Electrostatic Potential Energy in Protein-Drug Complexes

Gabriela Bitencourt-Ferreira¹ and Walter Filgueira de Azevedo Junior*,¹,²

¹Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre-RS, Brazil; ²Specialization Program in Bioinformatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900 Brazil

Abstract: Background: Electrostatic interactions are one of the forces guiding the binding of molecules to proteins. The assessment of this interaction through computational approaches makes it possible to evaluate the energy of protein-drug complexes.

Objective: Our purpose here is to review some of the methods used to calculate the electrostatic energy of protein-drug complexes and explore the capacity of these approaches for the generation of new computational tools for drug discovery using the abstraction of scoring function space.

Methods: Here, we present an overview of the AutoDock4 semi-empirical scoring function used to calculate binding affinity for protein-drug complexes. We focus our attention on electrostatic interactions and how to explore recently published results to increase the predictive performance of the computational models to estimate the energetics of protein-drug interactions. Public data available at Binding MOAD, BindingDB, and PDBbind were used to review the predictive performance of different approaches to predict binding affinity.

Results: A comprehensive outline of the scoring function used to evaluate potential energy available in docking programs is presented. Recent developments of computational models to predict protein-drug energetics were able to create targeted-scoring functions to predict binding to these proteins. These targeted models outperform classical scoring functions and highlight the importance of electrostatic interactions in the definition of the binding.

Conclusion: Here, we reviewed the development of scoring functions to predict binding affinity through the application of a semi-empirical free energy scoring function. Our studies show the superior predictive performance of machine learning models when compared with classical scoring functions and the importance of electrostatic interactions for binding affinity.

Keywords: Semi-empirical force scoring function, permittivity function parameters, protein-ligand interaction, drug design, electrostatic interactions, AutoDock4, scoring function space.

1. INTRODUCTION

Protein-ligand interactions are key structural determinants for the evaluation of binding specificity. Considering specifically protein targets and their complexes with drugs, these intermolecular interactions revealed to be of pivotal importance in the early stages of drug design and development [1-10]. For the analysis of the physics behind these interactions, we may rely on traditional experimental biophysical techniques such as isothermal titration calorimetry (ITC) [11, 12], mass spectrometry [13, 14], surface plasmon resonance (SPR) [15-17] and fluorescence polarization (FP) [18-20] only to mention the most used experimental approaches.

Such experimental techniques depend heavily on the availability of a high quantity of pure protein and drugs in the level of milligrams. Such demand for proteins and drugs might not be feasible or involve high
costs, especially in the early stages of drug discovery and development when we need to test the energetics of the binding of several potential drugs against a protein target of interest [11-20]. On the other hand, to obtain a full view of the thermodynamics of the process involving the formation of protein-drug complexes, we need not only the experimental data obtained from techniques such as ITC [11, 12] but also the three-dimensional structure of the protein-drug complexes [21-30].

A previously published analysis of the protein structures available in the protein data bank (PDB) indicated that more than 94% of the protein-ligand structures in PDB were obtained by X-ray diffraction crystallography [31]. Even with increasing participation in the use of other experimental techniques such as nuclear magnetic resonance [32], neutron crystallography [33], and cryo-electron microscopy (cryo-EM) [34] to elucidate the structures of protein-ligand complexes, X-ray diffraction crystallography is still the significant experimental approach to determine three-dimensional structures.

Due to the limitations of experimental studies of protein-ligand complexes [31], the use of computational approaches to calculating the energetics for these systems has increased participation in studies focused on drug discovery and development [35-50]. We may estimate the binding affinity or thermodynamic parameters through quantum mechanics methods [51] and classical molecular dynamic simulation [52, 53]. These computational approaches show high computational cost when compared with classical scoring functions [51] and force field methods.

Scoring functions use the atomic coordinates of protein-drug complexes to calculate binding energy. The physical model used to calculate the protein-ligand binding energy relies only on the atomic coordinates of the complex. We may use the atomic coordinates of protein-ligand complexes derived from experimental techniques or based on a computationally generated position of the ligand structure, usually called pose. In recent years, the application of machine learning techniques showed promising results in the development of targeted-scoring functions, where the relative weight of each energy term is used to maximize the correlation with experimental affinity data for a specific protein system [54-61].

The focus of the present work is on the calculation of the binding energy of protein-ligand complexes based on the atomic coordinates [62-69]. From the several available computational methods that address this problem, we chose the AutoDock4 [70] scoring function to have an overview of the techniques used to estimate the binding affinity. Among classical scoring functions, the AutoDock4 has a full semi-empirical free energy scoring function to predict binding based on the atomic coordinates of protein-ligand complexes. AutoDock4 scoring function can estimate the binding of poses in docking simulations or crystal structures of complexes.

