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Abstract: Background: Analysis of atomic coordinates of protein-ligand complexes can pro-
vide three-dimensional data to generate computational models to evaluate binding affinity and 
thermodynamic state functions. Application of machine learning techniques can create models 
to assess protein-ligand potential energy and binding affinity. These methods show superior 
predictive performance when compared with classical scoring functions available in docking 
programs. 

Objective: Our purpose here is to review the development and application of the program 
SAnDReS. We describe the creation of machine learning models to assess the binding affinity 
of protein-ligand complexes.  

Methods: SAnDReS implements machine learning methods available in the scikit-learn li-
brary. This program is available for download at https://github.com/azevedolab/sandres. 
SAnDReS uses crystallographic structures, binding and thermodynamic data to create targeted 
scoring functions. 

Results: Recent applications of the program SAnDReS to drug targets such as Coagulation 
factor Xa, cyclin-dependent kinases and HIV-1 protease were able to create targeted scoring 
functions to predict inhibition of these proteins. These targeted models outperform classical 
scoring functions. 

Conclusion: Here, we reviewed the development of machine learning scoring functions to 
predict binding affinity through the application of the program SAnDReS. Our studies show 
the superior predictive performance of the SAnDReS-developed models when compared with 
classical scoring functions available in the programs such as AutoDock4, Molegro Virtual 
Docker and AutoDock Vina. 

Keywords: Machine learning, SAnDReS, cyclin-dependent kinase, protein-ligand interactions, binding affinity, 
Gibbs free energy. 

1. INTRODUCTION 

Evaluation of protein-ligand interactions based on 
the atomic coordinates of a binary complex is of fun-
damental importance to establish the structural basis 
for the specificity of binders for a receptor [1]. Analy- 
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sis of protein-ligand interactions identified in complex 
structures may reveal the critical determinants for bind-
ing specificity, which may contribute to drug design 
and development. Moreover, the availability of struc-
tures makes it possible to assess the binding affinity 
computationally [2-4]. We may evaluate the binding 
affinity or thermodynamic parameters through quantum 
mechanics methods [5]. Another methodology to de-
termine this information is the classical molecular dy-
namics simulation [6].  

Quantum mechanics and molecular dynamics simu-
lations have the potential to generate computational 
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models to predict binding affinity. But they present 
high computational cost when compared with classical 
scoring functions, being the quantum mechanics ap-
proach the most expensive from the computational 
point of view [5]. 

Application of force field and scoring function 
methods [7] can successfully predict binding affinity 
for protein-ligand structures. Considering the recent 
developments in the use of machine learning tech-
niques to generate scoring functions, we may say that 
they have shown considerable improvement in the pre-
dictive performance of these methods [8-16]. 

Among the recent proposed computational tools to 
assess binding affinity or thermodynamic data from the 
atomic coordinates of receptor-ligand complexes, we 
may highlight the following computational tools: prop-
erty-encoded shape distributions together with standard 
support vector machine (PESD-SVM) [17], Random 
Forest Score (RF-Score series) [18-22], Neural-
Network-Based Scoring function (NNScore series) [23-
25], Pafnucy [26], Tool to Analyze the Binding Affin-
ity (TABA) [27, 28] and SAnDReS [29, 30]. Our focus 
here is on the application of the program SAnDReS to 
estimate protein-ligand binding affinity. SAnDReS is 
an acronym for Statistical Analysis of Docking Results 
and Scoring Functions. Several studies reported the 
successful application of SAnDReS to a wide range of 
protein systems with different types of binding affinity 
and thermodynamic data [29-65]. These recent publica-
tions highlight the potential of SAnDReS to develop 
targeted-scoring functions for different protein systems 
and the superior predictive performance of the tar-
geted-scoring functions developed using SAnDReS 
when compared against classical scoring functions 
available in docking programs. Here we give an over-
view of the methodology employed by SAnDReS with 
an emphasis on the machine learning techniques used 
to create targeted-scoring functions. We also discuss 
the successful application of SAnDReS to create poly-
nomial equations to calculate binding affinity for four 
protein targets.  

