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Abstract: Background: One of the main challenges in the early stages of drug discovery
is the computational assessment of protein-ligand binding affinity. Machine learning tech-
niques can contribute to predicting this type of interaction. We may apply these tech-
niques following two approaches. Firstly,  using the experimental structures for which
affinity data is available. Secondly, using protein-ligand docking simulations.

Objective: In this review, we describe recently published machine learning models based
on crystal structures, for which binding affinity and thermodynamic data are available.

Method: We used experimental structures available at the protein data bank and binding
affinity and thermodynamic data was accessed through BindingDB, Binding MOAD, and
PDBbind databases. We reviewed machine learning models to predict binding created us-
ing open source programs, such as SAnDReS and Taba.

Results: Analysis of machine learning models trained against datasets, composed of crys-
tal structure complexes indicated the high predictive performance of these models when
compared with classical scoring functions.

Conclusion: The rapid increase in the number of crystal structures of protein-ligand com-
plexes created a favorable scenario for developing machine learning models to predict
binding affinity. These models rely on experimental data from two sources, the structural
and the affinity data. The combination of experimental data generates computational mod-
els that outperform the classical scoring functions.

Keywords: Crystal structures, machine learning, scoring function space, binding affinity, SAnDReS, Taba.

1. INTRODUCTION
The protein data bank (PDB) is the largest data re-

pository of three-dimensional structures of biological
macromolecules  [1,  2].  The  PDB  has  recently  sur-
passed 170,000 entries in its database (a search carried
on November 10, 2020). The structural information at 
the PDB  covers  a  wide  range  of  biomolecules, such
as  peptides,  proteins,  proteins   with   nucleic   acids,
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enzymes in complexes with inhibitors, isolated nucleic
acids, ribosomes, and viruses. Considering the source
of data, we have solved the structures using the follow-
ing techniques: X-ray diffraction crystallography [3],
neutron diffraction [4], cryogenic electron microscopy
(cryo-EM) [5], and nuclear magnetic resonance (NM-
R) spectroscopy [6]. For more details of recent develop-
ments in the PDB, we recommend the interested read-
ers  to  the  following  reviews  listed  in  the  references
[7-18].

Among the structures available at the PDB, we see
the  prevalence  of  X-ray  diffraction  crystallography.
Considering a survey conducted in 2017 about the data
available  for  proteins  complexed  with  ligands  at  the
PDB, we had over 94% of the data generated by X-ray
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diffraction crystallography [19]. It is worth noting that
the use of cryo-EM has grown in the last  three years
[5, 20-28].

In the early stages of drug discovery and develop-
ment,  the  application  of  structure-based  drug  design
(SBDD) can facilitate the drug design by studying the
structural features responsible for binding affinity. For
review papers, please see [29-31]. One of the most suc-
cessful applications of such an approach is the study of
HIV-1 protease (EC 3.4.23.16) inhibitors and their sub-
sequent use as drugs to treat HIV infection. For an in-
teresting review about this protein target,  the authors
suggest the study by Lawal et al. [32]. Considering the
studies that used SBDD focused on enzyme targets, the
prevalence of X-ray diffraction data is overwhelming
[8, 12, 19, 33].

Besides the success of SBDD in the study of inhibi-
tors of HIV-1 protease, we have recently witnessed a
crescent number of machine learning models focused
on this enzyme [34-37]. These works indicated the po-
tential  of  combining  the  crystal  data  with  machine
learning techniques to generate targeted scoring func-
tions for the prediction of binding affinity [35].

Applications of machine learning techniques to con-
struct  computational  models  for  predicting  binding
affinity based on the atomic coordinates of receptor-li-
gand  complexes  go  beyond  HIV-1  protease.  There
have been recent reports (2017 - 2020) of targeted-ma-
chine  learning  models  to  predict  affinity  of  ligands
against  the  spike  protein  of  SARS-CoV-2  [38,  39],
COVID-19  main  proteinase  (EC  3.4.22.69)  [40],  cy-
clin-dependent  kinase  2  (CDK2)  (EC  2.7.11.22)
[41-43], cyclin-dependent kinases (CDKs) [44, 45], 5-
lipoxygenase (EC 1.13.11.34) [46], and 3-dehydroqui-
nate dehydratase (DHQD) (EC 4.2.1.10) [47].