Due to the importance of electrostatics interactions for ligand-binding specificity, the reliable computational evaluation of this interaction is the subject of intense research in the last years [62-69]. In this review, we describe a semi-empirical free energy scoring function used to evaluate potential energy available in protein-ligand simulation programs such as AutoDock4 [70, 71] and AMBER [72, 73]. Using this semi-empirical free energy scoring function, we highlight the potential of alternative approaches where flexibilization of the sigmoidal distance-dependent permittivity function may contribute to improving the predictive performance of computational models to estimate the energetics of protein-drug interactions. We used a previously published dataset as a benchmark [38] to compare the predictive performance of different scoring functions used to estimate the binding affinity of protein-ligand complexes and to explore the scoring function space [31] to have a theoretical framework to describe the development of targeted models.

2. METHODS

Here, we focus on the computational methods to evaluate the electrostatic potential energy of protein-drug complexes. We searched PubMed using as search strings “electrostatic potential” and “machine learning”. We performed this search on July 19, 2020. We also used a recently published comparison (2020) [38] of predictive performance focused on targeted-scoring functions to predict binding affinity.

Taking the semi-empirical free energy scoring function available in the program AutoDock4 as a prototype of classical scoring functions, we highlight the physical basis used to evaluate intermolecular potential energy based on the atomic coordinates of protein-ligand complexes.

2.1. Full Scoring Function

Considering classical scoring functions used to evaluate the binding energy of ligands against protein targets, we may say that most of these computational models employ polynomial equations using energy terms involving van der Waals (U_{vdw}) [74-80], hydrogen bonds (U_{H}) [77, 81-83], desolvation (U_{Desol}) [76, 84-92], loss of torsional entropy upon binding (U_{Tot})
Typically, the energy expression for the calculation of binding energy of protein-ligand complexes (U_{PL}) involving these types of intermolecular interactions can be expressed by the following general polynomial equation (1) (computational regression model),

$$U_{PL} = \omega_{vdw}U_{vdw} + \omega_{HB}U_{HB} + \omega_{Desol}U_{Desol} + \omega_{Tor}U_{Tor} + \omega_{Elec}U_{Elec}$$

where the ω’s are the relative weights of each energy term. These relative weights can be determined through the application of machine learning techniques; for recent reviews, please see the following references [39, 40].

2.2. Empirical Free Energy Scoring Function (AutoDock4 Scoring Function)

Among the different computational approaches used in protein-ligand docking programs to calculate binding energy and thermodynamic state functions, the empirical free energy scoring function available in the program AutoDock4 [70, 71] is one of the most successful in drug design and development. A search carried out on the PubMed using as strings AutoDock and protein and drug returned 742 results (search carried out on July 19, 2020) which indicates the impact of this computational approach to estimate the potential energy of protein-drug complexes and its application for drug discovery and development.

The AutoDock4 empirical free energy scoring function is expressed by the following equation,

$$U_{PL} = \omega_{vdw} \sum_{ij} \left(\frac{A_{ij}}{r_{ij}^12} - \frac{B_{ij}}{r_{ij}^6} \right) + \omega_{HB} \sum_{ij} E(t) \left(\frac{C_{ij}}{r_{ij}^{12}} - \frac{D_{ij}}{r_{ij}^6} \right) + \omega_{Desol} \sum_{ij} \left(S_i V_j + S_j V_i \right) e^{-r_{ij}^2/2\sigma^2} + \omega_{Tor} N_{Tor} + \omega_{Elec} \sum_{ij} \frac{q_i q_j}{\varepsilon(r_{ij}) r_{ij}}$$

where U_{PL} is the potential energy of the protein-ligand complex and the ω’s represents the regression weights of the energy terms. The first term of equation (2) expresses the dispersal/repulsion interactions (Lennard-Jones potential) [96]. In the above equation, r_{ij} represents the distance between atoms from the ligand and protein. In the following term, we have a modification of the equation of Lennard-Jones potential. This modification is usually used to model hydrogen-bond energetics and employs a 10/12 potential. The third term accounts for the desolvation potential and considers the volume of atoms (V_i or V_j) multiplied by a solvation parameter (Si or Sj), and an exponential function with a distance weight of $\sigma = 3.5$ Å. The last term is the electrostatic potential, where we have the atomic partial charges (q_i and q_j) and the permittivity function $\varepsilon(r_{ij})$.

