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 Abstract: Background: CDK2 participates in the control of eukaryotic cell-cycle progression. Due to 
the great interest in CDK2 for drug development and the relative easiness in crystallizing this enzyme, 
we have over 400 structural studies focused on this protein target. This structural data is the basis for 
the development of computational models to estimate CDK2-ligand binding affinity. 

Objective: This work focuses on the recent developments in the application of supervised machine 
learning modeling to develop scoring functions to predict the binding affinity of CDK2. 

Method: We employed the structures available at the protein data bank and the ligand information ac-
cessed from the BindingDB, Binding MOAD, and PDBbind to evaluate the predictive performance of 
machine learning techniques combined with physical modeling used to calculate binding affinity. We 
compared this hybrid methodology with classical scoring functions available in docking programs. 

Results: Our comparative analysis of previously published models indicated that a model created using 
a combination of a mass-spring system and cross-validated Elastic Net to predict the binding affinity of 
CDK2-inhibitor complexes outperformed classical scoring functions available in AutoDock4 and Au-
toDock Vina.  

Conclusion: All studies reviewed here suggest that targeted machine learning models are superior to 
classical scoring functions to calculate binding affinities. Specifically for CDK2, we see that the com-
bination of physical modeling with supervised machine learning techniques exhibits improved predic-
tive performance to calculate the protein-ligand binding affinity. These results find theoretical support 
in the application of the concept of scoring function space. 
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1. INTRODUCTION 

 Evaluation of binding affinity data based on the 
structures of receptor-ligand complexes is an open 
problem in the application of docking simulations for 
drug discovery [1-5]. Considering the available struc-
tural data for a specific enzyme, we may use this  
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information to understand the basis for enzymatic inhi-
bition. The increase in the number of structures at the 
protein data bank (PDB) made available the experi-
mental data necessary to analyze protein-ligand interac-
tions crucial for the understanding of the molecular 
recognition process with a focus on the binding of 
drugs to receptor targets [6-8].  

X-ray diffraction crystallography has been the most 
successful technique to determine the structures of pro-
tein-ligand complexes. Taking the complexes for which 
binding affinity data is available, we have over 99 % of 
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the structural information generated by crystallography 
[5, 9]. 

Studying the physical basis of intermolecular inter-
actions in protein systems, we know that the key as-
pects defining the molecular recognition process in-
volve van der Waals contacts [10], electrostatic interac-
tions [2, 11], hydrogen bonding [12], and entropy [13]. 
The most robust theoretical approach to calculate the 
energetics of intermolecular interaction is the applica-
tion of quantum mechanics [14-21], where the intermo-
lecular interactions can be evaluated with precision 
[22]. Quantum-mechanics approaches have been suc-
cessful in drug discovery applications using protein-
ligand docking simulations and scoring function devel-
opment [17]. 

Considering the potential of quantum mechanics for 
drug discovery, we may highlight that in the future, the 
application of quantum computing methodologies and 
supervised-machine learning software to drug discov-
ery will generate few false-positive leads in the appli-
cation of docking screens for drug discovery [23]. In 
the opposition to quantum mechanics methods, we may 
approach intermolecular interactions of a drug and a 
macromolecule through molecular dynamics simula-
tions of protein-ligand complexes [24-29]. Besides 
quantum mechanics and molecular dynamics, we may 
also address protein-ligand interactions through the 
training of machine learning models targeted to specif-
ic protein systems.  

In this scenario, the study of intermolecular interac-
tions through the combination of protein-ligand dock-
ing simulations and machine learning methods to de-
velop targeted scoring functions has shown the poten-
tial of generating robust computational models to pre-
dict binding affinity [30-32]. These approaches are also 
adequate to assess the structural features responsible 
for the molecular recognition process. This type of in-
tegration of structural data and machine learning tech-
niques has been successfully applied to a wide range of 
protein targets, such as cyclin-dependent kinases (EC 
2.7.11.22) [33, 34], proteases [35-38], and more recent-
ly to SARS-CoV-2 drug targets [39-43]. 

 In recent years, due to the availability of machine 
learning methods implemented in libraries using Py-
thon and R programming languages, we have witnessed 
a great number of computational tools devoted to gen-
erating models to calculate affinity based on the atomic 
coordinates of protein-ligand complexes. Among the 
recently published machine learning programs to esti-
mate binding affinity or thermodynamic parameters, 
we may highlight the following computational tools: 

Statistical Analysis of Docking Results and Scoring 
Functions (SAnDReS) [44, 45], Tool to Analyze the 
Binding Affinity (Taba) [46, 47], Pafnucy [48], proper-
ty-encoded shape distributions together with standard 
support vector machine (PESD-SVM) [49], Neural-
Network-Based Scoring function (NNScore series) [50-
52], and Random Forest Score (RF-Score series) [53-
57]. 

