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a b s t r a c t

Epidemiologists constantly search for methodologies that help them better understand how diseases
work. Populations urge these improvements to combat these diseases more effectively. The literature
presents several authors defending the idea that epidemiologists should be able to develop causal
models. In this area, the technique of structural equation models (SEM) has stood out in scientific
research. Although SEM has been widely used in several research areas, it has been little explored by
epidemiologists. Despite its evolution and efficiency, SEM has a gap in terms of discovering causalities.
To fill this gap, this study developed an R package called BNPA, whose methodology joins the best
of Bayesian network structural learning algorithms (BNSL) from data and path analysis (PA) a SEM
subarea. The BNPA was built with pre-processing functions. Its main algorithm allows creating an
input model to start the PA from a data set semi-automatically generating information to analyze the
PA performance. An analysis of cardiovascular disease’s main predictors was performed using the BNPA
with data from the Canadian Community Health Survey (CCHS). Multiple linear regression (MR) was
used as a gold standard methodology; the results of BNPA matched 85% of MR results. In conclusion,
BNPA is efficient and can benefit researchers, mainly novices, by enabling them to build PA models
from data. Furthermore, statisticians and PA experts will have more time to support these researchers
instead of creating an initial model.

© 2021 Published by Elsevier B.V.
1. Introduction

Epidemiologists are continually looking for new knowledge to
nderstand patterns better and fight diseases more efficiently.
he description of these patterns and the illness’s exposure are
ot enough to improve the population’s health. For Petersen [1],
here is a need to understand how these patterns evolve and
ntervene to combat diseases better. In this sense, epidemiologists
ust be able to ask causal questions and answer them; for this,

t is necessary to develop causal models.

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
∗ Corresponding author at: Department of Medicine, State University of
aringá, Av Mandacarú 1590-Anexo HUM-Maringá-PR, 87020-900, Brazil.

E-mail address: ecacarva@uem.br (E.C.A.de Carvalho).
ttps://doi.org/10.1016/j.knosys.2021.107042
950-7051/© 2021 Published by Elsevier B.V.
Although the methodology for creating causal models has
existed for a long time, only in the last few decades have advances
been made in creating these models, which have helped to dis-
seminate the technique further. As an example, we can mention
the unification of counterfactual languages [2,3], the possibil-
ity of creating causal graphs like Bayesian networks (BN), path
analysis (PA) and structural equation models (SEM) [4–6]. The
creation of computer programs that allow the implementation
of a wide range of these models, from the simplest to the most
sophisticated, such as AMOS, EQS, LISREL [7] and R packages like
lavaan [8], sem [9] and openMX [10] also boosted the creation
and use of causal models.

Among the various methodologies for creating causal models,
SEM stood out for its increasing use in scientific research devel-
opment in different areas of knowledge. SEM’s popularity stems
mainly from the fact that most traditional statistical methods ap-
ply only to a limited number of variables and can therefore fail to

https://doi.org/10.1016/j.knosys.2021.107042
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107042&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:ecacarva@uem.br
https://doi.org/10.1016/j.knosys.2021.107042


E.C.A.de Carvalho, J.R.N. Vissoci, L.de Andrade et al. Knowledge-Based Systems 223 (2021) 107042

d
s
l
a
o
p
s
d

s
a
m
2
w
j
d
E
u
s
2
7
e
l
p
t
t
t
t
u
i

c
S
a
i
a
n
t
m
s
a
i
p
p
s
m

S
B
a
f
e
g
i
a
o
i
a
t
m
r
e
o
b
a
d
g
s

b
b

e
i

eal with sophisticated emerging theories [11–13]. Sophisticated
ituations are understood in which the dynamic nature of real-
ife cases makes the same variable the outcome in one position
nd a predictor in another. SEM has advantages over other meth-
ds, such as correlation analysis and multivariate regression. The
arameters of the causal relationship in SEM can be estimated
imultaneously in a single multistage regression model (many
ependent variables x many independent variables) [14].
SEM is widely used in economics, sociology and behavioral

ciences (particularly psychology and econometrics). However,
lthough there are already many studies using causal inference
ethods in epidemiology, SEM still has limited use [12,13]. A
010 study [12] performed a search on PubMed using the key-
ords structural equation modeling, structural equation and tra-

ectory analysis in six leading epidemiology journals (Am J Epi-
emiol, Int J Epidemiol, Eur J Epidemiol, Ann Epidemiol, Lancet and
pidemiology) from 2001 to 2008 and found only 24 articles that
sed SEM, 62.5% of which were published since 2006. This same
earch was performed again by this study (9 years later) from
001 to 2019, and the result showed a total of 99 publications,
9.8% of which have been published since 2006, that is, few
pidemiology studies use SEM. Some studies suggest that this
imitation lies in the fact that most researchers cannot create their
redictive models without the support of a statistical expert due
o technical difficulties [5,6,11,13]. Corroborating the idea that
here is a gap to deal with more complex models, Fox [15] states
hat the future of epidemiology lies in the methods that allow
he creation of models of causality, as these models will enable
s to answer a series of clinical questions that were previously
ntractable.

To develop this study, we used information about cardiovas-
ular disease (CVD) provided by the Canadian Community Health
urvey (CCHS) data set [16]. A literature review on different
pproaches was performed to identify studies about CVD us-
ng machine learning techniques such as BN, PA and SEM. The
uthors [17–24] developed models using Bayesian network tech-
iques. PA models were created in the studies [25–27]. SEM was
he technique used in the studies [28–30]. In these articles, the
odels were constructed with the help of experts, for instance,
tatisticians and specialists in BN, PA or SEM, which can be costly
nd time-consuming, and none of them used algorithms for learn-
ng predictive models from data. Besides, we believe that this
rocess also generates problems in the final models caused by
oor communication between knowledge engineers and human
pecialists as cited by Lacave [31], but in this case, during the
anual development of a BN.
To overcome the limitations mentioned and further promote

EM use in epidemiology, it was developed an R-package called
NPA. BNPA is software that uses BN structure-learning (BNSL)
lgorithms to empower PA (a sub-area of SEM) with causal in-
erence and learn the input PA model from a data set. When
xecuting BNPA, it learns the structure of a BN (directed acyclic
raph [DAG]) from a data set. This BN structure learning process
s based on a combination of algorithms based on constraints
nd their respective tests of independence and algorithms based
n scores and their network scores. This method allows creat-
ng different DAG structures if the researcher combines all the
lgorithms with all the tests and scores. These DAGs serve as
he basis for the main BNPA algorithm to generate the input PA
odels to execute the PA inference. With these input models

eady, the BNPA proceeds with the PA’s execution and, at the
nd of the process, extracts tables of inference, goodness indices
f adjustment of the model, residuals and the DAGs generated
y the PA. The entire process is carried out semi-automatically,
llowing researchers to create their PA models and only then
iscuss the model with the specialist. In this way, researchers will
enerate more PA models, and specialists will have more time to
upport researchers.
2

Fig. 1. DAG representing causal paths for cardiovascular disease—CVD: Cardio-
vascular disease. HDL: high-density lipoprotein cholesterol concentration. TC:
total cholesterol concentration.