AutoDock4 uses the partial equalization of orbital electronegativity (PEOE) algorithm for the calculation of partial charges [70, 71]. In equation (2), the summations take all pairs of ligand atoms (i) and protein atoms (j) beside all pairs of atoms in the ligand that are apart by three or more bonds. AutoDock4 uses equation (2) to evaluate the pose energy and selects the lowest-energy pose in protein-ligand docking simulations. The AutoDock4 parameters (A_{ij}, B_{ij}, C_{ij}, D_{ij}, V_i, V_j, S_i, and S_j) are taken from the AMBER force field [72, 73]. AMBER force field is one of the most successful computation models to capture the energetics of biomolecules. A search carried out on PubMed using as strings “AMBER” and force field returned 1014 results (search carried out on July 19, 2020), which indicates the importance of this computational approach to estimate the potential energy of biomolecules and their use for molecular dynamics simulations of biomolecules.

One of the goals of this review is to analyze the electrostatic energy term and how variations in the expression of the permittivity function $\varepsilon(r_{ij})$ in equation (2) may change the range of values covered in this expression. Evaluation of $\varepsilon(r_{ij})$ for protein-ligand complexes is still a challenge from the computational point of view. In the AutoDock4, $\varepsilon(r_{ij})$ is approximated by a sigmoidal distance-dependent permittivity function. This approximation is based on the model proposed by Mehler and Solmajer [97]. The equation of the Mehler-Solmajer model for the permittivity function is as follow,

$$\varepsilon(r) = A + \frac{B}{1+ke^{-\lambda Br}}$$

In the AutoDock4 implementation of equation (3), the constants have the following values: $B = \varepsilon_r - A$; ε_r (the relative permittivity constant of bulk water at 25°C) = 78.4; $A = -8.5525$; $\lambda = 0.003627$ and $k = 7.7839$ (standard permittivity function parameters).

Modeling permittivity using a fixed value of relative permittivity constant of bulk water of 78.4 is suitable for describing dielectric properties of bulk water in studies of equilibrated protein systems [98]. Nevertheless, the optimal value of the permittivity is still a challenge from the computational point of view [99].
This variation is indicated by the use of several relative permittivity values in various studies [100-106].

Adding flexibility in the use of permittivity function parameters employed to estimate the electrostatic interactions of protein-ligand complexes might show superior predictive performance when compared with classical scoring functions. In this review, we generated 5 values equally spaced for each parameter indicated in equation (3). The ranges of parameters are the following: $70.0 \leq \varepsilon_r \leq 78.4$, $-20.929 \leq A \leq -8.5525$, $0.001787 \leq \lambda \leq 0.003627$, and $3.4781 \leq k \leq 7.7839$. We took these values based on previously published works [97-106].

The empirical scoring function equation (2) tries to estimate the protein-ligand binding affinity (U_{PL}) to the experimental binding affinity (for instance pK_i) through a regression model where we use the experimental data to determine the relative weights of each term in the regression equation, where K_i is the inhibition constant. This constant can be understood at the molecular level: considering that the free drug concentration reaches the value of K_i, then we have 50% of the protein binding pockets filled with drug structures. In the case of enzyme-drug complexes, we have 50% of the active sites occupied when free inhibitor concentration is at K_i value [107].

2.3. Benchmark Database

For the evaluation of the predictive performance of computational methods to estimate the binding energy of protein-ligand complexes, we used experimental three-dimensional structures for which binding affinity data were available. We downloaded these structures from the PDB [108-110]. Experimental binding affinity data were obtained from Binding MOAD [111], BindingDB [112], and PDBbind [113].

Table 1. PDB access codes for the structures in the CDK-Ki dataset [38].

<table>
<thead>
<tr>
<th>Type of Dataset</th>
<th>PDB Access Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set</td>
<td>1E1X,1H1S,1OGU,1PXN,1PXP, 2CLX,2EXM,2FVD,3BLR,3DDQ, 3LFN,3MY5,4ACM,4BCK,4BCM, 4BCN,4BCO,4BCP,4BCQ,4EOP, 4NU3,5DIJ</td>
</tr>
<tr>
<td>Test set</td>
<td>1E1V,1JSV,1PXN,1PXM,1PXO, 1PYE,1VK2,2XMY,2XNB, 3LFS</td>
</tr>
</tbody>
</table>

We used a recently published dataset composed of cyclin-dependent kinase (EC 2.7.11.22) crystallographic structures for which inhibition constant data is available [38]. In Table 1, we have the PDB access codes for structures of this dataset (CDKKi dataset). We indicated the structures used in the training and test sets.

