
�
��
��
��
�	
�

��
��
�
��
��
�
��
��
�

�������
��	
�
��
����
����

���-��:B9B&>A?@����-��<>?D&D@@	

 !�

���������
���

�
������"
�

 ����#���$%���!

��&��'�

���(�%������

�!������#

�$
���
.������
C8<>C

�������
	
���
�

Walter  Filgueira  de  Azevedo  Junior1,2,*,  Gabriela  Bitencourt-Ferreira1,  Joana  Retzke
Godoy1, Hilda Mayela Aran Adriano3, Wallyson André dos Santos Bezerra4 and Alexandra
Martins dos Santos Soares4

1Pontifical  Catholic  University  of  Rio  Grande  do  Sul  (PUCRS),  Av.  Ipiranga,  6681  Porto  Alegre/RS
90619-900, Brazil; 2Specialization Program in Bioinformatics, Pontifical Catholic University of Rio Grande
do Sul  (PUCRS),  Av.  Ipiranga,  6681 Porto Alegre/RS 90619-900,  Brazil;  3Universidad de Celaya,  Car-
retera Panamericana, Rancho Pinto km 269, 38080 Celaya, Gto. Zip Code 38080, Guanajuato, Mexico;
4Department of Chemical Engineering, Federal University of Maranhão, Avenida dos Portugueses, 1966
São Luís / MA 65080-805, Brazil

A R T I C L E  H I S T O R Y

Received: December 23, 2020
Revised: February 24, 2021
Accepted: February 25, 2021

DOI:
10.2174/0929867328666210329094111

Abstract: Background: The main protease of SARS-CoV-2 (Mpro) is one of the targets
identified in SARS-CoV-2, the causative agent of COVID-19. The application of X-ray
diffraction crystallography made available the three-dimensional structure of this protein
target in complex with ligands, which paved the way for docking studies.

Objective: Our goal here is to review recent efforts in the application of docking simula-
tions to identify inhibitors of the Mpro using the program AutoDock4.

Methods: We searched PubMed to identify studies that applied AutoDock4 for docking
against this protein target. We used the structures available for Mpro to analyze intermolec-
ular interactions and reviewed the methods used to search for inhibitors.

Results: The application of docking against the structures available for the Mpro found li-
gands with an estimated inhibition in the nanomolar range. Such computational approach-
es focused on the crystal structures revealed potential inhibitors of Mpro that might exhibit
pharmacological activity against SARS-CoV-2. Nevertheless, most of these studies lack
the proper validation of the docking protocol. Also, they all ignored the potential use of
machine learning to predict affinity.

Conclusion: The combination of structural data with computational approaches opened
the possibility to accelerate the search for drugs to treat COVID-19. Several studies used
AutoDock4 to  search for  inhibitors  of  Mpro.  Most  of  them did not  employ a  validated
docking protocol, which lends support to critics of their computational methodology. Fur-
thermore, one of these studies reported the binding of chloroquine and hydroxychloro-
quine to Mpro.  This study ignores the scientific evidence against  the use of these anti-
malarial drugs to treat COVID-19.

Keywords: COVID-19, SARS-CoV-2, protein-ligand interaction, autoDock4, docking, machine learning, main pro-
tease.
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1. INTRODUCTION
Humanity  has  been  caught  by  surprise  with  the

SARS-CoV-2  infection,  the  etiological  agent  of
COVID-19 [1-5]. This pandemic outbreak has affected
millions  worldwide.  In  many  countries,  COVID-19
harmed public health systems and the economy [6, 7].

This outbreak also worsened due to instances of the
denial of the science practiced by some governments.
Most  notably,  the  Brazilian  government  position
against  the  wearing  of  face  masks  and  promoting
public  gatherings  without  the  necessary  precautions
[8-14].  These  outrageous  positions  against  scientific
evidence  supporting  social  distancing  during  the
COVID-19  pandemic  claimed  the  lives  of  thousands
[7]. Also, the lack of support to the preventive health
measures  increased  the  negative  economic  impact  in
an  already  impoverished  population  with  a  declining
gross domestic product forecast for the coming years
[15].

Furthermore, some governments strongly supported
chloroquine  and  hydroxychloroquine  to  treat
COVID-19  [11-14].  This  indication  has  no  scientific
support. A definitive view against chloroquine and hy-
droxychloroquine  to  treat  COVID-19  has  been  re-
searched earlier [16]. Due to the urgent need for treat-
ments and shots for COVID-19, many academic labora-
tories and pharmaceutical companies started develop-
ing vaccines [17] and drugs [18].  Among the protein
targets identified in SARS-CoV-2 for drug discovery,
the proteases received special attention [19]. The focus
on proteases directed the studies to elucidate the struc-
ture  of  the  main  protease  (3C-like  proteinase)  of
SARS-CoV-2  (EC 3.4.22.69)  (Mpro)  in  complex  with
several different ligands bound to the active site of this
protein  target  [20-22].  This  data  paved  the  way  for
structure-based drug design (SBDD) efforts focused on
this enzyme.

Projects using SBDD have the potential  to speed-
up  the  drug  design  through  the  identification  of  the
structural  features  necessary  for  binding  affinity
[23-25]. One of the most successful uses of SBDD is
the discovery of HIV-1 protease (EC 3.4.23.16) inhibi-
tors and their therapeutical use to treat HIV infection
[26]. The availability of structural data is a favorable
scenario  for  protein-ligand  docking  simulations  fo-
cused on the Mpro. Due to the apparent easiness in the
use of docking programs, several research groups start-
ed precipitated screens without validation of the dock-
ing protocols and with no use of state-of-art computa-
tional  approaches  to  build  targeted-scoring  functions
using machine learning techniques. Machine learning

models to predict protein-ligand binding affinity have
shown superior  predictive performance [27-37]  com-
pared to classical scoring functions available in dock-
ing programs such as AutoDock4 [38, 39].

