like a switch
connecting VMs or containers and allowing communication
between the virtual and physical (host) networks. A Bridge
consists of four components: a set of physical or virtual
network interfaces; a control plane to prevent loops and crashes
in the network; a forwarding plane for MAC-based packet
forwarding; and a MAC learning database [8].

Macvlan. Macvlan [9] allows a NIC (the parent interface)
to have multiple MAC and IP addresses. Thus, a VM or
container can have a Macvlan interface to directly interact with
the host network using its MAC and IP addresses. In case
of multiple containers, Macvlan operates in the bridge mode,
i.e., containers communicate over that bridge. Unlike Linux
Bridges, Macvlan does not need the MAC learning database
or loop prevention algorithm as the MAC addresses are known,
which makes Macvlan a lightweight driver. Nonetheless, a
Macvlan bridge depends on the parent interface and can suffer
from the single point of failure.

OVS. Open vSwitch or OVS [10] is another network driver
and consists of a multilayer software that acts as a switch
to connect virtualized hosts. OVS is commonly deployed in
an emulator like Mininet [11] to connect hosts and mimic
a Software-Defined Networking (SDN) platform. The SDN
controller communicates to OVS using the OpenFlow protocol.
OVS also supports other commonly used technologies like
NetFlow, sFlow, and VLAN.

III. EVALUATION

This section presents the evaluation setup and discussion on
results following key takeaway lessons2.

A. Setup

Testbed. We conducted our experiments on a Dell Pow-
erEdge R720 server equipped with a 16-core Intel Xeon E5-
2650 2.0GHz processor, 64GB DDR3 RAM, and a 300GB
15K RPM SAS hard disk. The server hosts a virtual machine
running Ubuntu Server 18.04.3 LTS with 8 CPU cores and
8GB of RAM. VMware ESXi 7.0 is used as hypervisor
and Docker 20.10.6 is used for container deployment inside
the virtual machine. Fig. 1 summarizes our testbed. We are
mostly interested in investigating the performance of the virtual
network under high container loads (i.e., large numbers of
containers). For that, we deploy containers in pairs, with client

2Source code is available at https://github.com/conradoboeira/Containers-
Network-Contention.

Fig. 1: Testbed used in the experiments.

and server sides communicating through the virtual network
layer (bridge, macvlan or OVS).

Workload. We used three well-known benchmarking tools
in our experiments. For throughput stress tests, we adopted
iperf 2.0.10 [12] under TCP mode. In this case, all client
containers concurrently establish a connection to their match-
ing servers and send packets at the maximum possible rate
for at least two minutes. sockperf (version 3.7) [13] is used
for the same test in scenarios with varying packet sizes as
iperf does not provide that flexibility. To analyze the effect
of large numbers of communicating containers on the network
latency, we used Netcat (version 1.187) [14] to send a fixed
amount of data (5 MB) from client to server containers. We
also considered an imbalanced traffic scenario (Elephant/Mice)
for this test, common on current data centers [15], [16], where
20% of the clients send a much larger flow (50 MB) while
the remaining ones are kept short-lived. Both latency-oriented
workloads use TCP flows.

Measurement collection. We report our results in terms
of throughput and flow completion time (FCT). Unless stated
otherwise, the results are an average of 10 repetitions. All
measurements are collected using basic statistics provided by
our benchmarking tools.

B. Results

Overall performance. We first compare the overall perfor-
mance of different container networking drivers in our single-
VM multi-container setup. Fig. 2 shows the total throughput
(i.e., the sum of the throughput from all individual flows) as
we vary the number of containers depicted in pairs. We can
observe that the throughput increases up to 5 communicating
pairs when it faces a slight drawback and then stabilizes at
an upper bound, which varies depending on the networking
driver, e.g., around 56 Gbps and 70 Gbps for bridge and
OVS, respectively. The main reason is that the performance
is restricted by the CPU capacity (despite the I/O intensive
workload), as all containers run on the same VM, and therefore
none of their flows reach the hardware NIC.