2. METHODS 

SAnDReS integrates different methodologies to 
carry out docking simulations and for the creation of 
machine learning models to assess binding affinity. 
SAnDReS analyzes data from any protein-ligand dock-
ing program; the only requisite is to have structures in 
Protein Data Bank (PDB) [66-68] format, ligands in 
Structure Data Format (SDF), docking and scoring 
function data in comma-separated values (CSV) for-

mat. In Fig. (1), we have the main steps used in the 
SAnDReS. In the first step, we download the protein 
system composed of PDB and CSV files. In the follow-
ing, SAnDReS filters the dataset. The filtered data is 
submitted to docking simulations. In the next step, 
SAnDReS performs docking; this phase is named 
docking hub. The docking results are subjected to sta-
tistical analysis to evaluate the docking performance of 
different protocols. Subsequently, SAnDReS generates 
scoring functions targeted to the protein system of in-
terest. SAnDReS can carry out this last step independ-
ently of the other phases. 

 

Fig. (1). SAnDReS Schematic Flowchart. SAnDReS down-
loads structure and CSV files from the PDB and filters and 
merges them. In the following, SAnDReS carries out dock-
ing simulations and analyzes their results. Next, SAnDReS 
uses the ensemble of structures and binding data to generate 
machine learning models. The dashed rectangle indicates the 
non-mandatory step for the generation of targeted-scoring 
functions. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

In the development of machine learning models, 
SAnDReS considers as explanatory variables the en-
ergy terms and scoring functions calculated by external 
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programs such as Molegro Virtual Docker (MVD) [69-
71], AutoDock4 (AD4) [72, 73] and AutoDock Vina 
[74]. These explanatory variables will have their rela-
tive weights determined by supervised machine learn-
ing techniques such as linear regression, least absolute 
shrinkage and selection operator (Lasso) [75], ridge 
[76] and elastic net [77]. These last three techniques 
allow the application of cross-validation methods [29, 
30]. 

 The machine learning step of SAnDReS makes use 
of seven regression classes implemented in Python and 
accessible in the scikit-learn library [78]. We have one 
class for each method as follows: Ordinary Linear Re-
gression (sklearn.linear_model.LinearRegression), 
Lasso (sklearn.linear_model.Lasso), Lasso with cross-
validation (sklearn.linear_model.LassoCV), Ridge 
(sklearn.linear_model.Ridge), Ridge with cross-
validation (sklearn.linear_model.RidgeCV), Elastic Net 
(sklearn.linear_model.ElasticNet) and Elastic Net with 
cross-validation (sklearn.linear_model.ElasticNetCV). 

 SAnDReS makes use of a polynomial equation [79-
82] to evaluate the binding affinity or Gibbs free en-
ergy of binding for protein-ligand complexes. Let us 
consider that we estimated the energy of the protein-
ligand interactions through three terms named here x1, 
x2 and x3. These terms are the explanatory variables of 
the equation below, 

y = λ0 + λ1x1 + λ2x2 + λ3x3 + λ4x1.x2 + λ5x1.x3 + λ6x2.x3 + 
λ7x1

2 + λ8x2
2 + λ9x3

2 

where λ0 is the regression constant and λ’s are the rela-
tive weights of each explanatory variable. The response 
variable is y, which could be the Gibbs free energy of 
binding (ΔG) or the logarithm of the binding affinity 
(i.e., log(Ki)). We take binding affinity and thermody-
namic information from three databases: BindingDB 
[83, 84], MOAD [42, 85, 86] and PDBbind [87]. Con-
sidering that we have mixed and squared energy terms, 
we ended up with nine weights related to these ex-
planatory variables. We have a total of 511 possible 
polynomial equations [29, 30].  

 SAnDReS generates predictive models, also testing 
different supervised machine learning techniques. Tak-
ing together, we verify a total of 3577 models for each 
dataset. We consider, as a dataset, a protein system 
formed with crystallographic structures of protein-
ligand complexes with experimental data for binding 
affinity or Gibbs free energy of binding. SAnDReS 
assesses the predictive performance of the machine 
learning models and classical scoring function through 
the evaluation of Spearman’s rank and Pearson correla-
tion coefficients [88]. 

3. RESULTS AND DISCUSSION 

As we previously highlighted, there are studies with 
SAnDReS applied to a variety of protein systems. Ta-
ble 1 summarizes recently published protein systems 
related to the development of machine learning models 
to predict binding affinity for a specific protein system. 
Table 2 shows the predictive performance of SAnDReS 
polynomial scoring functions and classical scoring 
functions [29, 30, 35-37]. All these studies bring pre-
dictive performance comparisons of classical scoring 
functions against the targeted-scoring functions gener-
ated with SAnDReS for systems involving specific pro-
tein families and based on crystallographic structural 
data and experimental binding affinity information. 