In this review, we describe the structural data avail-
able for Mpro. We focus on intermolecular interactions
and give an overview of the AutoDock4 scoring func-
tion.  We  analyze  the  application  of  AutoDock4  to
screen potential inhibitors of the Mpro and evaluate the
methodologies  used  by  several  different  research
groups in their virtual screening studies. We also high-
light the potential of integrating machine learning tech-
niques to build targeted-scoring functions for the Mpro.

2. METHODS
In  the  year  2020,  the  protein  data  bank  (PDB)

[40-42] reached over 170 k structures (search carried
out on December 3, 2020). This structural data adds to
the  information  about  protein-ligand  binding  affinity
and thermodynamic parameters. This binding-affinity
data  is  available  at  BindingDB  [43,  44],  Binding
MOAD (Mother of All Databases) [45-47], and PDB-
bind  [48,  49].  PDB  has  an  integration  with  these
databases, which makes it possible to carry out search-
es to retrieve crystal structures for which experimental
binding affinity data are available.

2.1. Crystallographic Structures

We searched for the structures of Mpro available at
the PDB (search performed on December 3, 2020). We
filtered the data for binding affinity information, specif-
ically  inhibition  constant  (Ki),  inhibitory  constant  at
50% (IC50), dissociation constant (Kd), and Gibbs free
energy of binding for protein-ligand complexes (ΔG).
We also filtered the structures to consider only those
with X-ray diffraction crystallographic resolution bet-
ter  than  1.5  Å.  We used  the  program SAnDReS [50,
51] to carry out data filtering and statistical analysis of
the structures of the Mpro. We also employed the pro-
gram SAnDReS to generate a graphical representation
of the intermolecular interactions for selected structu-
ral data of Mpro with bound ligands. We used LigPlot+
[52, 53] to create 2D plots of van der Waals contacts
and intermolecular hydrogen bonds for selected struc-
tures of Mpro complexed with ligands.

The program LigPlot+ allows defining structural cri-
teria to determine protein-ligand interactions. It brings
uniformity in the study of intermolecular interactions
since  it  employs  the  same  robust  structural  proof  to
identify a given contact for a pair of atoms. We ana-
lyzed each entry in the structural dataset to find additio-
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nal data highlighting that the ligand found in the struc-
ture has inhibition activity. Where available, we used
the information in the paper describing the data at the
PDB since information related to binding affinity was
not available.

2.2. AutoDock4 Scoring Function
Amongst the diverse group of theoretical methods

used in receptor-ligand docking programs to estimate
binding affinity, the empirical free energy scoring func-
tion implemented in the program AutoDock4 [38, 39]
is one of the most effective in virtual screens for drug
discovery.  A  search  performed  on  PubMed  using  as
strings protein, drug, and AutoDock returned 804 pa-
pers (search carried out on December 3, 2020). This re-
sult shows the influence of AutoDock4 to calculate the
potential energy of receptor-ligand complexes and its
application in the screening of new drugs. The Auto-
Dock4  expression  to  estimate  the  energetics  of  pro-
tein-ligand systems has the following equation:

(1)

where ERL is the total potential energy of the biologi-
cal system involving a receptor (macromolecule) and a
small  organic  molecule  (ligand),  and  the  α’s  corre-
spond to the relative weights of each energy term. By
small organic molecules, we mean ligands with molec-
ular  weight  up  to  500,  for  instance,  those  satisfying
Lipinski’s rule of five [54]. Originally these weights in
equation (1) were determined through regression meth-
ods against a dataset of protein-ligand complexes with
binding-affinity data.

The first term on the right side of equation (1) repre-
sents  the  dispersal/repulsion  interactions  (Len-
nard-Jones potential energy) [55]. In the above equa-
tion,  rij  denotes  the  interatomic  distance  involving
atoms from the receptor  and ligand.  In the following
term,  we  see  an  adjustment  of  the  equation  of  Len-
nard-Jones potential. This adaptation is frequently ap-

plied to estimate hydrogen-bond energetics and uses a
10/12 potential function. The third term represents the
desolvation  potential  and  considers  the  volume  of
atoms (Vi or Vj) times a solvation parameter (Si or Sj)
and  an  exponential  function  with  a  fixed  distance
weight (σ = 3.5 Å). The following term considers the
number  of  torsion  angles  (NTorsion)  present  in  the  li-
gands.  The  final  part  of  the  equation  (1)  denotes  the
electrostatic potential energy, where we use the atomic
partial charges (qi and qj) and the permittivity function
ε(rij).

AutoDock4 employs the partial equalization of orbi-
tal  electronegativity  (PEOE)  algorithm  to  evaluate
atomic charges [38, 39]. In equation (1),  the summa-
tions consider all pairs of ligand atoms (i) and receptor
atoms  (j)  besides  all  those  that  are  apart  by  three  or
more bonds. AutoDock4 employs equation (1) to esti-
mate the pose binding affinity and chooses the lowest-
-binding  affinity  pose  in  receptor-ligand  docking
screens. The AutoDock4 uses data from the AMBER
force field [56, 57] for the parameters used in equation
(1) (Aij, Bij, Cij, Dij, Vi, Vj, Si, and Sj). AMBER is a com-
putational  method  to  estimate  the  energetics  of  bio-
molecular systems. A search performed on PubMed us-
ing the terms force field and AMBER generated 1035
results (search carried out on December 3, 2020). This
result shows the importance of AMBER calculate the
potential energy of receptor-ligand complexes and its
use  for  molecular  dynamics  simulations  of  macro-
molecules.