2. Baseline information

To carry out this study, it was necessary to understand graph
theory, which has long been used as an auxiliary tool for causal
analysis. Especially, the theory of DAGs has been used in con-
junction with expert systems. Therefore, in the next sections
important concepts will be described that will help explain the
results generated by this study.

2.1. Directed acyclic graph

In graph theory, a graph is formed by vertices (nodes or
variables) and edges connecting pairs of vertices. The vertices can
be any type of object connected to the pairs by edges. In a DAG
case, each edge that exits from one vertex to another vertex has
an orientation. A DAG consists of a structure where each edge
is directed from one vertex to another so that following these
directions will never form a closed loop, that is, no vertex can
reach itself through a nontrivial path [32]. An example of DAG
for CVD is presented in Fig. 1 [33].

2.2. D-separation

BNs allows the creation of a causal model, whose objective is
to represent the relationships between that model’s variables. The
way these variables connect determines the possible configura-
tions between nodes and edges, generating the network structure,
also known as fundamental connections (Fig. 2), and form the
building blocks of BN’s graph and probabilistic properties [34].

These connections reveal information about the nature of the
variables and their dependence on other variables. Variables are
dependent when the observation of one influences the other;
in this case there must be a directed edge between them. The
flow of this dependence must also be observed, since this is
direct or indirect. When indirect, the dependency between two
variables depends on a third variable. Conditional independence
(a common term used in BNs) occurs when the value of one
variable does not influence the other’s result. The structures,
which are essential for the characterization and learning of BNs,
are classified into three distinct formations, described in the
following paragraphs [34].

Serial connections contain structures where the flow of causal
influence is of the type S→ E→ R (first example of Fig. 2). In this
case, both arcs have the same direction and follow one after the
other, and any type of influence that S has will be replicated to E
and consequently to R. However, if the value of E is informed, the
causal flow between S and R is interrupted, and the variables will
e considered as d-separated. In this case, S and R are d-separated
y E or conditionally independent given E.
Diverging connections have the structure of the causal influ-

nce flow of type R← E → O (according to the second example
n Fig. 2). In this situation, the two arcs have divergent directions
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Fig. 2. Examples of fundamental connections.

Fig. 3. The gray-filled nodes are the MB of node T.

rom a central node, that is, variables O and R diverge from vari-
ble E. Considering this situation, variable E, as a parent node, will
ransmit the causal influence to all child nodes O and R, except
when the state of E is known. As in the case of serial connections,
O and R are d-separated by E or conditionally independent given
E.

Converging connections are represented by structures of type
A → E ← S (third example in Fig. 2). In this structure, the arcs
converge to a central node, that is, the variables A and S converge
to E, indicating that E will suffer a causal influence from A and S.
In this case, A and S are not d-separated when the state of E is
known; consequently, A and S are conditionally dependent on E.

The process of evaluating whether a variable is d-separated
rom another, commonly used in the construction of BNs, can be
omplex in models that represent the real world. Other solutions
ike the Markov blanket are also explored.

.3. Markov blanket

Markov blanket (MB) is a method used in graph theory whose
bjective is to infer a random variable. When analyzing a graph,
nly a subset of variables can provide useful information about a
iven variable, and the other variables are irrelevant. The MB of a
ariable occurs when information is provided about the variables
hat represent your parents, your children, and your children’s
arents. In this case, this variable and/or node is independent of
ll other variables [35]. Fig. 3 represents the MB of variable T in
BN [36].

.4. Bayesian networks

A BN is a graphical model with nodes representing random
ariables and edges representing the probabilistic dependencies
etween them [37]. A BN is defined by a network structure,
epresented as a DAG G = (V, A), where each vertex or node
i ∈ V corresponds to a random variable Xi. Considering X a

global probability distribution of a BN and its arcs a ∈ A, X
ij

3

Fig. 4. Bayesian Network for demographic analysis of diseases.

can be factorized into smaller local probability distributions. The
main objective of the network structure of a BN is to use the
graphical d-separation to express the conditional independence
relationships among the variables presented in the BN model. The
factorization of the global distribution is specified by:

P (X1, . . . , Xv) =

v∏
i=1

P(Xi|
∏

Xi) (for discrete variables) (1)

f (X1, . . . , Xv) =

v∏
i=1

f (Xi|
∏

Xi) (for continuous variables) (2)

where
∏

Xi = {parents of Xi}
As an example, the BN on Fig. 4 modeled the predictive rea-

soning of the demographics parameters (ethnicity, gender, age,
and income) and symptoms (cough and fever) on the prevalence
of two diseases: pneumonia and influenza [38].

To build a BN model two steps are needed: the first is to build
the BN structure and the second is to estimate the conditional
probability table (CPT) [39]. The BN structure can be built with
help of experts or based on data using constrained-based, score-
based or mixed BNSL algorithms. For this study we used the
second option, which is detailed in the next section.

2.5. BN structure learning algorithms using constraint-based and
score-based algorithms

To learn the structure of a BN based on a data set, there are
two main approaches: constraint-based algorithms and score-
based algorithms [40].

Constrained-based algorithms use Verma and Pearl’s Inductive
Causality algorithm [41] as a model, which provides a theoretical
basis for learning causal model structures. The main idea is to
analyze the probabilistic relationships resulting from MB by con-
ditional independence (CI) tests creating a graph that satisfies the
corresponding d-separation statements. It can be summarized in
three steps:

• The network skeleton (non-directed graph) is learned. To
avoid an exhaustive and computationally unviable search,
the learning process restricts the search to the MB of each
node as a way to optimize the process.
• Defines the directions of all edges that are part of a V

structure, which are represented by three incident nodes in
a convergent connection of type Xj → Xi ← Xk.
• Define the directions of the other edges as needed to satisfy

the acyclicity constraint.

For use in BNSL constrained-based algorithms, conditional in-
dependence tests are considered a key role in causality dis-
covery [42]. In essence, if there are three variables X, Y and
Z during the learning process of a BN structure, the objective
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f the conditional independence test is to test the conditional
ndependence hypothesis: H0: X is dependent of Y given Z against
he general alternative H1: X is not dependent of Y given Z. The
main objective of the CI test is to minimize the error type I (false
rejection of the null hypothesis) and type II (false acceptance of
the null hypothesis).

The bnlearn package [40] provides the following CI tests to
work with BNSL algorithms [43–47]:

• For categorical variables are: mutual information—an
information-theoretic distance measure, shrinkage estima-
tor for the mutual information, Pearson’s X2—the classical
Pearson’s X2 test for contingency tables;
• For categorical ordered variables are: Jonckheere–Terpstra—

a trend test for ordinal variables;
• For continuous variables are: linear correlation—Pearson’s

linear correlation, Fisher’s Z—a transformation of the lin-
ear correlation with asymptotic normal distribution, mu-
tual information: an information-theoretic distance mea-
sure, shrinkage estimator for the mutual information—an
improved asymptotic chi-square test based on the James–
Stein estimator for the mutual information;
• For mixed categorical and continuous variables are: mutual

information—an information-theoretic distance measure.