Among the machine learning models, most of them
are  targeted  scoring  functions  that  predict  inhibition
constant  (Ki)  in  an  expression  where  the  dependent
variable  is  the  log(Ki).  But  there  are  computational
models that predict the half-maximal inhibitory concen-
tration (IC50) with a response variable using log(IC50)
for CDK [43, 45]. Targeted scoring functions predict
thermodynamic parameters, such as variation of Gibbs
free  energy  of  binding  (ΔG),  which  are  rare,  mostly
due to the scarcity of crystal structures with this type
of data for a specific protein target. On the other hand,
there  is  a  model  that  predicts  the  ΔG  based  on  an
ensemble of high-resolution crystallographic structures
with different enzymes in the training set [42, 48]. This
computational approach intends to build a general scor-
ing function that can predict the ΔG for any protein-li-
gand complex.

The  availability  of  structural  and  functional  data
(binding affinity and ΔG) made the development of ro-
bust computational models to predict binding affinity
based on the atomic coordinates of protein-ligand com-
plexes, possible [49-56]. These computational models
outperform classical scoring functions implemented in
docking programs, such as AutoDock4 (AD4) [57, 58],
AutoDock  Vina  (Vina)  [59],  and  Molegro  Virtual
Docker  (MVD)  [60-65].

The  development  of  targeted  scoring  functions
paved the way to establish the theoretical framework
to address the binding affinity of receptor-ligand com-
plexes.  We  may  address  this  problem  by  employing
the concept of scoring function space (SFS) [19, 66].
This space composed of infinite scoring functions fo-
cuses on the relationship of the protein [67] and chemi-
cal  spaces  [68-73],  where  computational  approaches
scan the SFS to find an adequate model to predict the
affinity of an element of the protein space and a sub-s-
pace of chemical space composed of binders to this pro-
tein.

In this review, we describe the PDB and highlight
how  to  recover  data  from  this  database.  We  explain
storing of the structural data of protein-ligand complex-
es at the PDB. We also show how PDB handles the in-
formation  about  binding  affinity  and  thermodynamic
data. The PDB accesses this data through links to three
additional  databases,  that  are  BindingDB  [74,  75],
Binding MOAD [76-78], and PDBbind [79, 80]. We al-
so describe how machine learning programs integrate
structural and binding data to generate targeted scoring
functions, highlighting the importance of crystal data
for these approaches.  Finally,  we update the analysis
of  the  techniques  used  to  solve  the  structure  of  pro-
tein-ligand complexes.

2. METHODS

2.1. Machine Learning Approaches
Considering  recent  machine  learning  approaches

for the calculation of binding affinity or thermodynam-
ic data from the atomic coordinates of receptor-ligand
complexes, we may highlight the following programs:
Statistical  Analysis  of  Docking  Results  and  Scoring
Functions (SAnDReS) [81, 82], Pafnucy [83], Tool to
Analyze the Binding Affinity (Taba) [44], property-en-
coded shape distributions together with standard sup-
port  vector  machine  (PESD-SVM)  [84],  Neural-Net-
work-Based  Scoring  function  (NNScore  series)
[85-87],  and Random Forest  Score  (RF-Score  series)
[88-92].

Programs to develop scoring functions based on the
atomic coordinates of protein-ligand complexes share
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Fig. (1). Roadmap to the development of machine learning models to predict protein-ligand binding affinity; Step 1 (Defini-
tion of the Biological System): In this part, we select the biological system defining the structures and binding affinity data to
download from the PDB. Step 2 (Filtering): Then,we filter our data to eliminate repeated ligands and check for the inconsisten-
cies, such as missing ligands in the dataset. Step 3 (Machine Learning): In this step, we generate machine learning models us-
ing the structures in the training set. Step 4 (Statistical Analysis): In this phase, we carry out the statistical analysis of the pre-
dictive performance. We use the structures in the test set. Step 5 (Final Model): We select the best machine learning model and
save it. We employ this model to calculate binding affinity using the atomic coordinates of protein-ligand complexes. We used
the program MVD [60] to generate images of the protein structures. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article).

the same overall approach, as highlighted in Fig. (1).
Briefly, in step 1, we define the biological system. The
biological system is a protein, or a set of proteins, for
which we will  generate  a  machine  learning model  to
predict the binding affinity. In the sequence, we select
the PDB access codes of our biological system. Next,
we download the structures and the affinity data from
the PDB. Programs such as SAnDReS and Taba auto-
matically download these data directly from the PDB.
In step 2, we filter the crude data from the PDB. These
data may be needed in the sequence to be filtered for
the elimination of the structures with repeated ligands.
Following  this,  we  separate  the  dataset  into  training
and test sets. In step 3, we use the data in the training
set to develop the machine learning models.