Calculation of ε(rij) for receptor-ligand structures is
still a challenge. We have a wide range of methods to
address  the  permittivity  function  for  protein-ligand
complexes [38, 39]. AutoDock4 estimates ε(rij) employ-
ing a sigmoidal distance-dependent permittivity func-
tion.  This  calculation  uses  the  model  suggested  by
Mehler and Solmajer [58]. The expression of the Meh-
ler-Solmajer method for the permittivity function has
the following form:

(2)

In  the  implementation  of  equation  (2)  in  the  pro-
gram AutoDock4,  the  parameters  have  the  following
values: B = εr - A; εr (the relative permittivity constant
of  bulk  water  at  25˚C)  =  78.4;  A  =  -8.5525,  λ  =
0.003627 and k = 7.7839 (standard permittivity func-
tion parameters).

Estimation   of  permittivity  employing  a  value of
εr =78.4 is appropriate for some biomolecular systems
[59]. Nevertheless, we have reports of a wide range of
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values used to estimate relative permittivity in compu-
tational studies of receptor-ligand interactions [60-67].

2.3. Search Algorithms Available in AutoDock4
AutoDock4 has four search algorithms available for

receptor-ligand  docking  simulations.  They  are  local
search  (LS),  simulated  annealing  (SA),  genetic  algo-
rithm (GA), and Lamarckian genetic algorithm (LGA).
Most of the recent applications of AutoDock4 rely on
the  LGA.  Nevertheless,  depending  on  the  protein-li-
gand structure, we can achieve relative success with all
of them [38, 39].

2.4. Searches on PubMed
To have access to works describing the application

of AutoDock4 to screen potential inhibitors of Mpro, we
searched PubMed using strings in the following combi-
nation:  AutoDock,  SARS-CoV-2,  and  protease.  We
eliminated the AutoDock Vina studies of the search to
focus  on  one  docking  program  (AutoDock4).  We
named the results of this search as Search 1. We car-
ried out another exploration of PubMed by adding the
strings “machine learning” and “deep learning” to the
previous search using the operator AND. We called the
results  of  these  searches  Search  2  and  3.  Also,  we
checked docking results reporting the potential binding
of  chloroquine  and  hydroxychloroquine  to  Mpro.  We
named them Search 4 and 5, respectively. The use of
AutoDock4 with molecular dynamics simulations was
searched and named Search 6. We gathered these re-
sults on December 3, 2020.

3. RESULTS AND DISCUSSION

3.1. Structural Data
A  search  on  PDB  using  the  FASTA  sequence  of

Mpro (PDB access code: 7D1M) [68] returned a total of
230 structures with 100% identity with the probe, all
determined using diffraction data. Further filtering of
the dataset taking only PDBs for which experimental

binding affinity data were available for Ki, Kd, IC50, or
ΔG returned none. However, we have affinity data for
150 ligands at BindingDB (a search carried out on De-
cember 3, 2020). These ligands still did not have struc-
tural data at PDB. We applied additional filtering with
the  crystallographic  resolution  criterion,  using  struc-
tures  solved with  data  better  than 1.5  Å.  This  proce-
dure  returned  36  high-resolution  crystal  structures.
Among  these  crystal  structures,  one  had  no  ligand
bound to the protein, and we deleted it from the dataset
(PDB access code: 7KPH). Table 1 shows the PDB ac-
cess codes for these structures. We named these struc-
tures HRMpro (high-resolution main protease of SARS--
CoV-2 dataset).

Analysis  of  the  crystallographic  information  of
HRMpro indicated that the resolution ranges from 1.2 to
1.48 Å. The highest resolution structure is the Mpro in
complex  with  dimethyl  sulfoxide  (DMSO)  (PDB ac-
cess code: 7K3T). DMSO is a co-factor usually used in
crystallization  conditions  [69-71].  This  structure
(7K3T)  also  showed  the  lowest  values  of  B-factors.
Such low values of B-factor indicate the definition of
the electron density maps [72]. Another method used
to evaluate the quality of a structure using X-ray dif-
fraction crystallography is the root mean square devia-
tion from the ideal geometry. Considering this feature,
among the entries in the HRMpro,  the structure 5RFV
shows the best overall performance. This structure has
a covalent ligand with information about inhibition (1-
[4-(thiophene-2-carbonyl) piperazin-1-yl] ethan-1-one)
and  DMSO.  Specifically,  for  complexes  with  inhibi-
tors,  the  highest  resolution  entry  is  the  Mpro  complex
with GRL-2420 (PDB access code: 7JKV).

In  Table  1,  we  have  additional  information  high-
lighting the entries for which the authors of the deposi-
tion  of  atomic  coordinates  made  clear  that  the  struc-
tures had an inhibitor bound to the complex. Although
the  PDB  has  an  interface  with  BindingDB,  Binding
MOAD, and PDBbind, as we previously highlighted,

Table 1. PDB access codes of crystallographic structures of HRMpro.