Analysis of Table 1 indicates that SAnDReS can 
generate machine learning models taking energy terms 
calculated with different classical scoring functions, 
such as the ones calculated with MVD and AD4. We 
also see from the protein systems for which SAnDReS 
was tested so far, that its performance is not restricted 
to a specific enzymatic class or type of binding affinity. 
We have models for CDK [36], HIV-1 protease [35], 3-
dehydroquinate dehydratase [37] and coagulation fac-
tor Xa [29]. SAnDReS analyzed protein systems with 
experimental data such as Ki [29, 35, 37], IC50 [36] and 
ΔG [15]. SAnDReS can handle any binding affinity 
data or thermodynamic parameters in the development 
of machine learning models. 

It is worth mentioning that the majority of the poly-
nomial equations built with SAnDReS are for a specific 
protein, with one exception of a predictive model made 
to estimate the Gibbs free energy of binding trained 
with a dataset composed with 48 high-resolution crys-
tallographic structures [15]. This dataset took different 
types of enzymes and protein classes, expecting to gen-
erate an all-purpose predictive model to evaluate ΔG 
based on the atomic coordinates of protein-ligand com-
plexes. We did not include an analysis of the predictive 
performance of this ΔG dataset in this review since it 
takes a wide range of enzymatic classes. 

Analysis of the predictive performance of a machine 
learning model compared with classical scoring func-
tions strongly indicate that the former shows a higher 
correlation with experimental data. Spearman’s rank 
correlation coefficients (ρ) for test sets (Table 2) indi-
cated values ranging from 0.08 (HIV-1 protease) [35] 
to 0.771 (3-dehydroquinate dehydratase) [37] for clas-
sical scoring functions. On the other hand, taking these 
two systems, machine learning models overperformed 
classical scores, with ρ of 0.368 and 0.943, respec-
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Table 1. Protein systems studied with SAnDReS. 

S.No. Protein System Size Machine Learning Model 

1 Coagulation factor Xa (EC 3.4.21.6) with Ki data [29] 57a 

25b 
Score110

c=1.603905-0.006305.x 
-0.005256.y.z-0.000028.x.z 
+0.002801.y2+0.002439.z2 

2 HIV-1 protease (EC 3.4.23.16) with Ki data [35] 51a 

20b 
Score504

d=-5.685144+0.01199.x 
+0.004743.y+0.001676.z 

-0.000024.x.y+0.000106.x.z 
-0.00004.y.z 

3 Cyclin-dependent kinase (EC 2.7.11.22) with IC50 data 
[36] 

122a 
54b 

Score482
e=-7.074331-0.001829.x 

+0.001529.y-0.001136.z +0.000003.x.y 

4 3-dehydroquinate dehydratase (EC 4.2.1.10) with with 
Ki data [37] 

18a 

4b 
Score369

f=−7.268556−0.545897.y 
−1.288947.z−0.019562.x 

−0.396378.y�z+0.438998.z2 
 aTraining set, bTest set. cCalculated with MVD, where x=Electro Score, y=MolDock Score and z=Interaction Score. dCalculated with MVD, where 
x=PLANTS, y=Interaction Score and z=Ligand efficiency 3 Score. 
eCalculated with MVD, where x=Re-rank Score, y=Internal Score and z=Electro Long Score. fCalculated with AD4, where x=vdW+Hbond+desolv Energy, 
y=Electrostatic Energy and z=Final intermolecular Energy. 

Table 2. Predictive performance of machine learning (M) models generated with SAnDReS. 

S.No. ρρa p-value
a
  ρb

  p-value
b 

1 0.560 (M) 
0.190 (C) 

5.920.10-6 (M) 
1.574.10-1 (C) 

0.435 (M) 
0.174 (C) 

2.975.10-2 (M) 
4.055.10-1 (C) 

2 0.525 (M) 
0.479 (C) 

7.707.10-5 (M) 
3.795.10-4 (C) 

0.368 (M) 
0.080 (C) 

1.106.10-1 (M) 
7.383.10-1 (C) 

3 0.390 (M) 
0.211 (C) 

9.065.10-6 (M) 
1.943.10-2 (C) 

0.346 (M) 
-0.298 (C) 

1.044.10-2 (M) 
2.874.10-2 (C) 

4 0.675 (M) 
0.427 (C) 

4.16.10-3 (M) 
9.90.10-2 (C) 

0.943 (M) 
0.771 (C) 

4.81.10-3 (M) 
7.24.10-2 (C) 

aTraining set, bTest set 
C: The highest-correlation classical scoring function (calculated with MVD). M: The highest-correlation machine learning model. 