All structures in the CDKKi dataset bring inhibitors bound to the ATP-binding pocket of CDK. These proteins compose an attractive protein system due to the wealth of binding and structural data. Also, several CDKs are involved in cell cycle progression, which makes them targets for the development and design of anticancer drugs [114-118].

For the calculation of the binding affinities of ligands in the crystallographic structures of the CDKKi dataset, it was employed the programs: AutoDock4 [69, 70], AutoDock Vina [119], Molegro Virtual Docker [120-125], Taba (available for downloading at https://github.com/azevedolab/taba) [38, 39] and SFSXplorer (available for downloading at https://azevedolab.net/sfsxplorer.php) [126-132]. In these calculations, it was used the crystallographic positions of the ligands, no molecular docking simulations were carried out. Details about the preparation of the ligands and protein structures for the calculation of binding affinities have been described elsewhere [38].

2.4. Statistical Analysis

To determine the predictive performance of the scoring functions, we used two correlation coefficients, the squared correlation coefficient (R^2) and Spearman's rank correlation coefficient (ρ) [131, 133].

Taba uses a hybrid computational methodology, where we estimate protein-drug interactions as a mass-spring system and apply supervised machine-learning techniques to create a model targeted to the protein system of interest [38]. Machine learning models to predict binding affinity generated with the program Taba rely on cross-validation to reduce overfitting, which arises when a regression method takes the noise of the dataset [39]. The overfitting of a machine learning model results in high-quality accuracy for the training data set but weak results on new datasets. A cross-validation approach makes it possible to use all data to estimate whether the machine learning models are presenting good overall predictive performance. Taba applies standard k-fold cross-validation [38], where we have a partition of the data into k subsets, called folds. In this approach, Taba uses a five-fold cross-validation procedure. Taba used training and test sets in the cross-validated elastic net method, which were also applied to estimate the binding affinity with classical scoring function and isolated energy terms [38, 39].
3. RESULTS AND DISCUSSION

3.1. Classical Scoring Functions

A previous study focused on the CDKKi dataset [38] indicated a significant variation of the predictive performance for the calculation of the binding affinities of ligands. Considering the structures in the test set, the performances of the programs AutoDock4, AutoDock Vina, and Molegro Virtual Docker with Spearman’s rank correlation coefficient (ρ) ranging from -0.700 to 0.65. For AutoDock4, ρ ranges from -0.133 to 0.733. For Molegro Virtual Docker, ρ ranges from -0.569 to 0.65, and for AutoDock Vina, ρ ranges from -0.700 to 0.100.

In this statistical analysis of the predictive performance, we considered not only the full scoring function for each program but also the energy terms used in each function [38]. For scoring function and energy terms of AutoDock4, the highest correlation was formerly found for the electrostatic energy term, for the AutoDock Vina was the repulsion term, and for the Molegro Virtual Docker the hydrogen bond energy, with the second-highest observed for the electrostatic energy term [38].

For all these programs, the previously assessed evaluation of the binding affinity [38] presented a poor predictive performance for the full scoring functions, where all energy terms are considered in the evaluation of the energetics for the protein-ligand complex. For AutoDock4, the free energy scoring function presented an ρ = -0.133 lower than the one obtained for the electrostatic energy term (0.733). For Molegro Virtual Docker, MolDock and Plants scoring functions presented correlations of 0.217 and 0.183, respectively. Both are lower than the ρ of 0.65 observed for the hydrogen bond energy term (MolDock Score), and for the AutoDock Vina, we obtained an ρ = -0.067, worse than the one found for the hydrophobic term (ρ = 0.100).

These previously reported results indicate the inadequacy of full classical scoring functions when used to predict binding affinity for a specific protein target, as observed in this study focused on cyclin-dependent kinases [38]. The indication of the superior predictive performance of single energy terms suggests that we may capture the essence of the binding affinity for a specific protein system building a targeted-scoring function by using high-correlation energy terms and applying supervised machine-learning techniques available in programs such as SAnDReS [40, 134].