Type of ligand in the structure PDB access codes
Co-factors used in the crystallization conditions (glycerol, DMSO, and 1,2-
ethanediol)

7AR5, 7AR6, 6YB7, 6Y84, 5R8T, 7K3T, 6XKH

Non-covalent ligands bound to the active site 5RGK, 5RGW, 5RF6, 5R82, 5RFE

Non-covalent ligands bound to alternative sites 5RF8, 5RGJ, 5RED, 5RGR, 5RF9, 5RH4, 5RFD, 5RFB, 5RFC

Non-covalent allosteric inhibitors 7AWR, 7AXM

Covalent inhibitors bound to the active site 5RFV,  5RFW,  5RHB,  6XR3,  6XBG,  6XHM,  5RL2,  7K40,
6WNP, 7D1M, 7K6D, 7JKV
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Fig. (1). Intermolecular interactions for 28 crystallographic
structures of Mpro for which ligands are present in the com-
plexes  (PDB access  codes:  7AWR, 5RGK,  5RF8,  5RGW,
5RF6,  5R82,  5RFE,  5RGJ,  5RED,  5RGR,  5RF9,  5RH4,
5RFD, 5RFB, 5RFC, 7AXM, 5RFV, 5RFW, 5RHB, 6XR3,
6XBG,  6XHM,  5RL2,  7K40,  6WNP,  7D1M,  7K6D,  and
7JKV).  We  used  the  program  SAnDReS  [50]  to  generate
this plot. The criteria used to consider intermolecular interac-
tions are the same described for LigPlot+ [52, 53].

we do not have this type of numerical data for any of
the structures in the HRMpro. Analysis of HRMpro identi-
fied twelve covalent  inhibitors  and seven crystalliza-
tion co-factors with no information about the inhibition
activity. In Fig. (1), we have a map of intermolecular
interactions of selected structures generated with SAn-
DReS. We focused our analysis on inhibitors (covalent

and allosteric) and non-covalent ligands bound to the
active and alternative sites of Mpro.

We can find a detailed description of the three-di-
mensional  structure  of  Mpro  elsewhere  [68].  Briefly,
Mpro  has  the  typical  structure  of  3C-like  proteinases
found in other coronaviruses. Analysis of its biological
unit shows a homodimer. Each Mpro monomer has three
domains.  The  first  two  domains  (residues  8-101  and
102-184) show an antiparallel  β-barrel structure.  The
following domain (residues 201–303) contains five α-
helices  arranged  into  an  antiparallel  globular  cluster,
and it is linked to the second domain by a loop region
(residues  185-200).  Mpro  shows  a  Cys-His  catalytic
dyad, and the active site is placed between the first two
domains [68].

To  further  investigate  intermolecular  interactions,
we  applied  the  program  LigPlot+  to  some  structures
with ligands in HRMpro. Since the binding affinity de-
pends  on a  wide range of  intermolecular  interactions
[73-80], it is essential to have a standard to determine
receptor-ligand contacts. Figs. (2 and 3) show the inter-
molecular interactions of the Mpro and selected ligands.
Fig. (2) shows the ligands for which we have data indi-
cating  that  the  ligand  is  an  inhibitor.  Fig.  (3)  shows
complexes with non-covalent ligands bound to the ac-
tive site of Mpro, but with no experimental data confirm-
ing inhibition.

Fig. (2). Intermolecular contacts for inhibitors identified in the structures 7JKV (A), 7AXM (B), and 7AWR (C) using Lig-
Plot+ [52, 53]. These structures have information on the PDB about the inhibition activity of the ligands. In these figures, we
present a schematic representation of the residues of Mpro participating in Van der Waals contacts and intermolecular hydrogen
bonds  with  ligands.  We  represent  intermolecular  hydrogen  bonds  with  dashed  lines.  The  intermolecular  distances  are  in
Angstroms. LigPlot+ considers residues as participating in intermolecular hydrogen bonds with the distance between acceptor
and donor atoms ranging from 2.8 to 3.4 Å and satisfying the angle criteria [52, 53]. Continuous lines connecting two atoms in-
dicate covalent bonds in the structure. We show the amino acids participating in intermolecular Van der Waals contacts with
spiked arcs. We indicate nitrogen atoms in blue, oxygens in red, sulfurs in yellow, halogens in green, and carbons in black. (A
higher resolution / colour version of this figure is available in the electronic copy of the article).
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Fig. (3). Intermolecular contacts for non-covalent ligands bound to the active site of Mpro. These ligands are present in follow-
ing the structures: 5R82 (A), 5RF6 (B), 5RFE (C), 5RGK (D), and 5RGW (E) using LigPlot+ [52, 53]. The definitions used in
the legend of Fig. (2) also apply here. (A higher resolution / colour version of this figure is available in the electronic copy of
the article).

Combining the overall view of intermolecular con-
tacts available in Fig. (1) and the specific interactions
highlighted in Fig. (2), we identify three major binding
sites. Peaks 1, 2, 3, 5, 6, and 7 in Fig. (1) map interac-
tions involving residues in the active site of Mpro. The
structure described in Fig. (2A) indicates the presence
of the following residues in the active site of Mpro: Thr
25, His 41, Met 49, Phe 140, Leu 141, Asn 142, Gly
143, Ser 144, Cys 145, His 163, His 164, Met 165, Glu
166, Pro 168, His 172, Asp 187, Gln 189, Thr 190, and
Ala 191. Cys 145 presents a covalent bond with the in-
hibitor. Peaks 4 and 8 in Fig. (1) indicate intermolecu-
lar contacts around residue numbers 100 (Pro 99, Lys
100, Tyr 101, and Phe 103) and 300 (Cys 300 and Ser
301). Analysis of Fig. (2B) and Fig. (2C) also shows
participation residues Asp 33, Tyr 37, Ile 213, and Gln
256 in the allosteric binding sites of Mpro. Analysis of
intermolecular  interactions  for  structure  7JKV  indi-

cates intermolecular  hydrogen bonds,  Van der Waals
interactions,  and  one  covalent  bond  with  the  active
site.  In  peaks  4  and  8,  we  have  part  of  the  allosteric
binding sites, as seen in structures 7AXM and 7AWR.
Analysis of LigPlot+ results for these structures indicat-
ed only Van der Waals contacts in the allosteric bind-
ing sites.