We usually build machine learning models using ap-
proximately 70% of data as the training set and ~30%
of the dataset as a test set, as recommended in a study
[93].  In  this  step,  we  may  apply  different  machine

learning techniques. There are programs that focus on
a  specific  machine  learning  technique,  such  as  Ran-
dom Forest Score (RF-Score series) [88-92]. There are
other  programs  where  we  may  test  several  machine
learning methods to generate models with different pre-
dictive performances [44, 81, 82]. In step 4, we assess
the predictive performance focused on the test  set.  If
we have more than one scoring function, we select the
one  with  the  best  overall  performance  using  the  test
set. In step 5, we have our machine learning model to
predict the binding affinity for any ligand.

2.2. Statistical Analysis
As we previously highlighted, to assess the predic-

tive power of the classical scoring functions and target-
ed  models,  the  machine  learning  programs  calculate
the correlation coefficients and p-values [93].
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2.3. Protein Data Bank
We can  retrieve  functional  and  structural  data  di-

rectly from the PDB. Recent developments in the PDB
[7] integrated into the advanced search tool of the PDB
(available  at  https://www.rcsb.org/search/advanced)
gave the possibility to carry out searches by combining
different sources of data. Especially for those interest-
ed in machine learning modeling using the structures
for  which  affinity  data  is  known,  it  is  possible  to
search for the deposited data with Ki. In doing so, the
PDB returns all entries with this binding affinity data.
The same type of search can also focus on structures
with  different  binding affinity  or  thermodynamic  pa-
rameters, such as dissociation constant (Kd), IC50, and
ΔG [81, 94-98].

The PDB stores the atomic coordinates of protein-li-
gand complexes in three major formats: PDB, mmCIF
(macromolecular  crystallographic  information  file),
and PDBML/XML (Protein  Data  Bank Markup Lan-
guage) [7]. The most used format is PDB. Archaic, pro-
tein-ligand docking and machine learning programs re-
ly heavily on the PDB format. Typically, the atomic co-
ordinates have a rigid format followed by all programs
that  read  PDB  formats.  Machine  learning  programs
used to generate scoring functions, use the atomic coor-
dinates to assess protein-ligand interactions and create
energy terms, such as van der Waals [99], electrostatic
potential [100], hydrogen bonding [101], and entropy
[102]. The calculation of energy terms implemented in
the scoring functions use the interatomic distances (rij)
between an atom in the protein (index i) and another in
the  ligand  (index  j).  The  atomic  coordinates  in  the
PDB are in the three-dimensional cartesian space and
expressed  in  Å  (1Å  =  10-10  m).  The  interatomic  dis-
tance has the following expression,

(1)

Where xi, yi, zi are used for the coordinates of pro-
tein atoms and xj, yj, zj for the ligand atoms. The com-
mon electrostatic potential energy term (UElectrostatic) has
the following equation,

(2)

where  we  have  the  atomic  partial  charges  (qi  and
qj), the permittivity function ε(rij), and the interatomic
distance (rij), which was calculated using equation (1),
taking atomic coordinates as the input [100]. Most of

the  energy  terms  used  in  the  scoring  functions  need
atomic  coordinates  for  their  calculations  [99-101].
Many  classical  scoring  function  expressions  employ
equation  (2)  for  the  assessment  of  electrostatic  ener-
gies. In equation (2), we calculate the interatomic dis-
tances using equation (1). These expressions allow us a
fast determination of the electrostatic interactions [58].
These  scoring  functions  facilitate  the  assessment  of
poses  during docking simulations  [57].  Also,  we can
easily incorporate this energy term in machine learning
approaches to develop targeted scoring functions.

Fig. (2) shows the fields designed for each type of
information stored in a line of atomic coordinates in a
PDB file [103-105]. PDB assigns the first six columns
to identify the type of information stored in each line.
The keyword “ATOM ” in the first six columns indi-
cates that we have the atomic coordinates for the pro-
tein structure. On the other hand, the keyword “HET-
ATM”  indicates  other  types  of  atoms.  This  keyword
could be used to store the atomic coordinates of a li-
gand. The following field indicates the number of the
atom. All remaining fields are defined in Fig. (2). It is
necessary to obtain further information about the occu-
pancy factor and the Bfactor.

The  occupancy  factor  is  a  fraction  of  the  atom at
the given atomic coordinates. It is related to a charac-
teristic of protein-ligand complexes in the crystal state
[3]. Since the atomic coordinates in a crystal structure
are an average of all unit cells found in the crystal, flex-
ible parts of a protein can have two or more positions
for the same atom. For these multiple positions of an
atom, crystallographers refine the atomic positions as-
signing occupancy factors below 1.0. For instance, a ly-
sine residue may have two positions  for  the  nitrogen
(NZ). In this case, we have two atomic coordinates for
the  same  NZ  with  occupancy  factors  proportional  to
the electron density of the NZ at each position.