Score-based algorithms assign a score to each DAG candidate of
BN structure learned, then, using some heuristic search algorithm,
try to maximize that score [40]. Any search algorithm can be used,
but the literature most often presents greedy search algorithms,
such as hill-climbing or tabu search. The bnlearn package [40]
implements the following network scores to work with BNSL
algorithms [48–54]:

• For categorical variables are: the multinomial log-likelihood
score, which is equivalent to the entropy measure used in
Weka, the Akaike Information Criterion score, the Bayesian
Information Criterion score, which is equivalent to the Mini-
mum Description Length, the predictive log-likelihood com-
puted on a separate test set, the logarithm of the Bayesian
Dirichlet equivalent score, a score equivalent Dirichlet pos-
terior density;
• For continuous variables are: multivariate Gaussian log-

likelihood score, corresponding Akaike Information Criterion
score, corresponding Bayesian Information Criterion score,
predictive log-likelihood computed on a separate test set, a
score equivalent Gaussian posterior density;
• For mixed categorical and continuous variables are: con-

ditional linear Gaussian log-likelihood score, corresponding
Akaike Information Criterion score, corresponding Bayesian
Information Criterion score, the predictive log-likelihood
computed on a separate test set.

This study used four constrained-based algorithms: grow-shrink
(gs) [55], incremental association (iamb) [56], fast incremental
association (fast.iamb) [57], interleaved incremental association
(inter-iamb) [56] and two score-based algorithms, hill climbing
(hc) [58] and tabu Search (tabu) [58]. A justification for the fact
that there are only two score-based algorithms implemented in
bnlearn [40] (according to the author) is that they are much more
difficult to implement to have a good performance without using
C language, which takes more time to write the R code.

All these algorithms were implemented in the bnlearn pack-
age [40] and were therefore used by BNPA.

2.6. Arch black listing and white listing

To create a BN using BNSL algorithms, the first step is to
learn the structure of the BN by performing a data set that will
 d

4

Fig. 5. An example of BN structure learned: (a) with an undirected edge between
A and B and (b) without this undirected (in black list) and (c) with a new edge
onnecting A to F (in white).

etermine which edges will be present in the graph that underlies
he model. Ideally, this process would be purely data-driven, but
eal-world data generally does not allow this, and sometimes very
ittle is known about the phenomenon studied. On the other hand,
n some situations, there is prior knowledge of how the network
tructure should be. In this case, it is possible to incorporate this
nowledge into the learning process of the BN structure through
hite lists and black lists. These lists work as follows: the edges
resent in the white list must be included in the BN structure
nd the edges present in the black list must be removed from
he BN structure. This feature is implemented in the bnlearn
ackage [40], and which was used in this study.
Fig. 5a shows the structure learned from a set of data from a

iven BN. Note that an undirected edge from variable A to B was
enerated, which is not allowed in a DAG and consequently in a
N. To avoid this problem, a black list from A to B and from B to
is created, so a new BN structure will learn (Fig. 5b).
In an inverse to the black list, if you create a white list with the

ariable A pointing to variable F, this edge will appear in the BN
tructure (Fig. 5c); however, a black list with variable F pointing
o A must be created, as this indicates the edge with the same
odes, but in the other direction must not be present in the graph.

.7. Bootstrap resampling and model averaging

The techniques created to identify statistically significant char-
cteristics in network structures learned from data had limita-
ions. The cause of this is that the real probability distribution
tructure is unknown. In this context, a more efficient method
as developed by Friedman [59] using bootstrap resampling [60]
nd model averaging [61].
Motivated by important statistical problems, Efron [60] orig-

nally proposed the method known as bootstrap, which has be-
ome an important statistical tool to deal with statistical biases.
he central idea of bootstrap is to consider the sample as the
opulation and obtain subsamples from it, by random resampling
ith replacement (in this case, non-parametric bootstrap) or
y adjusting the model to which the data belong (parametric
ootstrap).
Model averaging (MA) [61] is a technique that uses the result

enerated via bootstrap to select the best graph structure. This
tructure is built using statistical criteria that select the most
elevant edges (for example, arcs that appear over a predefined
imit of the good structures obtained). In this study, we used the
‘averaged.network’’ function from bnlearn, which receives as a
arameter the result bootstrap resampling. A significance thresh-
ld, the calculation of which is described in [39], is computed
utomatically from the strength estimates. Then, all significant
rcs from each BN structure were selected according to two
riteria. First, the arc strength, calculated using the bootstrap
esampling process, must be greater than the appropriate thresh-
ld value. Second, the direction parameter must be greater than
.5, arcs with direction probability equal to 0.5 are score equiv-
lent, and their direction cannot be identified. In contrast, values
reater than 0.5 confirm that direction. Finally, the MA process

ropped all arcs of BN that did not meet these two criteria.
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Fig. 6. Symbols used to construct PA diagrams.

2.8. Structural equation modeling and path analysis

SEM is an extension of several multivariate techniques created
to overcome the limitation of techniques that can examine the
relationship of just one dependent variable [62]. SEM is composed
of a set of techniques and procedures that address an extension
of other multivariate techniques, evaluating simultaneous rela-
tionships, that is, dependency and independence relationships
between one or more variables. They are multivariate regression
equations analyzed simultaneously, in which the outcome vari-
able in one equation can appear as a predictor in another, and it
is possible for the variables to influence each other reciprocally,
directly or through other variables.

PA, the oldest member of the SEM family, is a method for
measuring direct and indirect effects of cause variables on effect
variables [6] developed by Sewall Wright, a geneticist, in 1919.
A PA model is a pictorial representation (diagram) of the theory
behind the relationship between variables. A special symbology is
used to create the PA model [5] and can be seen in Fig. 6. In this
figure, rectangles represent observed (or manifested) variables,
circles or ellipses unobserved or latent variable, straight arrows
with one end represent the direction of the relationship (cause to
effect) and direct influence, curved double-headed arrows repre-
sent a covariance relationship or non-directional correlation, and
the triangle represents a constant.

The naming of variables in PA, considering its more sophis-
ticated counterpart SEM, is different from traditional statistics,
precisely to avoid confusion. Instead of using the terms indepen-
dent variable (IV) and dependent variable (DV), in PA, the terms
exogenous variable (EXV) are used for those with straight arrows
that emerge from them and none pointing to them, except when
using error terms and endogenous variables (ENV) that must
have at least one direct arrow pointing to them. These terms are
justified by the fact that the causes or factors that influence EXVs
are determined outside the model, while factors that influence
ENVs are present in the model itself [5].

Fig. 7 shows an example of a PA model for a multiple regres-
sion, where X1, X2 and X3 are EXVs and Y is ENV. In this case,
ariables X1, X2 and X3 are considered to have a direct effect
n Y and covariate with each other. The lower-case letters over
ach of the arrows represent the path coefficient. This coefficient
an be positive indicating that an increase in the causal variable
ill result in an increase in the effect on the dependent variable

f all other causal variables remain constant. If this coefficient is
egative, an increase in the causal variable will cause a decrease
n the effect on the dependent variable [4].

EVNs always have an error term, also known as a residual
r disturbance term, represented by the circle associated with
t. This term is similar to the error term inserted at the end of
he regression equations. Similar to regression, they capture two
ccurrences: (a) inaccuracy in the measurement of ENVs, since
ll measurement tools suffer some degree of error, and (b) other
actors that affect ENVs and have not been measured, either due
o lack of time, lack of awareness of their importance or any other
eason. This term represents the discrepancy between observed
alues and values predicted by the model.
5

Fig. 7. PA model.