It is necessary to have experimental data of at least
one protein-ligand complex to validate a docking proto-
col intended to search for potential inhibitors [81-86].
For protein-ligand docking simulations to screen for po-
tential  competitive  inhibitors  of  the  Mpro,  the  focus
should be on the active site. On the other hand, dock-
ing screens to find potential allosteric inhibitors should
aim at peaks 4 and 8.

We  may  use  the  atomic  coordinates  of  any  Mpro

structures highlighted in Fig.  (3)  (PDB access codes:



7620   Current Medicinal Chemistry, 2021, Vol. 28, No. 37 de Azevedo Junior et al.

5R82, 5RF6, 5RFE, 5RGK, and 5RGW) for validation
of molecular docking protocols. These complexes have
non-covalent ligands bound to the active site, with vari-
ation in the interacting residues. Analysis of the inter-
molecular interactions indicates larger ligands present
a higher number of intermolecular contacts. All com-
plexes  exhibit  intermolecular  hydrogen  bonds,  most
with histidine residues, with one exception, i.e., struc-
ture 5RF6. In this complex, we have the side chain of
Thr 25 participating in a hydrogen bond.

Since  there  is  crystallographic  data  for  Mpro,  any
protein-ligand  docking  simulations  should  validate
their protocol focusing on these structures. Consider-
ing docking simulations using AutoDock4, we have an
arsenal of potential docking protocols, combining dif-
ferent search algorithms (LS, SA, GA, and LGA), cen-
ter of the binding site, and size of the box where the si-
mulation  will  take  place.  Also,  we  could  target  the
AutoDock4 scoring function to the protein system of
interest.  It  is  feasible  to  train  the  scoring  function  to
predict  the  binding  for  a  specific  protein  using  ma-
chine learning techniques [87-90]. Developing a scor-
ing function specific for a protein system of interest al-
lows us to explore the scoring function space using ma-
chine learning methods [34, 50]. These computational
approaches increase the chances of finding an adequate
computational  model  to  predict  protein  inhibition
[30-33]. In the next section, we discuss selected recent
docking studies focused on the active site of Mpro.

3.2. Virtual Screening with AutoDock4
AutoDock4 is one of the most successful docking

programs  used  for  protein-ligand  screening  purposes
[91].  Due  to  the  large  number  of  AutoDock4  users
since the beginning of the COVID-19 pandemic, many
research  groups  started  computational  screening
studies having AutoDock4 as its main docking engine.
Search 1 returned eight publications where AutoDock4
was  the  computational  resource  for  protein-ligand
docking simulations [92-99]. These studies used LGA
as a search engine with the scoring function defined in
equation (1). Most of these studies did not report any
validation of docking protocols against an experimen-
tal complex structure. For docking protocol validation,
we need to have at least one crystal structure of the pro-
tein with a ligand [100]. High-resolution crystal struc-
tures of Mpro in complex with inhibitors were available
at PDB as early as February 2020 (PDB access code:
6LU7) [101].  Typically,  for validation, we report  the
docking root mean square deviation (RMSD) between
the docking pose and the crystallographic position of
the ligand [100].

One of  the AutoDock4 screening studies  reported
an RMSD for a cluster of poses, but not against the li-
gand position in a crystal structure [92]. This approach
is a weak validation compared with a docking RMSD
against the crystallographic coordinates of a ligand. Al-
so, this study used the structure 6WQF [102] for dock-
ing  simulations.  This  structure  does  not  have  any  li-
gand bound to the active site, which we should prefer
for  protein-ligand  docking  simulations  [100].  Other
AutoDock4 studies [93-99] took as a target for simula-
tions the crystallographic structure of Mpro in complex
with  N3  peptide  inhibitor  (PDB  access  code:  6LU7)
[101]. However, the authors did not perform redocking
to validate their docking protocol either. Although one
AutoDock4 study [98] referenced a redocking simula-
tion with a docking RMSD of 0.254 Å [103], the dock-
ing program used in this study [103] is not the Auto-
Dock4, but the related docking program AutoDock Vi-
na [104]. The authors used AutoDock4 for their simula-
tions and justified its application taking as a reference
a previously published result that employed a different
docking  program,  which  means  no  validation  at  all
[103].

Adding  “deep  learning”  or  “machine  learning”  to
the search (Search 2 and 3) returned zero publications.
All AutoDock4 studies relied on equation (1) to rank
the poses and predict the binding affinity. Considering
that we have evidence supporting the application of ma-
chine  learning  methods  to  develop  scoring  functions
[27-37, 105-110], we expected that some of these com-
putational  studies  with  AutoDock4  would  have  used
machine learning modeling. Unfortunately, none of the
AutoDock4 used machine learning approaches. The ex-
perimental  binding affinity  data  is  available  in  Bind-
ingDB for 150 ligands with IC50 data. A dataset large
enough to carry out modeling using machine learning
approaches  in  combination  with  docked  poses  [111,
112].

Considering AutoDock4 studies related to chloro-
quine  and  hydroxychloroquine  (Search  4  and  5),  we
found only one publication [93]. In this study, the au-
thors calculated the binding affinity of chloroquine, hy-
droxychloroquine, and natural products. We have appli-
cations of classical scoring functions to a wide range
of protein targets [100]. For proteases, successful appli-
cation of docking and ranking of poses with classical
scoring function identified many HIV-1 protease (EC
3.4.23.16) inhibitors [113, 114]. On the other hand, ma-
chine learning methods have an overall predictive per-
formance higher than classical scoring functions, such
as the AutoDock4 scoring function [115, 116]. Consid-
ering that this study [93] did not apply machine learn-
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ing methods to generate a better computational model,
it is dangerous to keep these molecules in drug repur-
posing  [117-121]  since  we  have  scientific  evidence
showing  that  they  do  not  work  to  treat  COVID-19
[16].