2

 0

 20

 40

 60

 80

 0 10 20 30 40 50

To
ta

l t
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of pairs

OVS
Macvlan
Bridge

Fig. 2: Total Throughput for OVS, Macvlan and Bridge from
1 to 50 pairs.

The difference in performance among the networking drivers
is in line with the literature (e.g., [6], [17]) and stems from the
fact that simpler drivers tend to have better performance. For
example, macvlan does not have the overhead for topology
discovery and frame copying between paired devices when
compared to a bridge [17]. Interestingly, OVS performed
the best among the three evaluated drivers. That is mainly
due to its fast-path, which can cache forwarding rules and
process packets completely inside kernel space and thus takes
advantage of the performance assurances from the latter [18].

Network interference. Next, we look at how containers
interfere with each other at the network level as we increase the
number of containers in a node. Ultimately, this interference
can cause unpredictable slowdowns to applications and result
in missed deadlines or SLA violations. Fig. 3 presents a CDF
of the average throughput (in Gbps) for each client container.
We considered 100 containers (50 clients and 50 servers) in
this experiment. As it can be seen, the throughput varies up to
3x among clients for all drivers, which unveils a significantly
unfair resource sharing (particularly the CPU) among contain-
ers. For instance, the lowest and highest observed throughput
for a bridge were approximately 0.6 and 1.6 Gbps, respectively.

To better understand the source of this variability, we analyze
the number of re-transmitted packets for each client container
in a bridge-based scenario. Fig. 4 shows the results, which we
plot as a function of the client throughput. Interestingly, clients
presenting larger numbers of re-transmissions are also able to
achieve higher throughput. This is because while all clients
are facing consistent packet loss (expected as part of the TCP
congestion control algorithm [19]), not all of them are having
an equal opportunity to re-transmit, in this case, due to the
scarcity of CPU resources.

In addition to the throughput, we also compare the flow
completion time (FCT) for each communicating pair of con-
tainers. Fig. 5 shows the CDF of the FCT when 20 and 100
containers (10 and 50 pairs, respectively) are running on the
VM. As expected, OVS (which achieves the highest throughput
in our tests) presents the shortest FCT in general. Interestingly,
the FCT grows up significantly as we increase the number of
containers. For example, the 99th-percentile raises about 31.3%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
D

F

Average Throughput (Gbps)

Bridge
Macvlan

OVS

Fig. 3: Cumulative distribution function for the individual
throughput of containers in a scenario with 50 pairs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.6 0.8 1 1.2 1.4 1.6

R
et

ra
n

sm
is

si
o

n
s

Throughput (Gbps)

Fig. 4: Number of retransmissions for the throughput achieved
in a test with 50 pairs using Bridge as the network driver and
with test time duration of 2 minute.

(from 154.3 ms to 202.6 ms), 39.8% (from 115.9 ms to 162.0
ms), and 32.0% (from 110.7 ms to 146.1 ms) for a bridge,
Macvlan and OVS-based interface, respectively. Moreover, we
observe large tail values in the graph as some containers take
a longer time to access resources and use more time to send
the same amount of data compared to others.

Furthermore, the FCT Scenario shows that the time contain-
ers can take to send a specific amount of data can significantly
vary even between instances running concurrently on the same
host. Specific services can take up to 3 seconds to complete
a flow, while others can finish within a second. Although the
available bandwidth is supposed to be fairly shared among all
instances, the contention for the network and subsequently the
CPU can lead to significant divergence in completion time,
which can be the source of problems when trying to guarantee
a specific level of performance for services running on top of
containers.

The following scenario was the Elephant/Mice Scenario. We
considered the three network drivers, and the results for 50 and
100 pairs can be seen in Fig. 6. The difference between the
network virtualization solutions is narrower. When looking at
the first 80% of the flows, which consists of the mice flows,
the FCT achieved with all drivers are similar. Specifically,

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Flow completion time (ms)

Bridge-10
Bridge-50

Macvlan-10
Macvlan-50

OVS-10
OVS-50

Fig. 5: CDF of the flow completion time for different network
drivers and numbers of pairs of containers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Flow completion time (s)

Bridge
Macvlan

OVS

Fig. 6: CDF results for the flow completion time in the
Elephant/Mice scenario for 50 pairs.

there is still a slightly better performance achieved by OVS,
followed by Macvlan and Bridge. However, the difference is
more significant for the elephant flows. The highest FCT values
of Bridge are consistently higher than OVS and Macvlan.