Fig. 8. Example of a PA model with an indirect effect.

Indirect effects occur when there is an influence of one vari-
able over another through a third or fourth variable [5]. Fig. 8
presents an example of PA with indirect effect; in this case, it is
postulated that there is a direct influence of the variable ‘‘Years
in School’’ on the variable ‘‘Salary’’, represented by the path a. Ad-
ditionally, it is also postulated that there is an indirect influence
of ‘‘Years at School’’ on the variable ‘‘Salary’’, but passing through
the variable ‘‘Cognitive Capacity’’, represented by the paths b and
c.

Wright created the term known as ‘‘tracking rules’’ to estimate
the covariance between two variables, that is, how to estimate the
values for the coefficients of the model paths. This process takes
place by scanning the paths within the model, that is, making
an analysis of trajectories. During this process, the appropriate
connection paths are added [5]. Thus, following the ‘‘tracking
rules’’ the path from ‘‘Years in School’’ to ‘‘Salary’’ through ‘‘Cogni-
tive Ability’’ is calculated by b*c (indirect effect) and by a (direct
effect), therefore the total impact of this relationship is given by
a+b*c.

3. Method

BNPA was developed primarily to fill the gap in the methods
for creating PA models, which does not allow one to learn a
PA model from a data set. It was also designed to help clinical
researchers develop initial models without the help of an expert.
Therefore, this software’s development methodology involves the
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Fig. 9. Definition of algorithms for executing BNPA.

tudy of pre-processing methods, which originated the creation
f functions for this purpose in BNPA. It also involves Bayesian
etworks structure learning from data performed using the R
ackage bnlearn [40] and estimating PA models using the R
avaan package [8]. The main BNPA algorithm creates an interface
etween these two packages.

.1. The data set

This study used the data from CCHS 2012 [16], the result of a
urvey promoted in Canada by the Canadian Institute for Health
nformation, Statistics Canada and Health Canada. It was con-
ucted every two years from 2001 to 2007, with approximately
30,000 respondents 12 years of age and older. For this study,
e selected the 12 variables suggested by [63] and two variables
roposed by [13].

.2. Data preprocessing

The CCHS data set has some variables with the answers com-
osed by ‘‘Not Applicable’’, ‘‘Do not Know’’, ‘‘Refusal’’, and ‘‘Not
tated’’. These answers are not significant for this study, so
ecords with these answers were excluded. For all variables with
alues of ‘‘1 = Yes" and ‘‘2 = No’’, the second value was recorded
s ‘‘0 = No".
The BNPA has support tools to help the researcher perform

he data cleaning and pre-processing phase. Among them, there
s the function ‘‘check.na’’ to show the amount and percentage
f missing data for each variable; in this case, it is up to the
esearcher to treat the missing data. The function ‘‘check.outliers’’
nd ‘‘preprocess.outliers’’ checks and eliminates, with the user’s
ermission, continuous variables with outliers. We also analyze
he correlation between the predictor variables (numeric and cat-
gorical) and generate a table with the possible pairs of correlated
ariables for the researcher to explore which is the best strategy
o eliminate collinearity.

.3. BNPA design

The BNPA was designed to require the researcher’s minimum,
o to create the PA model, the researcher must perform three
teps from the data set. First, we must define which algorithms
o use to learn the BN structure from the data set. In this case,
NPA uses the R bnlearn package [40]. Bnlearn uses constraint-
ased and score-based algorithms. Therefore, in this first step, the
esearcher must create two variables: cb.algorithms for the list of
onstrained-based algorithms and sb.algorithms for score-based
lgorithms (Fig. 9).
During the experiments, it was concluded that there are typi-

ally predictive and typically outcome variables in epidemiologi-
al studies. For a better understanding of this concept, suppose
he variable ‘‘AGE’’ (AGE) causes CVD and other comorbidities
uch as ‘high blood pressure’, ‘obesity’, etc. If there is no variable
n the study that influences age, such as ‘time’, for example, it
an be considered as a typical predictor, that is, no other variable
hould point to it. The same applies to the variable ‘‘HHD’’ (Has
eart disease) if the study does not evaluate the influence of
‘HHD’’ on other variables (case of this study). This variable will
6

Fig. 10. Process of creating variables that are typically predictive and typically
the outcome.

Fig. 11. Black list generated by the function ‘‘outcome.predictor.var’’.

e considered an outcome typically, that is, it should not point to
ther variables, but the opposite is allowed.
In the case of BN structures, which are represented graphically

y DAGs, any variable can point to any variable. This conflicts
ith what was exposed in the previous paragraph. In this case,
he variable ‘‘AGE’’ can be pointed to by another variable, and the
ariable ‘‘HHD’’ can also point to any other. This situation gener-
tes relations called spurious (incorrect) and consequently, more
rocessing of the process. For this reason, in the second stage, the
esearcher must inform which are the typical predictor variables
nd the typical outcome variables. This feature was implemented
hrough a black list. This function is available in the R bnlearn
ackage [40], but because the syntax for creating a black list in
nlearn is not user-friendly, especially for inexperienced users,
he ‘‘outcome.predictor.var’’ function was created in BNPA, whose
yntax is simpler (Fig. 10).
The result of the BNPA ‘‘outcome.predictor.var’’ function can

e seen in Fig. 11. The variable ‘‘HHD’’, as it is typically an out-
ome, should not point to other variables such as ‘‘AGE’’, ‘‘SEX ’’,
etc. Because of this, it is positioned on the left side, representing
the cause. The ‘‘HHD-AGE’’ parameter means that during the
process of learning the structure of BN, the ‘‘HHD’’ variable cannot
point to the variable ‘‘AGE’’. As for the variable ‘‘AGE", since it is
typically a predictor, it cannot be indicated by ‘‘SEX", ‘‘HBP", etc.,
o it is on the right side, representing an effect. This combination
epresents a very flexible way of correcting any arbitrary set of
ssumptions about the data set. Regardless of how significant
he result of the BN structure learning algorithms is, improper
elationships may appear. It allows the use of prior knowledge,
uch as information from experts in the relevant area, to be
ntegrated into the BN structure’s learning process.

Although it was not used in this study, bnlearn also offers the
esource to create a white list whose relations represent the BN
tructure’s mandatory relations. In BNPA, both the black list and
he white list can later be supplemented manually with other
elationships as the process evolves and learns new BN structures.

As a third step (Fig. 12), the researcher defines the study’s out-
ome variable by adjusting the variable ‘‘outcome.var’’, informs if
e will execute the PA by adjusting the variable ‘‘build.pa = 1’’.
he BNPA ‘‘build.pa’’ parameter, when equal to zero, allows only
he process of learning the BN structure to be executed, in case
he researcher wishes to analyze the BN DAG before executing the
omplete process. Finally, the user sets the ‘‘nreplicates’’ variable
ith the number of replications to be used during the execution
f the resampling bootstrap process [47] for the validation of the
N learned from the data.
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Fig. 12. Preparation and execution of BNPA.