The need for drugs to treat COVID-19 is clear, and
repurposing is a valid approach in the early stages of
drug discovery, where we have the experimental struc-
ture of a protein target or at least its homology model-
ing [91, 122-124]. On the other hand, as we highlight-
ed above, these AutoDock4 studies focused on Mpro did
not develop machine learning models trained for this
protein  target.  These studies  did  not  report  statistical
analysis [125] of the predictive performance of scoring
functions either. Therefore, the computational predic-
tion  of  binding  affinity  for  chloroquine  and  hydrox-
ychloroquine [93] is unreliable. Even worse, this publi-
cation [93] gives some grounds for the potential use of
these molecules to treat COVID-19.

Many may argue that it is a computational screen-
ing, and nobody will take it as scientific proof, but that
is not the case. Even with no scientific evidence [16,
126], the Brazilian government distributed chloroquine
and hydroxychloroquine to treat COVID-19. Further-
more,  since  we  have  scientific  data  showing  these
molecules did not work to treat COVID-19 [16], there
is  no reason to  insist  on keeping these molecules  for
drug repurposing studies focused on any protein target
of SARS-CoV-2.

3.3.  Combining  Machine  Learning  Methods  with
AutoDock4

As  we  previously  highlighted,  so  far,  all  Auto-
Dock4 screens focused on Mpro lacked a proper valida-
tion of the docking protocol and the predictive perfor-
mance of the scoring function. These studies also ig-
nored the superior predictive performance of machine
learning models compared with classical scoring func-
tions [27-37, 105-110]. Aiming to guide future studies
focused on docking screens of potential drugs to treat
COVID-19, we propose a combination of molecular si-
mulations (docking and dynamics) and machine learn-
ing modeling of scoring functions. We have this inte-
gration of computational approaches in one flowchart
that  may  guide  future  computational  studies  focused
on Mpro or any protein target of SARS-CoV-2. Fig. (4)
shows all steps of this integrated workflow.

Initially, we select a protein target of SARS-CoV-
-2, for instance, the Mpro. In the sequence, we check the
availability  of  experimental  data  in  the  PDB.  In  the
absence  of  structural  data  for  our  protein  target,  we

may generate a three-dimensional model based on ho-
mology by the satisfaction of spatial restraints imple-
mented in the program MODELER [91, 122-124]. Al-
ternatively, we may use deep learning approaches such
as  the  one  implemented  in  the  program  AlphaFold
[127-129]  to  generate  molecular  models  for  protein
where we do not have experimental three-dimensional
data. This deep-learning approach recently showed su-
perior predictive performance for structures at CASP
(Critical  Assessment  of  protein  Structure  Prediction)
[127, 129].

In  the  sequence,  we  check  the  available  binding
affinity data at affinity databases such as BindingDB
[43,  44],  Binding  MOAD (Mother  of  All  Databases)
[45-47], and PDBbind [48, 49]. For Mpro, we have 150
entries at BindingDB with experimental IC50 data, a da-
taset named 3C-like proteinase (SARS-CoV 3Cpro). Fol-
lowing this, we need to validate our AutoDock4 dock-
ing  protocol.  AutoDock4  has  four  search  algorithms
available,  and we may also vary the grid parameters.
Variation  of  search  algorithms  and  grid  parameters
may  generate  different  docking  results  [38,  39].

The best validation for any protein-ligand docking
simulation is the ability to reproduce the experimental
position of a ligand in the binding pocket of a receptor
[100]. For Mpro, the experimental result shows a crystal
structure of a protein-ligand complex [68].  There are
over  thirty  structures  of  Mpro  with  a  resolution  better
than 1.5 Å (Table 1), which is enough experimental da-
ta to validate docking protocols. Alternatively, we may
consider the binding free energy to select structures to
validate  docking protocols  [37].  This  approach has  a
major issue, i.e., the computational methodology em-
ployed to evaluate binding energies. The most reliable
methods to address the energetics of protein-ligand in-
teractions make use of quantum mechanics calculation.
These  methods  demand  much  more  computational
time when compared with classical approaches [37, 50,
100]. Here, we adopt the criterion of docking RMSD,
where  we  consider  satisfactory  results,  values  below
2.0 Å [100].

For the HRMpro, we may choose any structure with
a non-covalent ligand for redocking and evaluation of
docking RMSD. We can use the remaining data with
non-covalent ligands in Table 1 to calculate docking ac-
curacy [100] using the docking protocol that generated
the lowest docking RMSD. In the next section, we de-
scribe  a  successful  AutoDock4  protocol  for  Mpro.  To
calculate docking accuracy (DA), we may use the fol-
lowing equation:

�	 = <� + 0.5(<� − <@) (�)
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Fig. (4). Schematic flowchart showing a workflow to combine protein-ligand docking simulations with AutoDock4, machine
learning modeling, and molecular dynamics simulations. Initially, we select a protein target for which atomic coordinates are
available. Then, we gather binding affinity data found in databases such as BindingDB [43, 44], Binding MOAD [45-47], and
PDBbind [48, 49]. After that, we carry out docking simulations to validate a docking protocol using previously selected atomic
coordinates of the protein target. Next, we employ this docking protocol to dock ligands found in the binding databases to the
structure of our protein target. In this phase, we generate the raw material for the machine learning modeling. In the machine
learning phase, we generate a scoring function trained using the structures we obtained through docking simulations. Then, we
choose potential ligands from the ZINC database [138-140]. Following that, we submit the potential ligands chosen from the
ZINC for virtual screening. In this phase, we apply the validated docking protocol against the atomic coordinates of the protein
target. We select the best hits using the machine-learning scoring function. After selection of the best hits, we submit the struc-
tures of these complexes (protein and best hits) to molecular dynamics simulations. We expect to assess the structural stability
of the protein-ligand complexes during this phase. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).