For the Bfactor, we have to keep in mind that atoms
oscillate, and the Bfactor reflects the mean amplitude of
this oscillation. In the simple case in which the compo-
nents  of  the  oscillation  are  same  in  all  aspects,  it  is
named isotropic oscillation [106]. In the following equ-
ation, we have the expression of the mean square ampl-
itude of atomic vibration (<u2>).

(3)

Calculation  of  the  Bfactor  for  atoms  of  main-chain
and side-chain usually indicate higher values for those
in the side chain. It is due to the intrinsic flexibility of
these atoms compared to the main chain [106].
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Fig. (2). Fields in lines of atomic coordinates in a PDB file. Keywords for the identification of atoms of a protein (“ATOM“)
or ligands (“HETATM”) use columns from 1 to 6. PDB reserves columns ranging from 7 to 11 for the atom order. For the iden-
tification of the type of atom, PDB uses columns ranging from 14 to 15. PDB reserves columns ranging from 18 to 20 for the
protein residue, ligand, the base of nucleic acid, crystallization co-factors, or water molecules. PDB assigns column 22 to chain
identification. PDB takes in account the columns ranging from 23 to 26 or residue/ligand number. PDB stores the atomic coord-
inates in columns ranging from 31 to 54, columns 31 to 38 for x, 39 to 46 for y, and 47 to 54 for z. We express atomic coordi-
nates in Å. PDB assigns columns ranging from 57 to 60 to occupancy factors. Bfactor uses columns ranging from 62 to 65. It is
expressed in Å2. Column 77 is used for the chemical element.

2.4. Datasets
To  highlight  the  importance  of  the  structural  and

binding data available at the PDB for machine learning
modeling, we describe the previously published model-
ing  of  eight  different  biological  systems  listed  in
(Table 1). For all these systems, we have one machine
learning model (developed using SAnDReS or Taba)
and the binding affinity was calculated using at  least
two classical scoring functions (AD4, Vina, MolDock
Score  (MDS),  and  PLANTS  Score  (PLS)).  The  data
used  to  develop  these  models  are  available  at  http-
s://github.com/azevedolab/sandres and https://github.-
com/azevedolab/taba.

3. RESULTS AND DISCUSSION

3.1. Biological Systems
The application of machine learning approaches to

generate  the  novel  generation  of  scoring  functions
have caught  the  attention of  researchers  interested in

computational models to predict protein-ligand binding
affinity  [88-92].  Considering  recent  applications  of
SAnDReS  [81]  and  Taba  [44]  for  machine  learning
modeling,  we have eight different biological  systems
highlighted in (Table 1). In this table, we also show the
predictive performances of the classical scoring func-
tions.

The  Spearman  rank  correlation  coefficient  (ρ)  of
classical scoring functions implemented in the docking
programs  AD4,  MVD,  and  Vina  for  these  biological
systems range from -0.199 to 0.629 (training set) and
from -0.943 to 0.764 (test set). By comparing the classi-
cal scoring functions for the test sets, we have the cal-
culated MDS using MVD as the highest correlation for
half of the biological systems. Nevertheless, all scoring
functions  created  using  machine  learning  approaches
outperform these classical scoring functions.

Analysis of the machine learning models indicate a
variation  of  ρ  from 0.390  to  0.721  (training  set)  and
from 0.328 to 0.943 (test set). Considering the test set,
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Table 1. Predictive performance of classical scoring functions and machine learning models.

Biological
Systems

Reference
Number of
Structures

Binding
Data

Scoring
Function

ρ(training set) p-value (training set) ρ (test set) p-value (test set)