All of these parameters are optional, and the researcher can
run the BNPA just by passing the data set as a parameter through
the command: gera.bn.structure (data.to.work). Thus, BNPA will
use as default, empty black and white lists, replication of the
bootstrap = 1000, the combination of all BN structure learning
algorithms. According to the authors of bnlearn [40], the default
parameters of the bnlearn package were set by rules of thumb or
suggestions in books and research papers.

During the execution of the process for learning the BN struc-
ture and consequently building the PA model, BNPA uses the
function ‘‘check.types’’. This function identifies the type of vari-
able that the data set has. According to the result of this function,
it will be returned: 1 = integer, 2 = numeric, 3 = factor, 4 =
integer and numeric, 5 = integer and factor, 6 = numeric and
factor, 7 = integer, numeric and factor. If they are categorical
variables, BNPA also uses the function ‘‘check.ordered.one.var’’
to classify a particular variable as ordinal categorical or nominal
categorical, since these types of variables are treated differently.
Based on the type of variable identified, BNPA defines which
conditional independence tests (cb.tests) to use for constraint-
based algorithms and which network scores (sb.tests) to use for
score-based algorithms. Variables of type 4, 5, 6, 7, where there
is a mixture of types (numeric + categorical), are not treated by
BNPA yet.

Fig. 13 shows the BNPA workflow. This process starts with
the processing of the black and white list (if any). This process
automatically creates these lists in the syntax of the bnlearn
package. The BNPA then receives the data, the BNSL algorithms,
the white/black lists, and final parameters (outcome.var, build.pa,
and nreplicates). In the next step, check if the BNSL algorithms
are blank and, if so, use the BNPA default; if not, use what the
researcher has defined and check if the algorithms are allowed. If
the BNSL algorithms are not allowed, the process is interrupted
with a message to review the algorithms; otherwise, BNPA then
identifies the type of variable in the data set and adjusts the CI
tests and network scores compatible with the identified type.

As a next step, BNPA executes the BNSL algorithms one by one,
first the ones constrained-based and for its respective CI tests and
then those score-based and their respective network scores. BN
structures are learned from the data set, validated by the boot-
strap resampling process [47] and model averaging [48], and their
respective DAGs are exported. The BNPA reads these DAGs, and
through its main algorithm, the PA input model is created. With
this input model ready, the PA process is executed, generates the
necessary inferences, goodness-of-fit indices, residuals and the PA
graph.

As a final step, these results are exported by BNPA for the
researcher to evaluate the PA models. If these results are satis-
factory, the researcher ends the process; otherwise, they perform
the necessary changes (data set, pre-processing, and parameters)
and restart it.

For clarification: depending on the list of algorithms that the
researcher passes to BNPA, the learning process of the BN struc-
ture will use algorithms based on constraint or algorithms based
on the score; however, both types of algorithms can be used to
7

create these structures (standard option of BNPA). Algorithm 1
is responsible for verifying if the parameter list for each type of
algorithm is empty or contains some information, confirms if they
are acceptable algorithms, and proceeds with the due processing.

3.4. Bayesian network structure

One way to learn a BN structure is by hand, using experts’
knowledge, and another is to use the data to determine which
arcs are present in the BN underlying the model [34]. To learn the
structure of a Bayesian network from a data set, algorithms and
their specific tests are used. The bnlearn implements constrained-
based algorithms that use conditional independence tests and
score-based algorithms that use network scores. BNPA allows
the use of four constrained-based algorithms (through bnlearn):
grow-shrink (gs) [42], incremental association (iamb) [43], fast
incremental association (fast.iamb) [44], interleaved incremental
association (inter.iamb) [43] and two score-based algorithms,
hill-climbing (hc) [45] and tabu search (tabu) [45]. According
to [40], as required by bnlearn, when using constrained-based
algorithms, since our data are composed of categorical and ordi-
nal variables, BNPA automatically transformed all binary variables
into ordinal ones and used Jonckheere–Terpstra (JT) algorithm as
CI test. For score-based algorithms, the Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), and the logarithm
of the Bayesian Dirichlet equivalent (BDE) were used as network
scores, and all variables were treated as categorical.

3.5. Validation of the learned Bayesian networks structure

To evaluate the degree of confidence of a DAG for a respective
BN is a crucial problem in the inference in the network structure.
Friedman, Goldszmidt and Wyner [46] introduced an effective
method of quantifying this confidence. The process generates
various network structures by applying non-parametric bootstrap
resampling to the data and estimates each arc’s strength and
the probabilities of each arc’s directions. We used this method
to ensure the quality of the learned BNs on this study creating
100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 network
structures. Since the process of bootstrap is of parallel nature,
a parallel package embedded in R language to parallelize this
process was used.

After this step, the BNPA executed the process of model aver-
aging [48] to validate the learned BN structure.

3.6. Building the PA model

The first step to conduct a PA is to construct a PA input
model representing the hypothesized relationships. The next step
is to execute the statistical analyses and then build the output
PA graph describing the relationships between the variables and
generate the inference measures. Typically, the whole process to
create a PA model is done by statisticians and/or SEM experts,
a costly and time-consuming resource not always immediately
available to all researchers. Of importance, according to [14],
PA will not discover the causal relationship between variables.
This gap will be filled by BNPA using its algorithm and BNSL
algorithms available in bnlearn to learn the PA input model from
the data set.

With the PA input model ready, BNPA will use the lavaan [8] to
start all PA steps. In lavaan, if one has exogenous (independent)
categorical dichotomous variables, these variables need to be re-
coded as a dummy (0/1); if they are ordinal, they need to be coded
to reflect their order, as in the preprocessing step, and treated
as any other (numeric) covariate. For endogenous (dependent)
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Fig. 13. Workflow of BNPA.
variables, if they are dichotomous or ordinal categorical vari-
ables, the ‘ordered’ argument of lavaan package should be used
with the fitting functions. For example, with four binary/ordinal
variables (v1, v2, v3, v4), they can fit the model using the syn-
tax: pa. Model.fit = sem(input.pa.model, data = data.to.work, or-
dered=c(‘‘v1’’, ‘‘v2’’, ‘‘v3’’, ‘‘v4")); then lavaan will automatically
use the most suitable algorithm to estimate the parameters. BNPA
will do this.

To generate the PA model, algorithm 1 was developed as part
of BNPA and automatically performed all the necessary steps
according to the variable type, as mentioned in the previous
paragraph. This algorithm receives as input a BN structure learned
on the previous step, then also receives the data set name and
the names to save the final PA diagram and PA statistics and
residuals. In the first step, the PA input model is built using the
BN structure learned from the data set. In the second step, after
the PA input model is created, the BNPA verifies if endogenous
variables are binary or ordered categorically. If they exist, mount
a list to declare it. All variables not declared on this list are
transformed into numeric by BNPA, and the PA model is built.
In the fourth step, the algorithm verifies if there are endogenous
variables to be declared as ordered and does it, then fits the PA
model using ‘‘ordered’’ argument in lavaan. Otherwise, it uses
commands without this argument. The fifth step computes a
variety of fitness measures to assess the global fitness of the PA
model, calculates the residuals and generates the PA graph.