Where fl represents the fraction poses for which the
docking RMSD is less than l, and fh indicates the frac-
tion of poses for which the docking RMSD is less than
h, where l < h [100]. In equation (3), the typical values
of l and h are 2.0 and 3.0 Å, respectively. We expect
values  of  DA > 0.6  for  successful  docking  protocols
[50].

Following  this,  we  execute  the  machine-learning
phase, where we apply the validated docking protocol
to  generate  protein-ligand  complexes  for  the  ligands
for which we have binding affinity data. In the case of
Mpro, we have 150 ligands with IC50 data at BindingDB.
We may use as a target the structure 5RGW. Consider-

ing  recent  machine  learning  approaches  to  calculate
binding affinity or thermodynamic data (ΔG) from the
atomic  coordinates  of  receptor-ligand complexes,  we
may  use  any  of  the  following  machine  learning  pro-
grams:  Molegro  Data  Modeller  [130-132],  Pafnucy
[133],  property-encoded  shape  distributions  together
with  standard  support  vector  machine  (PESD-SVM)
[134], Neural-Network-Based Scoring function (NNS-
core  series)  [135-137],  Random Forest  Score  (RF-S-
core  series)  [27,  28],  Statistical  Analysis  of  Docking
Results  and Scoring Functions  (SAnDReS)  [50],  and
Tool to Analyze the Binding Affinity (Taba) [31, 32].

In the sequence, we use the best machine learning
model selected using the predictive performance [32]
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and choose a subset of potential binders available in a
ligand database such as ZINC [138-140]. Finally, we
choose  the  best  hits  with  the  lowest  value  of  the
machine-learning scoring function and submit them to
molecular dynamics simulations. Among the previous-
ly AutoDock4 published studies [92-99], two works al-
so employed molecular dynamics simulations (Search
6) [96, 97]. We use molecular dynamics simulations to
confirm the binding of ligands [141-145]. We may also
investigate the dynamics of protein-ligand interactions
[145].

In  summary,  this  workflow  combines  established
computational  methodologies  such  as  protein-ligand
docking  and  molecular  dynamics  simulations  with
state-of-art approaches involving the application of ma-
chine  learning  methods  to  generate  targeted-scoring
functions. In doing so, we make available an integrated
methodology that  has  a  system-level  approach to  the
problem of drug discovery. We previously applied this
integrated  approach  to  study  other  protein  targets
[110].

Such  a  combination  of  computational  tools  ex-
plores the scoring function space [105]. This mathemat-
ical space is the result of the relationship involving the
chemical and the protein spaces. In this approach, we
select  an  element  of  the  protein  space,  for  instance,
Mpro.  We  identify  a  subspace  of  the  chemical  space
composed  of  inhibitors  of  the  Mpro.  Using  machine
learning  methods,  we  explore  the  scoring  function
space. As a result, we find an adequate model trained
to predict binding affinity. This scoring function em-
ploys  the  atomic  coordinates  of  protein-ligand  com-
plexes as input and calculates the binding affinity. This
model  is  an  equation  determined  by  methods  of  ma-
chine learning implemented in programs such as Taba
[31] and SAnDReS [50].

Here, we gave an overview of how to integrate dif-
ferent computational methods for projects of drug dis-
covery. Scientifically, our goal is to review published
works focused on the application of AutoDock4 to the
study of potential inhibitors of Mpro. We did not intend
to cover the development of machine learning models,
molecular docking, and dynamics simulations of Mpro.
We  explain  the  details  of  applying  machine  learning
methods  to  generate  targeted-scoring  functions  else-
where [31, 50]. We may find an updated description of
how  to  carry  out  molecular  dynamics  simulations  of
protein-ligand complexes in recent publications [141,
144]. Since most of the previously AutoDock4 applica-
tions [92-99] did not give details about their docking
protocols, in the following section, we describe a dock-
ing protocol using AutoDock4 for Mpro.

3.4. Validation of AutoDock4 Protocol for Mpro

Although we have eight previously published Auto-
Dock4 studies [92-99] focused on Mpro, most of them
did not validate their computational approaches for pro-
tein-ligand  docking  simulations.  The  majority  of  the
published  docking  studies  using  AutoDock4  did  not
mention details about their docking protocols, such as
the center  of  the binding site  and the size of  the box
where the simulation took place.  To facilitate further
protein-ligand  docking  studies  focused  on  Mpro,  we
give below full details of our proposed docking proto-
col using AutoDock4 using a crystal structure with a re-
solution better than 1.5 Å.

Considering the structures in the HRMpro, we may
use the crystal structure 5RGW (solved at 1.43 Å) de-
termined  to  a  better  resolution  compared  to  6LU7
[101] (solved at 2.16 Å resolution). For docking simu-
lations against this structure, we used default parame-
ters of LGA [38, 39] as a search algorithm for the li-
gand  UGM (2-(5-cyanopyridin-3-yl)-N-(pyridin-3-yl)
acetamide)  without  water  molecules  and  co-factors.
We separated the original PDB file into two PDB files,
one for the ligand (UGM) and the second for the pro-
tein. We converted them to PDBQT format using SAn-
DReS [50]. Charges for ligand and protein atoms were
assigned using the Gasteiger-Marsili method [146-148]
implemented  in  the  program  AutoDockTools4  [38].
The grid for docking simulations had as center coordi-
nates  10.034,  -0.723,  and  20.955  Å,  with  a  box  of
11.25, 9.0, and 6.75 Å, and spacing of 0.375 Å. This
grid box encompasses the active site of Mpro and the li-
gand. Fig. (5) shows the lowest energy pose.