Further observation from the graphs is how the elephant
flows affect the completion time of the mice flows (see Fig. 5
and Fig. 6). The mice flows can take more than 0.5 seconds
to complete, twice longer compared to FCT Scenario. Once
again, the results confirm that Open vSwitch incurs less CPU
usage than the other two, which allows it to perform better in
these contention scenarios. CPU contention is even more of an
issue as Elephant flows can use much of the processor capacity
and impact other flows.

Another takeaway from this test is how containers that do
not need to send larger amounts of data can be affected by other
replicas. This can become an issue when we consider that such
containers can have a critical function inside a microservices
architecture. For example, containers sending small amounts of
control data can be drowned out by replicas from a different
service running in the same host.

CPU contention. To assess the impact of scarce CPU
resources on single-node multi-container networks, we analyze
their performance with varying container-to-core ratios. Fig. 7
shows the average throughput for three ratios. The throughput

 0

 0.5

 1

 1.5

 2

12:18:14:1A
ve

ra
g

e
th

ro
u

g
h

p
u

t
(G

b
p

s)

Containers-to-core ratio

Bridge
Macvlan

OVS

Fig. 7: Throughput comparison between different container-to-
core ratios.

 0

 0.2

 0.4

 0.6

 0.8

 1

4:1 8:1 12:1

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e

(s
)

Containers-to-core ratio

Bridge
Macvlan

OVS

Fig. 8: Flow completion time comparison between different
container-to-core ratios.

degrades with the higher ratios, which tend to become the norm
as the number of containers in an application increases [3],
[4]. This performance trend is due to two reasons: first, many
containers share a core with a high ratio, which naturally causes
them to get a smaller slice of the CPU. Second, the number of
interrupts and context switches on the CPU is high under the
high ratio that incurs a high management overhead [2], [20].

Fig. 8 shows the average flow completion time as we vary the
container-to-core ratio, where the FCT increases with the in-
creasing ratios. In particular, it increased more than twice every
time we step up the ratio for a bridge interface. Interestingly,
the performance gap among interfaces also increases with the
container-to-core ratio. The main reason is that the CPU takes
longer to handle each interrupt for processing a packet (or
group of packets) when the interface is more complex, as in
the case of a bridge [21].

To better understand the cost of interrupts and context
switching in a single-VM multi-container network, we study
how the network performance varies for different CPU pinning
policies. This test considers 96 containers (48 pairs) running
on an 8-core VM. We test two policies, which uniformly pin
each container to a core while ensuring the communicating
containers are pinned to i) the same core or ii) different cores.

Fig. 9 shows the total throughput for the evaluated policies

4

 40

 50

 60

 70

 80

 90

 100

Bridge Macvlan OVS

To
ta

l t
h

ro
u

g
h

p
u

t
(G

b
p

s)

Network driver

No pinning
Different cores

Same core

Fig. 9: Throughput comparison for 48 containers with and
without CPU pinning.

as we vary the networking driver. We can observe that pinning
communicating containers can substantially increase the total
throughput compared to a baseline scenario with no pinning
depending on the network driver. For example, pinning com-
municating containers to different cores has increased OVS
throughput around 21.2% compared to the scenario without
pinning. We suspect that such improvement is due to the
reduced overhead originating from cache misses that follows
the occurrence of context switches when a container resumes
on a different core [20]. Pinning communicating containers
to the same core, on the other hand, can drop the total
throughput depending on the driver (e.g., up to 13.2% for a
bridge interface). The primary reason is that both containers
are depending on the same processing unit and thus cannot run
in parallel, i.e., every interrupt from one container is directly
affecting the other.

Packet size. Fig. 10 shows the total throughput under
different packet sizes for 100 communicating containers (50
pairs). Note that the maximum transmission unit (MTU) is
given by the VM loopback interface and thus containers can
send packets of up to 65KB.