3.7. The PA model evaluation

The evaluation of the PA model performance was made
through the set of fitness statistics recommended by [5,6]: (a)
root mean square error of approximation (RMSEA), which as-
sesses if a specified model has a reasonable approximation over
the data, (b) standardized root mean square residual (SRMR), a
measure of the mean absolute correlation residual and represents
the overall difference between the observed and predicted corre-
lations. For a and b a score lower than 0.08 indicate better fit;
(c) comparative fit index (CFI), which compares the fit of a target
model to the fit of an independent, or null, model, where a score
higher than 0.9 indicates a better fit; and (d) goodness of fit index
(GFI), similar to R2 in regression, which compares the fit of the
8

proposed model to a saturated model that allows all the variables
to covary. For c and d, scores higher than 0.9 indicate a better fit.

The residuals produced by the adjusted model were also eval-
uated. According to the literature [5,6], values above 0.10 deserve
attention and review of the model, as they indicate that the model
created did not have a good fit.

Finally, a multiple logistic regression (MR) was used as the
gold-standard technique to identify the relationships among the
variables and to be compared with PA results.

4. Results

The presence of missing values and collinearity was evaluated,
but no events were identified. All variables were considered cat-
egorical, and those with more than two levels were deemed to be
categorical ordinal.

4.1. The final data set

After the preprocessing phase, 24,632 patients were analyzed
(Table 1), of which 714 (3.0%) had heart disease, and 23,901
(97.0%) did not have heart disease. The age more prevalent was
adult (85.1%). The gender of the patients analyzed was similar in
proportion (49.7% vs. 50.3%).

4.2. Bayesian networks structure learned

Ten BN structures learned from the data set were automati-
cally generated by BNPA. Consequently, 10 PA models were built.
Our CVD experts first analyzed the BN structures, and if at least
one of the experts considered a structure incorrect, the BNSL pro-
cess would be repeated with some adjustments using white-list
and black-list through bnlearn. The main criteria for choosing the
best BN structure were: (a) the BN structure presenting relations
corroborated by the literature, (b) the BN structure showing the
highest number of correct predictors for the CVD, and (c) minor
incorrect relationship between the variables.

The BN structure that presented the best results for these
criteria was created by the combination ‘‘hc/aic’’ (BNSL algo-
rithm/network score). Fig. 14 partially shows the result of the
bootstrap resampling process for this combination. The first col-

umn indicates the number of arcs created (182), the second
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column, the source node, the third the destination node, the
fourth the strength of this relationship, and the fifth the direction.

The result of the bootstrap resampling (Fig. 14) was passed
o the model averaging process, which initially calculated the
ignificance threshold of 0.487 (Fig. 15). All arcs with a strength
ess than this value and with direction less equal than 0.50 were
xcluded. In the ‘‘model’’ section, when there is only one variable
n brackets, it means that it has no predictors, which is the case of
he ‘‘AGE’’ and ‘‘SEX ’’ variables. In the case of a variable separated
y ‘‘|’’, it means that the variables after this sign are its predictors;

according to Fig. 15 the variable ‘‘BMI ’’ has as predictors the
ariables ‘‘AGE’’ and ‘‘SEX ’’.
Fig. 16 represents the BN structure resulting from the model

veraging process for hc/aic combination.
The red lines highlight the variables that have a direct in-

luence on the HHD variable; the other variables have indirect
ffects.
 a

9

4.3. PA models learned

The BNPA, using algorithm 1, receives the data from the BN
structure (Fig. 16) and then creates the PA input model (Fig. 17).
The variable on the left side represents the dependent variable,
and the variables after the ‘‘∼’’ are the independent variables, the
lower-case letters (c1, c2, c3, etc.) represent identifiers that will
help identify and calculate the indirect effects on the generated
indices. The PA model graph created by BNPA that corresponds
to the chosen BN structure (Fig. 16) is presented in Fig. 18.

For a better understanding, the execution of algorithm 1 will
be illustrated with examples. Suppose the HBP variable of the
learned BN structure is shown in Fig. 16. Note that it has the SEX
nd AGE variables as parents. Algorithm 1 will receive the data

set and the variables AGE, SEX, HBP, and BN structure with SEX
HBP ← AGE inside and the names to generate the fit indexes
nd figures.
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Table 1
Patients with factors associated with heart disease and non-heart disease.
Variables No Heart Disease (n=23918) Heart Disease (n=714) Total (n=24632)

AGE, N (%)

Adult 20,342 (85.1%) 376 (51.4%) 20,718 (84.1%)
Elderly 3,559 (14.9%) 355 (48.6%) 3,914 (15.9%)

HBP, N (%)

No HBP 20,686 (86.5%) 373 (51.0%) 21,059 (85.5%)
Has HBP 3,215 (13.5%) 358 (49.0%) 3,573 (14.5%)

STK, N (%)

No Stroke 23,817 (99.6%) 711 (97.3%) 24,528 (99.6%)
Stroke 84 (0.4%) 20 (2.7%) 104 (0.4%)

SEX, N (%)

Female 12,013 (50.3%) 244 (33.4%) 12,257 (49.8%)
Male 11,888 (49.7%) 487 (66.6%) 12,375 (50.2%)

DIA, N (%)

Not Diabetic 22,897 (95.8%) 595 (81.4%) 23,492 (95.4%)
Diabetic 1,004 (4.2%) 136 (18.6%) 1,140 (4.6%)

SMK, N (%)

Nonsmoker 8,466 (35.4%) 145 (19.8%) 8,611 (35.0%)
Smoker 15,435 (64.6%) 586 (80.2%) 16,021 (65.0%)

BMI, N (%)

Normal 10,703 (44.8%) 206 (28.2%) 10,909 (44.3%)
Obese 8,182 (34.2%) 277 (37.9%) 8,459 (34.3%)
Overweight 5,016 (21.0%) 248 (33.9%) 5,264 (21.4%)

INC, N (%)

< 20k 1,244 (5.2%) 54 (7.4%) 1,298 (5.3%)
20k–39k 3,382 (14.2%) 138 (18.9%) 3,520 (14.3%)
40k–59k 4,306 (18.0%) 154(21.1%) 4,460 (18.1%)
60k–79k 4,085 (17.1%) 132 (18.1%) 4,217 (17.1%)
80k+ 10,884 (45.5%) 253 (34.6%) 11,137 (45.2%)

BYC, N (%)

No bike 22,970 (96.1%) 717 (98.1%) 23,687 (96.2%)
Bike 931 (3.9%) 14 (1.9%) 945 (3.8%)

WLK, N (%)

No walk 19,519 (81.7%) 642 (87.8%) 20,161 (81.8%)
Walk 4,382 (18.3%) 89 (12.2%) 4,471 (18.2%)

WRK, N (%)

No work 916 (3.8%) 51 (7.0%) 967 (3.9%)
Work 22,985 (96.2%) 680 (93.0%) 23,665 (96.1%)

ALC, N (%)

Not Alcoholic 3,242 (13.6%) 183 (25.0%) 3,425 (13.9%)
Alcoholic 20,659 (86.4%) 548 (75.0%) 21,207 (86.1%)

RUN, N (%)

No run 17,890 (74.9%) 668 (91.4%) 18,558 (75.3%)
Run 6,011 (25.1%) 63 (8.6%) 6,074 (24.7%)