 

tively. The machine learning model generated to pre-
dict inhibition constant of 3-dehydroquinate dehydra-
tase showed the highest ρ amongst the models pro-
duced with SAnDReS so far. This performance seems 
to be directly related to the higher correlation of the 
energy terms from the classical scoring functions used 
to create the targeted scoring function model, which 
also shows a significant correlation for the same test 
set. 

Furthermore, the use of cross and square terms of 
variables in the polynomial equation used by SAn-
DReS confers additional flexibility during the machine-
learning modeling allowing the model to adapt the 
scoring function to the protein system of interest. New 
explanatory variables, including cross and square vari-
ables let us explore additional regions of the scoring 
function space [31], not explored with a linear polyno-

mial equation. Such a deeper polynomial equation 
showed superior predictive performance when com-
pared with classical scoring functions. 

Another noteworthy result related to the machine 
learning models created with SAnDReS is the poor per-
formance of the predictive model built to estimate IC50 
of CDKs [36]. We consider two possible causes for this 
weak predictive power of the machine learning model. 
Firstly, so far, this is the largest dataset used to gener-
ate targeted scoring functions with SAnDReS, over 170 
crystallographic structures. Secondly, the source of the 
binding affinity information (IC50) generally is not as 
consistent as inhibition constant (Ki) or dissociation 
constant (Kd) data [26]. Therefore, we expect datasets 
with IC50 to present mediocre predictive performance 
when compared with models created to estimate other 
types of binding affinity.  
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To overcome the limitation of IC50 predictive per-
formance, we could have applied the Cheng–Prusoff 
[89] equation or similar approach to convert IC50 to Ki. 
Such an approach can generate a converted-Ki dataset. 
We did not follow this approach, since we see as ade-
quate to focus on modeling direct experimental data, 
not derived experimental information such as the one 
obtained using the Cheng–Prusoff equation. 

Analysis of the machine learning models to predict 
inhibition of the protein systems built so far with SAn-
DReS clearly showed that the regression equation 
could capture essential structural features related to 
protein-ligand interactions specific for the system un-
der study. For the coagulation factor Xa [29], the ma-
chine learning model indicated the prevalence of elec-
trostatic interactions in the polynomial equation devel-
oped with SAnDReS. In Fig. (2), we have the residues 
involved in most of the electrostatic interactions for the 
crystallographic structures in the coagulation factor Xa 
dataset.  

 

Fig. (2). Main residues involved in intermolecular electro-
static interactions for factor Xa. We used the program MVD 
[69] and the crystallographic structure of coagulation factor 
Xa in complex with an inhibitor (PDB access code: 2JKH) 
[90] to generate this figure. (A higher resolution / colour 
version of this figure is available in the electronic copy of the 
article). 

Analysis of the structures in the dataset suggests 
that the prevalence of electrostatic intermolecular 
interactions in the polynomial equation may be due to 
the presence of charged residues in the binding pocket 
(Arg 143, Gln 192 and Asp 189) of the coagulation 
factor Xa. Moreover, analysis of strong coagulation 
factor Xa inhibitors shows that amine moieties fill the 
protein binding pocket, which is involved in cation-π 
interactions with residues Tyr 99, Phe 174 and Trp 215. 

The development of a machine learning model built 
to predict inhibition of CDKs [36] also showed the 
prevalence of electrostatic interactions in the polyno-
mial equation (Table 1), as we can see for the presence 

of the Electro Long Score in the score482. In Fig. (3), 
we have the residues participating in most of the inter-
molecular contacts for the crystallographic structures in 
the CDK dataset. We see the preponderance of the 
electrostatic intermolecular interactions with the par-
ticipation of charged residues Glu 12, Lys 33, Glu 81, 
His 84, Gln 85, Asp 86, Asn 132 and Asp 145 [91-96]. 

 

Fig. (3). Intermolecular interactions in the ATP-binding 
pocket of CDK2. We used the program MVD [69] and the 
crystallographic structure of CDK2 in complex with the in-
hibitor roscovitine (PDB access code: 2A4L) [90] to gener-
ate this figure. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

Analysis of the machine learning model to predict 
binding affinity for 3-dehydroquinate dehydratase [37] 
indicates the participation of electrostatic interactions, 
as observed for factor Xa and CDK2. Nevertheless, we 
also identified energy terms involving intermolecular 
hydrogen bond and van der Waals interactions in the 
machine learning model, which indicates that the 
SAnDReS method can identify a wide range of inter-
molecular interactions. 