Coagulation
factor Xa

[81] 57 (25) Ki

AD4 0.267 1.005·10-01 0.325 6.210·10-02

MDS 0.160 2.335·10-01 0.396 4.995·10-02

PLS 0.150 2.578·10-01 0.333 5.061·10-02

SAnDReS 0.560 5.920·10-06 0.435 2.975·10-02

Vina 0.245 1.732·10-01 0.297 7.848·10-02

HRIC50 [43] 118 (55) IC50

AD4 -0.099 5.981·10-01 0.142 1.001·10-01

MDS 0.284 1.939·10-03 0.224 9.678·10-02

PLS 0.298 1.625·10-03 0.314 4.012·10-02

SAnDReS 0.401 7.243·10-06 0.328 1.363·10-02

Vina 0.190 9.078·10-02 0.277 8.022·10-02

CDK2IC50 [43] 118* (11) IC50

AD4 0.099 5.981·10-01 0.445 1.697·10-01

MDS 0.284 1.939·10-03 0.391 2.345·10-01

PLS 0.298 1.625·10-03 0.682 2.084·10-02

SAnDReS 0.401 7.243·10-06 0.845 1.045·10-03

Vina 0.190 9.078·10-02 0.418 2.006·10-01

HIV-1 PR [36] 51 (20) Ki

MDS 0.218 1.247·10-01 0.086 7.193·10-01

PLS 0.264 6.162·10-02 0.010 9.674·10-01

SAnDReS 0.525 7.707·10-05 0.368 1.106·10-01

CDK [45] 122 (54) IC50

AD4 0.190 3.890·10-02 0.213 1.082·10-01

MDS 0.059 5.179·10-01 -0.291 3.265·10-02

PLS -0.162 7.515·10-02 -0.132 3.405·10-01

SAnDReS 0.390 9.065·10-06 0.346 1.044·10-02

Vina 0.339 1.495·10-04 0.207 1.267·10-01

DHQD [47] 16 (6) Ki

AD4 0.219 4.140·10-01 0.714 1.110·10-01

MDS -0.199 4.600·10-01 -0.943 4.800·10-03

PLS 0.629 9.060·10-03 0.314 5.440·10-01

SAnDReS 0.675 4.160·10-03 0.943 4.810·10-03

Vina 0.307 1.055·10-01 0.602 1.904·10-01

ΔG [48] 36 (12) ΔG

AD4 0.284 9.326·10-02 0.340 2.799.10-01

MDS 0.599 1.148·10-04 0.764 3.850·10-03

PLS 0.534 7.918·10-04 0.641 2.470·10-02

SAnDReS 0.721 6.975·10-07 0.886 1.240·10-04

Vina 0.454 5.416·10-03 0.746 3.329·10-03

CDKKi [44] 22 (9) Ki

AD4 0.358 1.018·10-01 -0.133 7.324·10-01

MDS 0.299 1.759·10-01 0.217 5.755·10-01

PLS 0.351 1.095·10-01 0.183 6.368·10-01

Taba 0.558 6.300·10-01 0.783 1.252·10-02

Vina 0.267 2.304·10-01 -0.067 8.647·10-01

*The HRIC50 training set was used to develop a general machine learning model tested against a dataset of 11 CDK2 structures.
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Table 2. Structures available in the PDB for each type of binding affinity/Thermodynamic data.

Binding Affinity/thermodynamic Data Total1 X-ray2 NMR3 Neutron4 EM5

Ki 6681 6641 29 6 9

Kd 6077 5998 77 4 2

Ka 157 157 0 0 0

IC50 8993 8952 28 2 12

EC50 841 836 1 2 3

ΔG 140 138 1 1 0

ΔH 137 135 1 1 0
1Total number of structures for which binding affinity/thermodynamic data is available; The numbers indicate entries available for each type of data. We may
count the same complex more than once if it has more than one experimentally determined type of binding affinity/thermodynamic data.
2Structures solved by X-ray crystallography for which binding affinity/thermodynamic data is available.
3Structures solved by nuclear magnetic resonance (NMR) for which binding affinity/thermodynamic data is available.
4Structures solved by neutron crystallography for which binding affinity/thermodynamic data is available.
5Structures solved by electron micrography (EM) for which binding affinity/thermodynamic data is available.

we observe the highest ρ for the machine learning mod-
el generated to predict the log(Ki) for DHQD. We see
the  lowest  correlation  for  the  HRIC50  biological  sys-
tem. This system has 173 crystal structures of different
enzymes.

The striking difference was observed in the predic-
tive  performances  using  the  same  computational  ap-
proach (SAnDReS); in the case of the first seven bio-
logical systems, as mentioned in (Table 1) the differ-
ence may be due to some intrinsic features of the da-
tasets used to train the machine learning models. For in-
stance, we could attribute the worst predictive perfor-
mance for the HRIC50 system to the data heterogeneity,
However,  we  do  not  have  structural  information  for
one specific protein. On the other hand, the model de-
veloped for DHQD focuses on one enzyme [19].

In (Table 1), we highlighted the predictive perfor-
mances  of  classical  scoring  functions  and  machine
learning models. We did not intend to have a complete
evaluation of the performances, exploring all available
classical  scoring functions.  Our  goal  is  to  emphasize
that, at least for these classical scoring functions (AD4,
Vina, MVD, and PLS), previously published machine
learning  models  generated  with  SAnDReS  and  Taba
showed superior performance.