We analyzed the influence of different packet sizes on the
system throughput. In Fig. 10 we present the results for 7
different message sizes with the three studied network drivers.
One can see the progressive increase in throughput as the
packets become larger.

This behavior is expected; as the packet size increases, we
need to generate a smaller number of them to achieve a specific
throughput. The results show that this behavior in networks can
also be seen in intra-host communications.

C. Key takeaways

In the following, we summarize the key takeaways from our
investigation based on the above results.

Drivers’ Performance. We compared the performance of
three network drivers, Bridge, Macvlan, and Open vSwitch,
in various scenarios. The results confirm that the OVS ensures
the best performance compared to the other two. Specifically, it
offers higher throughput and lower flow completion time in all
scenarios, mainly due to its kernel-based enhancements. The

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Message size (KB)

Bridge
Macvlan

OVS

Fig. 10: Throughput results for different message sizes with 50
container pairs.

worst performing driver in all tests was the Bridge, which is
commonly used in container solutions.

The Importance of CPU Resources. CPU resources have
a significant impact on the network performance between
containers on the same VM. In particular, in the case of
different CPU to container ratios, having more cores per replica
can greatly benefit the performance of the network. Moreover,
the possibility of binding container to specific cores can also
benefit a system that depends on communication between
containers. This technique allows a container to better utilize
the faster memories closer to the core and access its context
faster when returning from handling an interruption.

Resource Sharing Fairness. We also observed a lack of
fairness in resource sharing for containers running on top of a
single Virtual Machine. Our results show that some containers
might achieve higher throughput (almost twice) compared to
others. Containers that are able to use the available resources
first can achieve a better network performance than others,
leading to unbalanced resource utilization.

IV. RELATED WORK

With the increasing popularity of containers, many re-
searches have started investigating the performance of con-
tainer networking solutions. Qi et al. [22] analyze the over-
heads and bottlenecks of different Container Network Interface
(CNI) plugins in Kubernetes. Unlike their work, we focus
on evaluating performance at a container (rather than pod)
granularity. Anderson et al. [23], on their turn, focus on
evaluating the network performance of service function chains
(SFCs) deployed over containers. Similar to our work, the
authors measure the cost of transfers between containers on the
same host, though we assume a nested virtualization scenario
(i.e., all containers are running inside a virtual machine rather
than directly on the host). Deploying containers on top of VMs
has become a standard practice specially in public clouds [24].

Zhao et al. [17] study the performance of multiple network-
ing drivers (Bridge, Macvlan, OVS) in distinct container allo-
cation scenarios (e.g., on the same VM, same host or different
hosts). They use a single pair of containers in their experiments
and vary the number of flows. Interestingly, the authors found

5

that containers placed on the same VM can achieve faster
communication compared to those running directly on the same
host when source and destination of intra-VM flows are bind
to the same NUMA node. Suo et al. [5] extend this analysis to
more networking drivers, including overlay-based ones (e.g.,
Docker overlay [25], Weave [26], Flannel [27], Calico [28])
which encapsulate packets when sending them to a different
host. Mentz et al. [6] evaluate the performance of container
networking solutions under a real-world traffic scenario. The
authors mimic a data center traffic load comprised of many low
volume flows and occasional transfers of large volume ones.

Taking into consideration the papers previously mentioned,
it is possible to see that our work is the first to explore large
deployments of containers. Works such as [6], [17] use only
2 pairs of containers. Even in [5], where they analyzed the
contention for network resources, this number of pairs rose
only to 8. The paper that has the largest deployment scenario
is [22], as they experiment with 50 containers in a single host.
However, this work focus on scenarios where an orchestrator
(Kubernetes) is used, meaning containers are usually organized
in pods. This differs their work from ours as they do not
experiment with different network drivers at the container level.