Molecular docking is the most used computational 
approach in the early stages of drug design [71-74] and 
the application of machine-learning techniques has 
shown to positively contribute to speed up drug discov-
ery [81]. Considering the prospect for drug design and 
development, the results obtained so far using the pro-
gram SAnDReS strongly indicate that we have a syner-
gism between the computational environment applied 
to carry out docking simulations and the machine-
learning methods used to generate targeted-scoring 
functions to predict protein-ligand binding affinity 
based on the atomic coordinates of receptor-drug com-
plexes. Both main computational approaches available 
in the program SAnDReS have the potential to speed 
up drug discovery and design. Firstly, by a user-
friendly computational environment, mostly based on 
open-source software, able to carry out docking simula-
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tions that immensely contribute to the identification of 
potential new inhibitors of druggable protein targets. 
Secondly, by a computational integrated environment 
that uses state-of-the-art machine learning approaches 
that fully integrate all tasks related to the development 
of targeted-scoring functions, from the automatic 
downloading of structural and binding experimental 
data to the generation of novel scoring functions to 
predict binding affinity taking the atomic coordinates 
of target-drug complexes.  

In summary, in the early stages of drug design and 
development, the availability of the atomic coordinates 
of an enzyme target makes it possible to apply the pro-
gram SAnDReS to identify new potential inhibitors for 
a druggable target with predictive power superior to 
classical methods. Furthermore, the innovative theo-
retical approach of using SAnDReS to explore the scor-
ing function space [31] to find an adequate computa-
tional model to predict the binding affinity or thermo-
dynamic data brings an integrated computational envi-
ronment that not only is able to perform docking and 
machine-learning modeling but also to provide a theo-
retical framework that makes it possible to medicinal 
chemists to explore key structural features responsible 
for the binding affinity of drugs. These structure fea-
tures are unique to the protein system being studied 
since SAnDReS can generate a targeted-scoring spe-
cific for this druggable protein target. As highlighted 
for the electrostatic interactions found in the machine 
learning models for coagulation factor Xa [29] and 
CDK [36], identification of the most relevant intermo-
lecular interactions responsible for binding affinity 
provides the information of chemical environment that 
allows us to refine structural parameters of a potential 
drug making it more specific for a given protein target. 
Medicinal chemists can carry out the modification of 
the potential drug to maximize the major intermolecu-
lar interactions identified through machine-learning 
approaches available in the program SAnDReS. 

CONCLUSION 

The main idea behind the development of the SAn-
DReS is to have a computational tool to explore the 
scoring function space through fine-tuning energy 
terms generated by other programs and calibrating a 
scoring function to a protein system of interest. We 
focus on experimental data for the structure and bind-
ing information, to generate machine learning models 
based strictly on experimental information. Moreover, 
with SAnDReS, we can carry out protein-ligand docking 
simulations in an integrated computational environment 

with SAnDReS. This program focuses on the execution of 
docking simulations of protein-ligand systems using the 
programs MVD, AD4 and Vina. SAnDReS analyzes the 
performance of molecular docking simulations and gener-
ates machine learning models built to predict binding af-
finity using as explanatory variables the energy terms 
available in scoring functions of any docking programs. 
In this review, we described the SAnDReS application to 
generate machine learning models to calculate binding 
affinity. SAnDReS seeks to create a model considering a 
dataset of crystallographic structures for which binding 
affinity or thermodynamic data is available. With this ap-
proach, SAnDReS is adequate for protein systems with at 
least 20 crystallographic structures. So far, the models 
generated with SAnDReS to predict binding affinity 
showed superior predictive performance when compared 
with classical scoring functions. Furthermore, SAnDReS 
was able to capture in the machine learning models, es-
sential structural features responsible for binding affini-
ties, such as the electrostatic interactions in the polyno-
mial equations for the Coagulation factor Xa and CDKs. 

LIST OF ABBREVIATIONS  

AD4 = AutoDock4 

ATP = Adenosine triphosphate 

CDK = Cyclin-dependent kinase 

CSV = Comma-separated values 

CV = Cross validation 

DG = Variation of Gibbs free energy of bind-
ing 

EC = Enzyme classification number 

IC50 = Half-maximal inhibitory concentration 

Kd = Dissociation constant 

Ki = Inhibition constant 

Lasso = Least absolute shrinkage and selection 
operator 

MOAD = Mother of all databases  

MVD = Molegro virtual docker 

NNScore = Neural-network-based scoring function 

PDB = Protein data bank 

PESD-SVM = Property-encoded shape distributions 
together with standard support vector 
machine 

RF-Score = Random forest score  
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SAnDReS = Statistical analysis of docking results 
and scoring functions 

SDF = Structure data format 

TABA = Tool to analyze the binding affinity 
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