Taken  together,  we  may  say  that  we  observe  the
higher  predictive  performance  for  machine  learning
models  developed  for  a  specific  protein  system  that
use as binding affinity data the Ki (CDKKi and DHQD
biological  systems).  On  the  other  hand,  general  ma-
chine learning models with IC50 data show a low corre-
lation  with  the  experimental  data  (HRIC50  biological
system).

3.2. Structural Information
In 2017, we conducted a survey of the contribution

of different techniques employed to generate three-di-
mensional  protein-ligand structures  available  at  PDB
[19].  We filtered our  data  focusing on protein-ligand
complexes  for  which thermodynamic parameters  and
binding affinity data were available. At that time, we
had approximately 120,000 structures deposited at the
PDB. We now have 170,597 entries (a search carried
out on November 10, 2020).

The PDB advanced tools allow one to filter informa-
tion  considering  association  constant  (Ka),  ΔG,  en-
thalpy  (ΔH),  half-maximal  effective  concentration
(EC50), Kd, Ki, and IC50. Such a combination of data is
a  promising  scenario  for  the  generation  of  targeted
scoring  functions  developed  using  machine  learning
techniques.  Employing  the  same  methodology  previ-
ously reported in a study [19] to quantify the contribu-
tion of the methods used to solve complex structures,
we still  have the X-ray diffraction crystallography as
the top experimental approach to solve protein-ligand
complexes [19].  This  technique   contributed  99.3%
of  the  total,  calculated  using  the  data  available in
Table 2.

We witnessed a rise in the number of deposits relat-
ed to structures solved using cryo-EM [5, 6], once the
contribution of this technique for the number of entries
of protein-ligand complexes was analyzed it was found
that its participation is low, with 0.113% of the total.

It is crystal clear from the data presented in (Table
2) that X-ray diffraction crystallography is the domi-
nant  experimental  approach  used  to  determine  the
three-dimensional structures of protein-ligand complex-
es.  Although  we  have  information  using  other  tech-
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niques, such as NMR spectroscopy and cryo-EM, the
overwhelming presence of X-ray diffraction crystallo-
graphic data strongly suggests that we can most com-
fortably rely on this type of data for machine learning
modeling.

There are a few possible reasons to explain this pre-
valence of X-ray diffraction crystallography informa-
tion  of  protein-ligand  complexes.  X-ray  diffraction
crystallography  is  the  oldest  technique  to  solve  bio-
molecules. The first protein-ligand structures for which
binding affinity data were available were published in
1982 [107, 108]. Another aspect that contributes to the
prevalence of crystal structures is related to the deter-
mination of protein-ligand complexes. We may use the
conditions to crystallize the apo form to generate crys-
tals of the complexes. Also, we could use the crystals
of the apo structure for soaking experiments. Soaking
allows the diffusion of a ligand solution into a crystal
of the unliganded protein [109-112].

3.3. Scoring Function Space
The application of the concept of SFS furnishes a

robust theoretical framework to analyze machine learn-
ing  models  for  the  prediction  of  the  binding  affinity
[19, 66]. Considering the performance variation in the
machine learning models [88-92, 113-127], it is clear
that the scoring functions developed for a specific pro-
tein target outperform general scoring functions. Con-
sidering the SFS, we see that focusing on one protein
and a subspace of the chemical space has a higher prob-
ability  of  finding  an  adequate  predictive  model.  It  is
more likely to generate a model with a low correlation
with the experimental  data if  we take many proteins.
Since what we have is an average predictive model ex-
tracted from the SFS. In this scenario, the PDB has piv-
otal importance in providing the integration of the crys-
tallographic structures and binding affinity data to be
used for the training of the machine learning models.

3.4. Comparison of Experimental Methods to Eluci-
date Protein-Ligand Structures

We  previously  highlighted  that  X-ray  diffraction
crystallography is the leading experimental method to
assess  the  three-dimensional  structures  of  protein-li-
gand complexes, considering those for which we have
binding  affinity  data.  On  the  other  hand,  alternative
methods, such as cryo-EM [5] and NMR spectroscopy
[128], have advantages that may change this trend in
the future. Considering NMR spectroscopy [129], for
instance, to determine the three-dimensional structure
using this tool, we do not need to crystallize the pro-
tein. The bottleneck of X-ray diffraction crystallogra-