SAnDReS can build a polynomial scoring function using as independent variables the isolated energy terms calculated using classical scoring functions available in docking programs such AutoDock4, AutoDock Vina, Molegro Virtual Docker, iGemDock [135-137], and ArgusLab [138]. We may also take predicted binding affinity determined using web servers such as SwissDock (http://www.swissdock.ch/docking) [139, 140], DockingServer (http://www.dockingserver.com/web), Blaster [141], DockingAtUTMB (http://docking.utmb.edu/), Pardock (http://www.scfbio-iitd.res.in/ dock/pardock.jsp), PatchDock (http://bioinfo3d.cs.tau.ac.il/~PatchDock/), MetaDock (http://dock.bioinfo.pl/), PPDock (http://140.112.135.49/ppdock/index.html), and MEDock (http://medock.ee.ncku.edu.tw/). In summary, besides the docking programs and docking web servers previously highlighted, SAnDReS may use scoring function results from any docking program, the only requisite is to have the binding affinity presented as a comma-separated value format [40, 134].

Specifically for the CDKKi dataset, even a simple computational approach based on the modeling of protein-ligand interactions as a mass-spring system could develop a machine-learning model with superior predictive performance when compared with the previously highlighted classical scoring functions. This mass-spring model built using the program Taba [38] showed an ρ = 0.783 (p-value = 0.01252) for the structures in the test set, against a ρ = 0.650 (p-value = 0.0581) obtained for the hydrogen bond energy term of the MolDock scoring function. This result highlights the potential of the application of simple physical systems integrated with machine learning techniques to predict binding affinity for a specific protein system. This type of behavior is not isolated, we have observed the superior predictive performance of targeted-scoring functions for a wide range of protein systems [30, 42, 48, 50].

3.2. Permittivity Function

As highlighted, considering the performance of AutoDock4 for the CDKKi dataset, it was previously observed the highest correlation for electrostatic energy term, which uses the last term of equation (2) and the permittivity calculated through equation (3) and the following parameters (ε_r = 78.4; A = -8.5525, λ = 0.003627 and k = 7.7839). While there is support in the literature [70, 71, 98] that a value around 80.0 for ε_r is fine for describing the relative permittivity of bulk water in modeling protein-ligand systems, there is no consensus for the optimal value of the protein permittivity and how it may affect the electrostatic potential energy of protein-ligand complexes.
Electrostatic Potential Energy in Protein-Drug Complexes

Fig. (1). Variation of permittivity (ε) as a function of interatomic distance (r). We used the following permittivity function parameters: $A = -8.5525$, $\lambda = 0.003627$, and $k = 7.7839$, and $70.0 \leq \varepsilon_r \leq 78.4$ with a step of 2.1. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fixing the values of $A = -8.5525$, $\lambda = 0.003627$, and $k = 7.7839$ and varying the value of the relative permittivity constant of bulk water at 25°C may generate flexibility in the calculation of electrostatic energetics that could capture the specificity of a protein system that is not feasible by the use an overall expression as established in equation (3) with fixed set parameters. Fig. (1) shows the variation of the permittivity function for five values of ε_r.

On the other hand, fixing the values of $\varepsilon_r = 78.4$, $A = -8.5525$, $k = 7.7839$ and varying λ from 0.001787 to 0.003627, we generate Fig. (2). In this figure, we see that we reach additional regions of the permittivity, not covered with the variation of ε_r. Fixing the parameters: $\varepsilon_r = 78.4$, $k = 7.7839$, $\lambda = 0.003627$, and varying A from -20.9290 to -8.5525 with a step of 3.094125, we have Fig. (3). Following the same procedure, we generate Fig. (4) ($\varepsilon_r = 78.4$, $\lambda = 0.003627$, $A = -8.5525$, and varying k from 3.4781 to 7.7839 with a step of 1.07645).

We obtain different patterns of coverings of the graph by varying the plotting parameters. Taken together, we may expect a great influence in the electrostatic potential energy function with the variation of parameters ε_r, A, λ, and k that might provide the necessary fine-tuning of the scoring function making it more appropriate for the protein system we want to estimate the binding affinity. As we can see in Figs. (1-4), variations of the parameters (ε_r, A, λ, and k) used in the calculation of equation (3), generate a wide range of curves for the permittivity function. Variation of ε_r and λ generated larger areas covered between the extremes (Figs. 1 and 2), indicating that in the search for an adequate expression for the permittivity function, these parameters could be used for a coarse search, and parameters A and k may be employed for a fine search.