N number; AGE 1 = Adult, 2 = Elderly); SEX 0 = Female, 1 = Male; HBP 0 = No high blood pressure, 1 = high blood pressure; DIA
0 = No diabetes, 1 = diabetes; SMK 0 = No smoker, 1 = smoker; ALC 0 = No alcoholic, 1 = Yes alcoholic); BMI 1 = Normal weight,
2 = Overweight, 3 = Obese), WRK 0 = No work, 1 = Yes worked at job or business); STK 0 = No stroke, 1 = Yes suffers from the
effects of a stroke; RUN 0 = No jogging, 1 = Yes jogging in the last 3 months; WLK 0 = No walking, 1 = Yes walking to go work or
school); BYC 0 = No biking, 1 = Yes biking to and from work or school; INC for categories of total household income 1 = None or
< 20K, 2 = 20–39K, 3 = 40–59K, 4 = 60–79K, 5 = 80k+) and HHD 0 = No heart disease , 1 = Yes has heart disease.
The first part (lines 1 to 20), the creation of the PA input
odel, is executed as follow:

or each variable in ds # scanning variable HBP
for each variable in BN structure

the variable in DS is the same variable in BN structure?
Suppose NO—The variable in DS is HBP and the variable in

N structure is AGE,
then read next variable in the BN structure

Suppose Yes—the variable in DS is HBP and the variable in
N structure is HBP

there exist a node parent in BN structure for variable HBP?
Suppose NO—Goto ‘‘. for each variable in ds’’ and read the

next variable in DS
10
Suppose YES—Extract the node parents in BN structure of
variable HBP

for each node parent extracted
add 1 to the counter of path identifier (c)
if is the first variable

pa.input.model← pa.input.model (empty)+current vari-
able in ds (HBP) ∼

counter of path identifier (c1) *
current parent of a variable HBP in BN (AGE)

pa.input.model now is equal to ‘‘HBP ∼ c1 * AGE ’’
else

pa.input.model← pa.input.model+‘‘+’’current parent of
a variable HBP in BN (SEX)
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Fig. 14. Bootstrap resampling result.

Fig. 15. Model averaging results.

pa.input.model now is equal to ‘‘HBP ∼ c1 * AGE + c2
* SEX ’’

end
end for each

end for each
end for each

The second part lines (21 to 31) is the discovering of categor-
ical dichotomous variables and executes as follow:

Suppose the variables ALC and SMK presented in Fig. 16 both
ave parents and therefore are endogenous variables; in this
ase, algorithm 1 will perform a scan in the database variables,
f they have parents in the BN structure and if they are of the
ichotomous or ordinal categorical type, they should be placed on
list. This list will serve as a parameter for the command that will
xecute the PA. Variables without parents, even categorical ones,
ill be transformed into numeric ones. Both rules are stated in
he lavaan package [8]. Below is an example of how the algorithm
ill behave when reading the ALC and SMK variables.
11
Fig. 16. The BN structure learned by hc/aic algorithm/network score.

Fig. 17. PA input model created by BNPA using the BN structure learned.

Fig. 18. The PA model built from the BN structure learned with hc/aic
algorithm/network score.
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f
or each variable in ds # scan ALC
current variable in ds has parents in BN structure learned (is

endogenous) &
is (dichotomous or ordinal categorical)?

Suppose No–the variable in DS will be added to a list to be
transformed into numeric

Suppose Yes–the variable in DS (ALC) will be added to a list
to be declared as ordered

if is the first variable
ordered.to.declare ← ordered.to.declare (empty) + ‘‘or-

dered=c(’’ + currently variable in ds
ordered.to.declare now is equal to ‘‘ordered=c(‘‘ALC ’’,

else
ordered.to.declare← ordered.to.declare + currently vari-

able in ds
end if

end for each
for each variable in ds # scan SMK

current variable in ds has parents in BN structure learned (is
endogenous) &

is (dichotomous or ordinal categorical)?
Suppose Yes–the variable in DS (SMK ) will be added to a list

to be declared as ordered
if is the first variable
ordered.to.declare ← ordered.to.declare (empty) + ‘‘or-

dered=c(’’ + currently variable in ds
else
ordered.to.declare← ordered.to.declare + currently vari-

able in ds
ordered.to.declare now is equal to ‘‘ordered=c(‘‘ALC ’’,

‘‘SMK ’’)’’
end if

end for each
The third part (lines 32 to 37) performs the procedure to

create the PA model. Line 32, ‘‘if there are ordinal/dichotomous
categorical variables then’’ will check the content of variable
ordered.to.declare and if it is not empty, need to transform the
other variables in cat.to.transform.into.numeric variable into nu-
meric (line 33). Still considering variable ordered.to.declare is
not empty, our examples on previous lines the algorithm 1 will
build the command to execute PA and the result will be like
"pa.model ← sem(pa.input.model, data=ds,ordered=c(‘‘ALC",
‘‘SMK")). Otherwise, without categorical endogenous variables,
the line 37 will be executed and the result will be like ‘‘pa.model
← sem(pa.input.model, data=ds)".

4.4. The PA model evaluation

Table 2 shows residual values for each combination BNSL algo-
rithm and test or score by the number of replications performed
by the bootstrap (which ranged from 100 to 1000). As can be
seen, the best results are from the combination ‘‘hc/aic’’ (3) and
‘‘tabu/aic’’ (10) with no residuals above 0.10, which requires a PA
model revision.

Table 3 shows the number of Goodness-of-Fit Indexes whose
scores indicated the best fit according to the literature’s limits.
The chi-square value is divided by the degree of freedom, which
is also a Goodness-of-Fit Index whose value must be below 3. As
in Table 3, the ‘‘hc/aic’’ combination (A/T/S=3), for the number of
replicates 300, indicated the best result presenting the maximum
acceptable number of fit indexes (5) and the acceptable X2/df
(second line) (2.3).

Table 4 presents in an analytic way the Goodness-of-Fit of the
PA model learned for each combination BNSL algorithm, CI test,
network score and 300 replications during the bootstrap process.

In addition to the Goodness-of-Fit Indexes and residuals, we
also considered the MR (Table 5), whose results suggest that
12
Table 2
Quantity of residual values from PA models above 0.10 by the number of
replicates on bootstrap.
A/T/S 100 200 300 400 500 600 700 800 900 1000 TOTAL

1 4 8 14 10 10 10 12 12 10 10 100
2 10 12 12 10 10 10 20 12 12 16 124
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 2 0 2
5 0 2 0 2 2 0 2 0 0 2 10
6 4 10 12 12 6 14 12 12 14 10 106
7 6 10 6 16 12 12 14 18 14 12 120
8 0 0 0 0 2 2 0 0 0 0 4
9 2 2 2 0 0 2 0 2 2 0 12
10 0 0 0 0 0 0 0 0 0 0 0

A/T/S Algorithm/Test/Score: 1 Fast-IAMB/JT; 2 GS/JT; 3 HC/AIC; 4 HC/BDE; 5
HC/BIC; 6 IAMB / JT; 7 Inter-IAMB/JT; 8 Tabu/AIC; 9 Tabu/BDE; 10 Tabu/BIC.