phy  is  needed  to  have  crystals  of  the  protein-ligand
complexes.  There  are  no  guarantees  that  we  may
achieve  the  crystallization  of  a  protein  for  which  we
want to determine the structure [3]. Also, considering
that  we  have  crystals  of  the  unliganded  protein,  the
complex formation may not be achievable. The addi-
tion of the ligand to the protein sample may affect the
crystallization process. Therefore, new screenings (co-
crystallization) should be necessary to generate X-ray
diffracting  crystals  of  the  protein-ligand  complexes
[109].  It  is  also  possible  to  soak  the  ligand  into  pre-
formed protein crystals [3]. This soaking approach also
has  technical  challenges.  For  instance,  we  may  only
generate  a  soluble  ligand solution in  a  condition that
will damage the preformed protein crystal. The crystall-
ization  requirement  is  not  present  in  studies  using
NMR spectroscopy [6]. There is also an eternal debate
between those who defend NMR spectroscopy against
crystallography. In physiological conditions, we do not
have crystals,  and the packing of the protein may af-
fect the conformation of the structure [3, 128, 129].

Yet another technique is the cryo-EM. This experi-
mental tool to determine three-dimensional structures
has  gained  crescent  attention  in  the  last  years  [5,
20-28]. In cryo-EM, we do not need crystals to gener-
ate the three-dimensional data. This technique has no
limitation  on  the  molecular  size  of  the  protein,  as  in
NMR.

In summary, when we consider the problem of de-
termining the three-dimensional structure of a protein,
we must consider that these three experimental meth-
ods have their pros and cons. The weakest link in the
crystallography  chain  is  the  need  for  crystals  [3],
whereas  the  NMR  and  cryo-EM  do  not  need  them
[128,  129].  It  is  also  possible  to  combine  two  tech-
niques,  such  as  cryo-EM  and  NMR  [129].  One
problem of  the cryo-EM is  the resolution of  the data
[129].  A  search  on  PDB  for  all  protein  structures
solved  using  cryo-EM returned  6,434  entries  (search
carried  out  on  December  24,  2020).  Amongst  these
structures, only seven showed the resolution between
1.0 -  1.5 Å.  There are no structures solved with data
better than 1.0 Å. Most of the entries determined using
cryo-EM have data worse than 3.0 Å resolution (5,821
out of 6,434). The same search with a focus on X-ray
diffraction  crystallography  returned  150,528  entries.
We have data up to < 0.5 Å limit. Considering data bet-
ter than 1.5 Å, we have 9.7% of the entries determined
using X-ray diffraction crystallography against 1.09%
for the cryo-EM. Since the resolution is fundamental,
at  the  moment,  we have  the  superior  performance  of
the diffraction technique compared to the cryo-EM. Fi-
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nally,  for  NMR  spectroscopy,  the  limitations  are  the
size of the biological systems and the need for isotopic
enrichment of the ligand to obtain data [128]. We do
not face these challenges with X-ray diffraction crystal-
lography.

Besides the impact of X-ray diffraction crystallogra-
phy, cryo-EM, and NMR spectroscopy, more recently,
new techniques have shown promising results. Among
them,  we  may  highlight  electron  tomography  (ET)
[130]. This method makes it possible to assess an im-
age  of  biological  structures  in  situ.  The  main  issue
with this approach is also related to the resolution. We
can improve the resolution using subtomogram averag-
ing (STA) [131].

Considering all points highlighted above, we may
say that we do not have an ideal experimental method
to obtain three-dimensional  structures.  But,  when we
take the available protein-ligand data, the chief technol-
ogy is X-ray diffraction crystallography.

3.5.  Computational  Modeling  of  Protein-Ligand
Structures

As we highlighted above,  the bottleneck of X-ray
diffraction crystallography is the need for the crystals.
And the two other experimental methods also face chal-
lenges, such as the size limitation for NMR spectros-
copy and the resolution issues of cryo-EM. And the fi-
nal  challenge,  the  availability  of  the  protein  material
for  the  structural  studies,  irrespective  of  any  method
[3].  Even  while  facing  all  these  limitations,  we  may
have a three-dimensional structure of a protein of inter-
est.