Fig. (2). Variation of permittivity (ε) as a function of interatomic distance (r). We used the following permittivity function parameters: $\varepsilon_r = 78.4$, $A = -8.5525$, and $k = 7.7839$, and $0.001787 \leq \lambda \leq 0.003627$ with a step of 0.000460. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (3). Variation of permittivity (ε) as a function of interatomic distance (r). We used the following permittivity function parameters: $\varepsilon_r = 78.4$, $A = -8.5525$, and $k = 7.7839$, and $-20.929 \leq A \leq -8.5525$ with a step of 3.094125. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
3.3. Energy Terms

As we described in equation (1), we may express the energy of a protein-ligand complex by building a polynomial with the contribution of van der Waals (U_{vdW}), hydrogen bonds (U_{Hb}), desolvation (U_{Desol}), loss of torsional entropy upon binding (U_{Tor}), and electrostatic (U_{Elec}) potentials. Ignoring the term U_{Tor} since it doesn’t depend on the interatomic distance, we may have an overview of the variation of each energy as a function of the interatomic distance r. Fig. (5) shows four energy terms and the sum of four potential energy terms involving the interaction of a pair of atoms (N and O).

In Fig. (5) we see the behavior of the curve of the electrostatic potential energy exploding as r approaches to zero and approaching zero as we increase the interatomic distance. Variation of the parameters used for the permittivity function may contribute to modulate the full scoring function to the protein system we want to model. From Fig. (5), at least for this pair of atoms depicted in the graph, it is clear that the desolvation potential has the lowest contribution to the full potential energy of the system and the electrostatic term has a major contribution to the binding affinity, especially for interatomic distances below 4 Å.

3.4. Electrostatic Potential

Considering the influence of the variation of the parameters used to calculate the permittivity function on the electrostatic potential energy using the values described in the methods, we have the graph shown in Fig. (6). Figs. (5 and 6) cover the same interatomic distance range. As we can see, a variation of the permittivity function parameters used to calculate the electrostatic energy has a huge impact on the evaluation of the energetics, contributing to an exploration of a wide region of the energy vs. interatomic distance area, such flexibility has the potential of increasing the chances of finding a scoring function calibrated for a specific protein system.
For comparisons, Table 2 brings the electrostatic terms for AutoDock4 (standard permittivity function parameters) [70] and Molegro Virtual Docker [120]. In the same table, we also have the performances of full scoring functions available in the programs Molegro Virtual Docker, AutoDock Vina [119], and Taba [38]. Statistical analysis of the predictive performance of the electrostatic terms (AutoDock4 and Molegro Virtual Docker) and full scoring functions (Table 2) indicates that the highest correlation model (Taba) has the following results $\rho = 0.783$ and p-value $= 0.01252$ against the values of $\rho = 0.733$ and p-value $= 0.02455$ for the electrostatic term of AutoDock4 (U_{elec} (AD4)), the second-best model.

Table 2. Statistical analysis of predictive performance.

<table>
<thead>
<tr>
<th>Scoring Function and Electrostatic Energy Terms</th>
<th>ρ</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taba score 1 [38]</td>
<td>0.783</td>
<td>0.01252</td>
</tr>
<tr>
<td>Plants score (MVD)2 [38]</td>
<td>0.183</td>
<td>0.63680</td>
</tr>
<tr>
<td>MolDock score (MVD)3 [38]</td>
<td>0.217</td>
<td>0.57550</td>
</tr>
<tr>
<td>U_{elec} (MVD)4 [38]</td>
<td>0.548</td>
<td>0.12690</td>
</tr>
<tr>
<td>Affinity score (Vina)4 [38]</td>
<td>-0.067</td>
<td>0.86470</td>
</tr>
<tr>
<td>Free energy (AD4)5 [38]</td>
<td>-0.133</td>
<td>0.73240</td>
</tr>
<tr>
<td>U_{elec} (AD4)6 [38]</td>
<td>0.733</td>
<td>0.02455</td>
</tr>
</tbody>
</table>

1 Tool for binding affinity (Taba). 2 Molegro Virtual Docker. 3 AutoDock Vina. 4 This scoring function has no explicit term for electrostatic potential energy. 5 AutoDock Vi-

We highlight that we did not use any regression techniques to generate U_{elec} (AD4). We just investigated the predictive performance of U_{elec} (AD4) with the standard set of permittivity function parameters. This comparison focused on correlation coefficients only, and we tested the U_{elec} (AD4) against classical scoring functions and a robust machine learning model developed with Taba [38]. The Taba machine learning model has three independent variables and used a cross-validated elastic net method to determine the relative weights of each variable [38, 39]. The main feature to emphasize here is that we can generate a similar performance model (0.733 against 0.783) with only one energy term, the electrostatic energy term of the AutoDock4 scoring function. This result is in agreement with the concept of scoring function space [31] discussed in section 3.6.