Table 3
Quantity of acceptable Goodness-of-Fit Indexes and X2/df by number of
replicates on bootstrap.
A/T/S 100 200 300 400 500 600 700 800 900 1000

1 4 2 2 3 3 3 2 2 1 3
17.7 43.2 33.3 32.0 31.2 30.6 33.0 32.2 42.7 31.2

2 2 3 1 1 1 2 1 1 1 1
59.4 40.5 39.7 76.0 64.5 58.3 68.4 41.2 39.7 42.0

3 4 4 5 4 4 5 4 4 4 5
3.3 3.7 2.3 3.6 3.3 2.3 3.2 3.6 3.7 2.3

4 3 4 4 3 4 3 4 3 3 4
23.8 20.5 20.1 23.8 20.1 23.8 20.1 23.8 23.8 20.1

5 4 4 4 4 4 4 4 4 4 4
17.9 20.1 17.9 20.5 20.5 17.9 20.5 17.9 17.9 20.5

6 3 3 3 2 3 2 1 1 1 3
34.6 39.5 38.5 37.7 20.5 44.7 39.3 39.7 48.2 35.4

7 3 2 3 1 2 1 2 1 2 3
24.7 38.3 26.8 41.0 41.3 52.3 43.4 53.0 41.0 40.46

8 4 5 5 5 4 4 5 5 5 5
3.4 2.6 2.5 2.4 4.4 3.4 2.6 2.5 2.5 2.5

9 3 4 3 4 4 3 4 3 3 4
22.9 17.2 22.9 18.7 18.7 22.9 18.7 20.0 20.0 18.7

10 4 4 4 4 4 4 4 4 4 4
18.7 18.7 18.7 16.1 18.7 18.7 18.7 18.7 18.7 18.7

A/T/S Algorithm/Test/Score: 1 Fast-IAMB/JT; 2 GS/JT; 3 HC/AIC; 4 HC/BDE; 5
HC/BIC; 6 IAMB / JT; 7 Inter-IAMB/JT; 8 Tabu/AIC; 9 Tabu/BDE; 10 Tabu/BIC.

Table 4
Summary of Goodness-of-fitness from the PA model.
A/T/S CHISQ DF PV RMSEA SRMR CFI GFI CHISQ/DF

1 1463.95 44 0.00 0.04 0.08 0.84 0.91 33.27
2 1788.06 45 0.00 0.04 0.08 0.80 0.89 39.73
3 64.99 28 0.00 0.01 0.03 1.00 1.00 2.32
4 886.17 44 0.00 0.03 0.05 0.91 0.97 20.14
5 768.05 43 0.00 0.03 0.05 0.92 0.97 17.86
6 1772.07 46 0.00 0.04 0.08 0.81 0.94 38.52
7 1233.84 46 0.00 0.03 0.06 0.87 0.96 26.82
8 72.03 29 0.00 0.01 0.03 1.00 1.00 2.48
9 1028.62 45 0.00 0.03 0.05 0.89 0.97 22.86
10 823.96 44 0.00 0.03 0.05 0.91 0.97 18.73

A/T/S Algorithm/Test/Score: 1 Fast-IAMB/JT; 2 GS/JT; 3 HC/AIC; 4 HC/BDE; 5
HC/BIC; 6 IAMB / JT; 7 Inter-IAMB/JT; 8 Tabu/AIC; 9 Tabu/BDE; 10 Tabu/BIC.
CHISQ Chi-Square; DF degree-of-freedom ; PV P-Value; RMSEA root mean square
error of approximation; SRMR standardized root mean square residual; CFI
comparative fit index ; GFI goodness of fit index.
Recommended fitness statistics: PV < 0.05; RMSEA <0.08; SRMR < 0.08; CFI >
0.90 ; GFI > 0.90; CHISQ/DF <3.00.

age, high blood pressure, stroke, sex, diabetes and smoking have

a positive and significant influence on heart disease and alcohol

consumption, running have a significant adverse effect. The results
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Table 5
Multiple Logistic Regression and BNPA results.
Path relationship Variables MR PA Supported

OR Direct &
Indirect

Total MR BNPA

AGE→HHD Adult Ref. 0.130 *
0.094 ** 0,224 Y YElderly 3.014 (0.936;1.270) *

HBP→HHD No HBP Ref. 0.273 *
0.005 ** 0.278 Y YHas HBP 2.868 (0.881;1.225) *

STK→HHD No Stroke Ref. – – Y NStroke 2.387 (0.248;1.436) *

SEX→HHD Female Ref. 0.134 *
0.025 ** 0.159 Y YMale 2.051 (0.551;0.889) *

DIA→HHD Not Diabetic Ref. – – Y NDiabetic 1.760(0.335;0.789) *

SMK→HHD Non Smoker Ref. 0.148*
−0,042 ** 0.106 Y YSmoker 1.779 (0.383;0.775) *

BMI→HHD
Normal Ref.

– – N NObese 1.082 (−0.116;0.276)_
Overweight 1.313 (0.064;0.480) _

INC→ HHD

<20k Ref.

– – Y Y
20k–39k 0.758 (−0.609;0.067) _
40k–59k 0.773 (−0.584;0.082) _
60k–79k 0.717 (−0.674;0.019) _
80k+ 0.698 (−0.671;−0.033) *

BYC→HHD No bike Ref. – – N NBike 0.906 (−0.675;0.401) _

WLK→HHD No walk Ref. – – N NWalk 0.877 (−0.383;0.107) _

WRK→HHD No work Ref. – – N NWork 0.735 (−0.615;−0.017) _

ALC→HHD Non alcoholic Ref.
−0.155* −0,155 Y YAlcoholic 0.583 (−0.726;−0.348) *

RUN→HHD No run Ref. −0.076 *
−0.018** −0.094 Y YRun 0.498 (−0.994; −0.418) *

*Significant at P < 0.05 in the multivariate Model and PA model; **Indirect effect; MR—multiple logistic regression, OR—odds ratio.
f the PA, except for stroke and diabetes, were similar and sug-
gest the same positive/negative considerable influence on heart
isease.

. Conclusion

This study proposes novel computational software using a
ybrid BN–PA-based approach to help researchers to build a PA
odel based on data set in a semi-automatic way. The study was
roposed to fill the existing gap in the PA model that is cited
y [14]: "PA will not discover the causal relationship, but it will com-
ine the quantitative information given by correlations coefficients to
ive us a quantitative interpretation," also cited by [5,6]. The results
f BNPA matched 85% of MR results (11 of 13).
An advantage of this approach is the possibility of novice

esearchers building PA models with some, but not total, help
nd opinions of statisticians and SEM/PA experts. It does not
ean that these experts are not necessary. Instead, this software

ncreases clinical researchers’ ability, especially novices, to learn
his concept in practice and create their initial predictive models
or clinical studies. In this way, more models will be created,
nd experts in SEM/PA will have more time to assist in their
valuation. Another advantage is that the researchers can benefit
rom the flexibility provided by the bnlearn [40] to insert or
emove edges between variables (using the black-list and white-
ist) before starting the BNSL and using previous knowledge. For
his study, only categorical dichotomous and ordinal data were
sed. As a next step, executing experiments with continuous data
nly and with mixed (continuous, categorical dichotomous, and
rdinal) data is planned. Also, other R packages that built BNs will
e integrated into BNPA.
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