V. DISCUSSION

In this section, we discuss possible ways to extend the
current evaluation. Although we cover an extensive set of
experiments (e.g., varying number of containers, different flow
sizes, multiple network interfaces), there are still interesting
scenarios to explore. For example, we did not consider a
scenario where a single container can send multiple flows.
As each of these flows can run over a single CPU thread,
one would expect the network behaviour to be similar to the
behaviour we observed for large numbers of containers, i.e.,
when the number of containers is much greater than the number
of CPU cores. Nonetheless, the manner in which the different
flows can be balanced and scheduled among CPU cores can
lead to different performance trends. We plan to explore that
in the future.

Also, we have focused on exploring single-VM scenarios in
this work as they allow us to understand better the contention
of the network drivers and CPU resources. However, some
applications may require deploying containers over different
machines in cloud environments, e.g., due to scarce resources
or fault tolerance. When splitting an application among VMs
(or hosts), the competition for CPU resources, which we found
in this work to be a critical aspect of network performance, can
be diminished and better handled. Nonetheless, this separation
forces the operator to use network solutions such as Docker
Overlay [25], where extra overhead is created due to the need
for encapsulating packets leaving from a container in one
machine to another. Thus, we are interested in exploring other
container allocation scenarios like those using different VMs
and hosts.

Talking about possibilities to resolve the contention for
CPU resources and the unfairness issues we observed in
our experiments, one alternative would be relying on CPU

resource reservation. Docker has a native option to set the
amount of CPU cores reserved and the CPU shares, which
allows a system’s scheduler to prioritize some containers over
others [29]. During our tests, we found out that the option to
limit the percentage of CPU cores used by a container was
ineffective. We leave a detailed analysis as future work.

In our current evaluation, client-server communication oc-
curs over TCP connections. Even though we expect there will
be no difference in the observed trends if we perform the same
set of experiments over UDP (we validated this hypothesis
empirically for some scenarios), the latter may lead to lower
throughput due to the lack of kernel optimizations, such as
GRO [30], that allow TCP to achieve better performance [17].
We plan to analyze the performance of different protocols, e.g.,
QUIC for container communication in the future.

Finally, this work raised a question over the idea of fair
resource sharing in container environments. As shown in our
experiments, a virtual machine cannot fairly share its resources
among multiple containers, and some of them achieve much
higher performance than others with the same configuration.
This can become a major issue when we have critical con-
tainers that need to offer strict performance guarantees. One
alternative is applying flow prioritization mechanisms (e.g.,
priority scheduling over CPU cores) to alleviate the problem,
but the overhead these mechanisms incur may be unacceptably
large. Priority-based deployments have not been extensively
studied and can be an interesting avenue to explore.

VI. CONCLUSION

In this work, we presented an exploration of network con-
tention considering several containers communication among
themselves in a single host. We detailed the differences be-
tween three available network drivers: Open vSwitch, Macvlan,
and Linux Bridge. Our experiments have shown that OVS
presents better throughput and flow completion time than
Macvlan and Bridge; the latter exhibits a considerably lower
performance than the other two. We also have another novel
observation under various CPU to container ratios. Specifically,
binding container to specific cores ensures a better perfor-
mance, especially under high ratios. Finally, containers running
on a single VM can suffer from resource utilization fairness.
Overall, our in-depth evaluations at scale can help service
providers determine how to efficiently utilize their resources
while deploying microservices.

Acknowledgements. We thank the anonymous reviewers
for their feedback. This work is partially supported by the
Natural Sciences and Engineering Research Council (NSERC)
Discovery Grant.

REFERENCES

[1] Z. Jia and E. Witchel, “Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 152–166.

[2] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet
processing in container overlay networks.” in EuroSys, 2021, pp. 261–
276.

6

[3] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delim-
itrou, “Seer: Leveraging big data to navigate the complexity of perfor-
mance debugging in cloud microservices,” in Proceedings of the twenty-
fourth international conference on architectural support for programming
languages and operating systems, 2019, pp. 19–33.

[4] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
135–151.

[5] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 189–197.

[6] L. L. Mentz, W. J. Loch, and G. P. Koslovski, “Comparative experimental
analysis of docker container networking drivers,” in 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet). IEEE, 2020,
pp. 1–7.