Variation of the permittivity function parameters of U_{elec} (AD4) has the potential to generate alternative models to predict binding affinity since it opens the possibility to explore additional regions of the scoring function space. We don't reach these regions with a fixed set of permittivity function parameters. Neverthe-

3.5. Implications for Drug Discovery

The development of molecular docking programs started in the early 1980s [142]. Once protein-ligand docking programs became available, these computational approaches were successfully employed to develop many approved drugs including HIV-1 protease (3.4.23.16) inhibitors [143-145]. Most of the protein-ligand docking programs such as AutoDock4, AutoDock Vina, and Molegro Virtual Docker employ empirical scoring functions that are similar to the ideas initially proposed by Böhm in the early 1990s [146, 147]. Generally, we may say that drug discovery has evolved significantly from the use of computational methods, which today is the first approach in drug discovery [40, 148, 149].

In this scenario, the development of computational methods to predict binding affinity contributes heavily to the early stages of drug discovery, when it is necessary to test thousands or even millions of potential binders against the structure of a protein target. The flexibility in the development of targeted-scoring functions creates a theoretical foundation that allows us to explore the abstraction of scoring function space [31, 132]. Such a mathematical view of the process of finding a targeted-scoring function designed for a specific protein brings together the machine-learning techniques with the wide abstraction of systems biology with a focus on the development and design of drugs [31, 36, 37].

3.6. Scoring Function Space

Considering the recent progress in the development of targeted-scoring functions to estimate protein-ligand binding affinity [30, 37-50], we may say that such approaches have a great potential to generate reliable computational models to estimate the binding of small organic molecules to protein targets. Also, this progress paved the way to establish a theoretical framework to address the development of computational models that predict protein-ligand interactions. Taking together, we envisage protein-ligand interactions as a result of the relation between the protein space [150] and the chemical space [151]. We proposed to approach these sets as a unique biological system, where
the application of computational techniques could play a role in determining the structural basis for the specificity of ligands for proteins. Such methodologies can construct novel semi-empirical free energy scoring function to predict binding affinity with superior predictive power when compared with classical scoring functions. We have proposed to use the abstraction of a mathematical space composed of infinite computational models to predict ligand-binding affinity, named here as scoring function space [31, 132]. Fig. (7) shows the relationship involving the protein space, chemical space, and scoring function space. By the use of supervised machine learning techniques or varying energy terms used to build targeted-scoring functions, we can explore this scoring function space to generate a computational model directed to a specific element of the protein space [132].

From the drug design point of view, this theoretical framework is of pivotal importance in the early stages of drug design and development. The possibility of addressing protein-drug interactions with a mathematical approach provides a basement to explore how minor modifications in a lead compound could improve binding affinity calculated using these novel computational models. A scenario that adds flexibility and speeds up drug design and discovery. Specifically, for CDKs and related kinases, a recently published study generated and validated machine learning models to predict chordoma inhibition [152]. The authors of this work developed Bayesian Machine learning models used to evaluate compounds taken from the NIH NCATS industry-provided assets. Chordoma is a rare bone tumor that impacts one in a million people. This study identified potential new anticancer drugs such as CDK4/6 inhibitors (Afatinib and Palbociclib). These inhibitors showed synergy in vitro when used in combination with mTOR inhibitor AZD2014 [153]. This combination of targeted-scoring functions trained for a specific biological system and drug repurposing showed a positive impact on the computer-aided drug for cancer therapy. For more details of the combination of targeted-scoring functions and drug repurposing for cancer, we recommend the interested reader to the recent publications listed in the references [154-162].
AutoDock4 scoring function considers the volume of atoms (Vi or Vj) multiplied by a solvation parameter (Si or Sj) for the desolvation potential. On the other hand, the method of Poisson-Boltzmann implicit solvent model for the evaluations of the polar solvation binding energy takes the solvent involving a protein system as a continuum. This method estimates the intermolecular interactions involving the protein atoms and the implicit solvent by solving the Poisson-Boltzmann equation [163]. Several studies indicated that protein-ligand binding affinity estimated using molecular mechanics combined with the Poisson-Boltzmann surface area (MM-PBSA) shows superior predictive performance to calculate the binding when compared with other approaches to assess electrostatic interactions [163-172]. A recent study reports the application of the MM-PBSA method to structures of beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) available at Data Resource (D3R) Grand Challenge 4 (GC4) and compared with AutoDock4 scoring function [173, 174]. Although for this specific dataset, the MM-PBSA approach showed a low correlation with experimental protein-ligand binding affinities, the authors highlighted that MM-GBSA protocol is sensitive to details in the protein-ligand system, as predicted in the application of the concept of scoring function space. The authors also described that improvement could be reached with the application of MM-GBSA protocol by adding information to the protein system, specifically protonating the aspartyl dyad of BACE-1, which generated a model with superior predictive performance.