In  the  absence of  the  experimental  structural  data
for  a  protein,  we  may  generate  a  three-dimensional
model  based  on  the  homology,  which  is  achieved
through the satisfaction of the spatial restraints imple-
mented in the program, MODELER [132-135]. In this
computational  technique,  we use  a  previously  solved
structure with a sequence identity of 30% or higher, as
an initial model, named as a template. We take the se-
quence alignment of  the template and the protein we
want to model. Then we carry out the modifications in
the amino acids whereever necessary. These approach-
es must satisfy the spatial restraints present in the tem-
plate structure. Besides MODELLER, we have compu-
tational  methods  such  as  I-TASSER  [136-138],
ROSETTA [139-141], and RaptorX [142-144]. Alterna-
tively, we may use deep learning methods, such as the
one implemented in the program AlphaFold [145-147],
to generate molecular models for the protein where we
do not have experimental three-dimensional data. This
deep-learning approach recently showed superior pre-

dictive performance when modeling the structures avai-
lable at  CASP (Critical  Assessment of  protein Struc-
ture Prediction) [145, 147].

We  may  generate  three-dimensional  structures  of
protein-ligand complexes through the docking simula-
tions [148]. To do so, we use the atomic coordinates of
the protein structures obtained through modeling. We
have several protein-ligand docking programs, such as
AutoDock4  [57,  58]  and  AutoDock  Vina  [59].  We
may add machine learning to predict the binding affini-
ty of the ligands [41-45]. Then, we use molecular dy-
namics  simulations  to  confirm  the  binding  of  the  li-
gands [149-153]. We may also investigate the dynam-
ics of protein-ligand interactions [153].

3.6. Methods for the Prediction of Binding Affinity
Recent progress in the scoring functions using ma-

chine learning methods [19, 35, 41-44] made the supe-
rior predictive performance of these approaches clear
compared  to  the  classical  scoring  functions  [50-55].
Analysis of the impact of the size of testing and train-
ing  sets  indicated  improved  the  overall  performance
for larger datasets [154]. The increasing number of pro-
tein-ligand structures for which the binding affinity da-
ta is available comprises crude data for machine learn-
ing models with superior performance. We expect that
this trend will continue, which will generate better com-
putational models for the binding calculation.

Other developments in the study of the computatio-
nal methods to assess intermolecular interactions are re-
lated to the following methods: free energy perturba-
tion, thermodynamic integration, molecular mechanic-
s/Poisson–Boltzmann  surface  area  (MM-PBAS),  and
linear interaction energy. All these computational ap-
proaches contributed to generate models for the assess-
ment of the protein-ligand interactions. For the litera-
ture  describing  applications  of  these  methods
[150-153, 155-157]. Taken together, we may say that
the wide range of the available computational methods
made it clear that we may address the SFS from differ-
ent perspectives [66]. Some studies employed physic-
s-based methods [41, 44, 150-153, 155-157],  and the
others focused on targeted scoring functions [19].

CONCLUSION
In this review, we highlighted the role of X-ray dif-

fraction crystallography in providing data for protein-li-
gand complexes. This technique is responsible for over
99% of data about protein-ligand complexes. We con-
sidered only those entries for which binding affinity da-
ta is available. The integration of structural and functio-
nal information provide crude data that make the gener-
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ation of machine learning models targeted at specific
protein  systems  possible.  Machine  learning  methods
targeted  to  a  single  protein  create  scoring  functions
with superior predictive performance compared to the
multi-protein models. By taking several proteins, an av-
erage predictive model extracted from the SFS can be
generated. We expect that proteins are subjected to evo-
lution  and  inserted  in  a  complex  chemical  environ-
ment,  as  found  in  the  biological  systems.  Moreover,
the application of a targeted machine-learning model is
an adequate computational approach to build machine
learning models to predict binding affinity.

LIST OF ABBREVIATIONS

AD4 = AutoDock4

CDK = Cyclin-dependent Kinase

CDK2 = Cyclin-dependent Kinase 2

CDK2IC50 = CDK2 Structures with IC50 data

CDKKi = CDK Structures with Ki data

COVID-19 = Coronavirus Disease of 2019

Cryo-EM = Cryogenic Electron Microscopy

ΔG = Variation of Gibbs Free Energy of
Binding

ΔH = Enthalpy
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EC50 = Half-maximal Effective Concentra-
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EM = Electron Microscopy

ET = Electron Tomography

HIV-1 PR = HIV-1 Protease Structures with Ki
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HRIC50 = High-resolution  Structures  with
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IC50 = Half-maximal Inhibitory Concentra-
tion

Ka = Association Constant
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Ki = Inhibition Constant
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MM-PBAS = Molecular Mechanics/Poisson-
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NMR = Nuclear Magnetic Resonance

NNScore = Neural-network-based Scoring
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PLS = PLANTS Score
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RF-Score = Random Forest Score
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SARS-CoV-2 = Severe  Acute  Respiratory  Syn-
drome  Coronavirus  2

SBDD = Structure-based Drug Design
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