[7] “Linux bridges,” 2021. [Online]. Available: https://wiki.linuxfoundation.
org/networking/bridge

[8] N. Varis, “Anatomy of a linux bridge,” in Proceedings of Seminar on
Network Protocols in Operating Systems, vol. 58, 2012.

[9] “Macvlan,” 2021. [Online]. Available: https://docs.docker.com/network/
macvlan/

[10] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015, pp.
117–130.

[11] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[12] “iperf,” 2021. [Online]. Available: https://iperf.fr/
[13] “Mellanox/sockperf: Network benchmarking utility,” 2021. [Online].

Available: https://github.com/Mellanox/sockperf
[14] “Netcat,” 2021. [Online]. Available: https://www.commandlinux.com/

man-page/man1/nc.1.html
[15] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,

“The nature of data center traffic: Measurements & analysis,” in
Proceedings of the 9th ACM SIGCOMM Conference on Internet

[23] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, and A. Apon,
“Performance considerations of network functions virtualization using
containers,” in 2016 International Conference on Computing, Networking
and Communications (ICNC). IEEE, 2016, pp. 1–7.

Measurement, ser. IMC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 202208. [Online]. Available:
https://doi.org/10.1145/1644893.1644918

[16] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267–280.

[17] Y. Zhao, N. Xia, C. Tian, B. Li, Y. Tang, Y. Wang, G. Zhang, R. Li,
and A. X. Liu, “Performance of container networking technologies,” in
Proceedings of the Workshop on Hot Topics in Container Networking
and Networked Systems, 2017, pp. 1–6.

[18] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015, pp.
117–130.

[19] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
Internet Requests for Comments, RFC Editor, RFC 5681, September
2009. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5681.txt

[20] D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi,
“The art of cpu-pinning: Evaluating and improving the performance
of virtualization and containerization platforms,” in 49th International
Conference on Parallel Processing-ICPP, 2020, pp. 1–11.

[21] K. Suo, Y. Shi, A. Lee, and S. Baidya, “Characterizing networking
performance and interrupt overhead of container overlay networks,” in
Proceedings of the 2021 ACM Southeast Conference, 2021, pp. 93–99.

[22] S. Qi, S. G. Kulkarni, and K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, 2020.

[24] M. Bacou, G. Todeschi, D. Hagimont, and A. Tchana, “Nested vir-
tualization without the nest,” in Proceedings of the 48th International
Conference on Parallel Processing, 2019, pp. 1–10.

[25] “Docker overlay network - use overlay networks,” 2021. [Online].
Available: https://docs.docker.com/network/macvlan/

[26] “Weave,” 2021. [Online]. Available: https://github.com/weaveworks/
weave

[27] “Flannel,” 2021. [Online]. Available: https://github.com/coreos/flannel/
[28] “Calico,” 2021. [Online]. Available: https://github.com/projectcalico/

calico-containers
[29] “Docker runtime options with memory, cpus, and gpus,” 2021.

[Online]. Available: https://docs.docker.com/config/containers/resource
constraints/#configure-the-realtime-scheduler

[30] H. Xu, “Generic receive offload,” in Japan Linux Symposium, 2009.

7

https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge
https://docs.docker.com/network/macvlan/
https://docs.docker.com/network/macvlan/
https://iperf.fr/
https://github.com/Mellanox/sockperf
https://www.commandlinux.com/man-page/man1/nc.1.html
https://www.commandlinux.com/man-page/man1/nc.1.html
https://doi.org/10.1145/1644893.1644918
https://www.rfc-editor.org/rfc/rfc5681.txt
https://docs.docker.com/network/macvlan/
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/coreos/flannel/
https://github.com/projectcalico/calico-containers
https://github.com/projectcalico/calico-containers
https://docs.docker.com/config/containers/resource_constraints/#configure-the-realtime-scheduler
https://docs.docker.com/config/containers/resource_constraints/#configure-the-realtime-scheduler

	Introduction
	Background
	Evaluation
	Setup
	Results
	Key takeaways

	Related Work
	Discussion
	Conclusion
	References