Fig.  (5).  Lowest  energy  pose  generated  using  AutoDock4
for the ligand UGM of the structure 5RGW. Ligand in light
gray indicates the crystallographic position and red the pose.
We used the program Molegro Virtual Docker [130] to gen-
erate this figure. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

After  docking  simulation,  the  lowest  energy  pose
presents  a  docking  RMSD  of  0.47  Å.  This  pose  has
binding energy calculated using equation (1) of -7.78
kcal/mol. This result strongly indicates that this dock-
ing protocol is adequate for virtual screening studies.
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Table 2. Summary of docking protocols using AutoDock 4 for Mpro.

PDB Resolution (Å) Ligand Grid (grid points) Grid Center (Å) Spacing (Å) RMSD (Å) References
6Y2F 1.95 O6K 55 × 55 × 54 11.207, -1.020, 20.757 0.375 NR [172]

6LU7 2.16 N3 60 x 60 x 60 -9.732, 11.403, 68.925 0.375 1.9 [173]

6LU7 2.16 N3 50 x 50 x 50 -9.100, 11.000, 68.000 0.375 NR [174]

6LU7 2.16 N3 58 x 68 x 70 -10.883, 13.934, 68.209 0.375 1.47 [175]

6M03 2.00 None 60 x 60 x 60 NR 0.375 Apo form [176]

5RGW 1.43 UGM 30 x 24 x 18 10.034, -0.723, 20.955 0.375 0.47 This work
NR: Not reported by the authors.

3.5. Additional Docking Studies for Mpro

Our goal here is to review the efforts to identify in-
hibitors of the Mpro using the program AutoDock4. We
also  would  like  to  mention  few  docking  simulation
studies using the following programs: AutoDock Vina
[149-158], SwissDock [159], Molegro Virtual Docker
[160-162], and others [163-169]. All these simulations
relied on structures available for Mpro in complex with
ligands.  These  studies  identified  inhibitors  bound  to
the  active  site  with  relatively  low  estimated  binding
scores [149-169], which might contribute to the identi-
fication of a potential new drug to treat COVID-19. It
has  been  found  that  the  sites,  as  well  as  the  number
and length of mature peptides cleaved by the 3C-like
proteinase,  are  highly  conserved  among  different
groups of coronaviruses [170], including SARS-CoV-2
[171].

Besides the previously mentioned eight studies us-
ing AutoDock4 [92-99] employed to identify potential
inhibitors of Mpro, during the reviewing process of this
paper, additional works were published [172-176]. We
show these docking protocols in Table 2. Most of these
docking  studies  focused  on  the  structure  6LU7
[173-175], ignoring available higher-resolution crystal-
lographic structures (Table 1). These new works report-
ed, at least partially, their docking protocols. However,
most of them did not validate their computational ap-
proach reporting the docking RMSD. For those report-
ing docking RMSD, they have values higher than 1.4
Å.  For  all  docking  simulations,  the  authors  used  the
LGA as a search engine in their docking simulations.
AutoDock4 has a total of four docking search engines,
but due to the docking accuracy and faster algorithm,
most of the recent studies using AutoDock4 employed
LGA [39]. Among the docking protocols using Auto-
Dock4 (Table 2), our approach uses the highest crystal-
lographic resolution structure and presents the lowest
docking RMSD.

CONCLUSION
In this review, we described recent applications of

protein-ligand docking simulations focused on the Mpro

using AutoDock4. All these drug screenings relied on
the newly deposited crystallographic structures of this
enzyme. Most of these studies used atomic coordinates
of entry 6LU7. Such works revealed a concentrated ef-
fort to contribute to a possible cure for COVID-19. On
the  other  hand,  the  urgency  to  find  a  cure  for
COVID-19 does not justify the careless use of docking
simulations.  We  reviewed  eight  works  published  in
peer-reviewed journals, and these studies ignored the
use of recent technologies, such as the application of
machine learning. We highlighted the danger of using
chloroquine  and  hydroxychloroquine  in  a  dataset  for
drug repurposing. These molecules have no positive ef-
fect as drugs to treat COVID-19. Insisting on their use
to treat COVID-19 is a denial of science. We expect to
contribute to future works with a validated docking pro-
tocol using AutoDock4 for Mpro, as far as we know, the
first to employ a crystal structure solved to a resolution
better than 1.5 Å. Also, we suggested a workflow inte-
grating  machine  learning  with  molecular  simulations
to improve the predictive performance of future dock-
ing screens focused on Mpro.

LIST OF ABBREVIATIONS

CASP = Critical Assessment of Protein Struc-
ture Prediction

COVID-19 = Coronavirus Disease of 2019

ΔG = Variation  of  Gibbs  Free  Energy  of
Binding

EC = Enzyme Classification Number

GA = Genetic Algorithm

HRMpro = High-resolution  Main  Protease  of
SARS-CoV-2  Dataset



Protein-Ligand Docking Simulations Current Medicinal Chemistry, 2021, Vol. 28, No. 37   7625

IC50 = Half-maximal Inhibitory Concentra-
tion

Kd = Dissociation Constant

Ki = Inhibition Constant

LGA = Lamarckian Genetic Algorithm

LS = Local Search

MOAD = Mother of All Databases

Mpro = Main Protease of SARS-CoV-2

PEOE = Partial Equalization of Orbital
Electronegativity

PDB = Protein Data Bank

RMSD = Root Mean Square Deviation

SA = Simulated Annealing

SAnDReS = Statistical Analysis of Docking Re-
sults and Scoring Functions

SARS-CoV-2 = Severe Acute Respiratory Syndrome
Coronavirus 2

SBDD = Structure-based Drug Design

Taba = Tool  to  Analyze  the  Binding
Affinity
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