CONCLUSION

In this review, we presented AutoDock4 semi-empirical scoring function as a prototype to understand the computational methods used to assess the binding affinity of protein-ligand complexes. The recent developments in this field with the integration of machine-learning methods and elegant alternatives to address the energetics of protein-ligand interaction indicated the potential of such approaches in the development of computational models. Such approaches may further be developed to generate computational models to predict affinity for a wide range of protein targets.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD4</td>
<td>AutoDock4</td>
</tr>
<tr>
<td>BACE-1</td>
<td>Beta-site Amyloid Precursor Protein Cleaving Enzyme 1</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent Kinase</td>
</tr>
<tr>
<td>Cryo-EM</td>
<td>Cryo-electron Microscopy</td>
</tr>
<tr>
<td>D3R</td>
<td>Data Resource</td>
</tr>
<tr>
<td>EC</td>
<td>Enzyme Classification Number</td>
</tr>
<tr>
<td>FP</td>
<td>Fluorescence Polarization</td>
</tr>
<tr>
<td>GC4</td>
<td>Grand Challenge 4</td>
</tr>
<tr>
<td>ITC</td>
<td>Isothermal Titration Calorimetry</td>
</tr>
<tr>
<td>MM-PBSA</td>
<td>Molecular Mechanics Combined with the Poisson-Boltzmann Surface Area</td>
</tr>
<tr>
<td>MOAD</td>
<td>Mother of all Databases</td>
</tr>
<tr>
<td>MVD</td>
<td>Molegro Virtual Docker</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PEOE</td>
<td>Partial Equalization of Orbital Electronegativity</td>
</tr>
<tr>
<td>SAnDReS</td>
<td>Statistical Analysis of Docking Results and Scoring Functions</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface Plasmon Resonance</td>
</tr>
<tr>
<td>Taba</td>
<td>Tool to Analyze the Binding Affinity</td>
</tr>
</tbody>
</table>
Electrostatic Potential Energy in Protein-Drug Complexes

[47] Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Bi-

ol, 2019, 2053, 1-12.
http://dx.doi.org/10.1007/978-1-4939-9752-7_1 PMID: 31452095

http://dx.doi.org/10.1016/j.bbrc.2017.10.035 PMID: 29017921

http://dx.doi.org/10.1007/s10637-018-0568-y PMID: 29392539

http://dx.doi.org/10.2174/1386207320666171121110019 PMID: 29165067

http://dx.doi.org/10.2174/1381612811319260002 PMID: 23260025

http://dx.doi.org/10.2174/092986711795029519 PMID: 21366529

http://dx.doi.org/10.1007/978-1-4939-9752-7_8 PMID: 31452102

http://dx.doi.org/10.1021/acs.jicinf.8b00712 PMID: 30835112

http://dx.doi.org/10.1111/cbdd.13312 PMID: 29676519

http://dx.doi.org/10.1021/acs.jicinf.8b00773 PMID: 30802041

http://dx.doi.org/10.1021/acs.jicinf.7b00153 PMID: 28654262

http://dx.doi.org/10.1093/bioinformatics/bty374 PMID: 29757353

http://dx.doi.org/10.1093/bib/bbaa107

http://dx.doi.org/10.1093/bib/bbaa094

http://dx.doi.org/10.1021/acs.jicinf.9b00977 PMID: 32352294

http://dx.doi.org/10.1016/j.jmgm.2014.07.010 PMID: 25123650

http://dx.doi.org/10.1007/978-1-4939-2486-8_9 PMID: 25709036

http://dx.doi.org/10.1111/cbdd.12376 PMID: 24923208

http://dx.doi.org/10.1016/j.jmgm.2017.10.021 PMID: 29121561

http://dx.doi.org/10.1021/acs.jicinf.7b00310 PMID: 29186950

http://dx.doi.org/10.3389/fchem.2018.00150 PMID: 29868556

http://dx.doi.org/10.1016/j.jmgm.2019.04.001 PMID: 30959268

http://dx.doi.org/10.1007/978-1-4939-9752-7_5 PMID: 32352294
Electrostatic Potential Energy in Protein-Drug Complexes

Lunney, E.A.; Hagen, S.E.; Domagala, J.M.; Humblet, C.; Kosinski, J.; Tait, B.D.; Warmus, J.S.; Wilson, M.; Fergu-
http://dx.doi.org/10.1021/ci700470c PMID: 18465849