In this review, we describe recent applications of 
machine learning methods to estimate the binding af-
finity of ligands against targets. These computational 
methods use experimental protein-ligand structures for 
which binding data is available. The synergism of crys-
tal data and machine learning techniques paved the way 
to explore the scoring function space [9, 58, 59], which 
establishes a theoretical framework to address the chal-
lenging studies of protein-drug interactions. The devel-
opment of a theoretical basis to address the creation of 
targeted scoring functions is the solid basis necessary 
to fortify the computational models designed for spe-
cific protein targets, making them much more than for-
tuitous statistical models to predict a biology response.  

This scenario makes it clear that the study of com-
plex systems found in cells targeted by drugs is viable 
to an abstraction brought about by the concept of scor-
ing function space [9, 58, 59]. Here, we focus on the 
application of machine learning methods to crystallo-
graphic structures of cyclin-dependent kinase 2 
(CDK2). This protein target has experimental infor-
mation for three-dimensional structures and the binding 
affinity, which makes this system ideal for the devel-
opment of targeted-scoring functions through the appli-
cation of machine learning techniques. 

2. METHODS 

The PDB has recently reached over 175,000 struc-
tures (search carried out on March 24, 2021). This 
amount of structural information adds to the experi-
mental data about binding affinity available at Bind-
ingDB [60, 61], Binding MOAD (Mother of All Data-
bases) [62-64], and PDBbind [65, 66]. These three da-
tabases are integrated at the PDB, which allows us to 
perform searches to recover structures for which bind-
ing affinity or thermodynamic parameters are known.  

To highlight the recent progress in the application of 
machine learning techniques, we describe computa-
tional models to predict the affinity of ligands for 
CDK2. To focus on previously published results of this 
protein class, we bring a recent update in the number of 
structures for which experimental binding affinity data 
is available.  
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2.1. CDK2Ki Dataset 

We considered only CDK2 crystal structures for 
which experimental inhibition constant data is availa-
ble. We updated a recently published CDK dataset 
[46], where we have not only CDK2 but also CDK9. 
We eliminated CDK9 data (search carried out on 
March 24, 2021). We show the selected PDB access 
codes in Table 1. Supplementary material 1 brings the 
CDK2 inhibitor structures for all entries in the 
CDK2Ki dataset. 
Table 1. PDB access codes of the CDK2Ki dataset. 

Type of Dataset PDB Access Codes 

Training set 

1E1X,1H1S,1OGU,1PXN,1PXP,2CLX, 
2EXM,2FVD,3LFN,4ACM,4BCK, 

4BCM,4BCN,4BCO,4BCP,4BCQ,4EOP, 
4FKO,4NJ3,5D1J 

Test set 
1E1V,1JSV,1PXM,1PXO,1PYE,1V1K, 

2XMY,2XNB,3LFS 

 

As previously highlighted, we find binding affinity 
data for CDK2 in the BindingDB [57, 58], Binding 
MOAD (Mother of All Databases) [59-61], and 
PDBbind [62, 63]. The data about IC50 relies on a wide 
range of techniques to evaluate the binding. On the 
other hand, Ki focuses on a smaller set of experimental 
techniques, but there is no uniform method to address 
the ligand binding to CDK2 [46]. One possible poten-
tial technique to generate a more reliable experimental 
approach to calculate the binding would be to address 
the energetics of the CDK2-ligand interactions using 
isothermal microcalorimetry (ITC). Unfortunately, the 
experimental data about Gibbs free energy of binding 
for CDK2-ligand complexes using ITC is scarce [30, 
31]. Due to these challenges, we focused our analysis 
on previously published machine learning modeling of 
Ki data. We eliminated repeated ligands and for CDK2-
ligand complexes with more than one source of binding 
affinity, we chose the most recent published results. 

2.2. Classical Scoring Functions 

We calculated binding affinity using the atomic co-
ordinates of the protein-ligand complexes available in 
the CDK2Ki dataset employing the classical scoring 
functions implemented in the docking programs Auto-
Dock4 [67, 68] and AutoDock Vina (version 1.1.2) 
[69]. Ligand and protein atomic partial charges were 
assigned using the Partial Equalization of Orbital Elec-
tronegativities (PEOE) algorithm [70] employing Au-
toDockTools4 [67] (version 1.5.6). No protein-ligand 

docking simulations were carried out, the binding affin-
ity calculation was based exclusively on the atomic 
coordinates of the crystallographic structures.  

2.3. Combining Physical Modeling with Machine 
Learning 

The program Taba (version 1.0) estimates ligand 
binding affinity based on an approach that models pro-
tein-ligand interactions as a mass-spring system [46, 
47]. In this method, we consider that the key determi-
nants for protein-ligand binding affinity are already 
registered in the three-dimensional structure of the 
complexes and estimate the energy of the system using 
a polynomial equation where each term (independent 
variable) of this expression considers an isolate mass-
spring system composed of a potential equation for a 
pair of atoms. 

Taba scoring function relies on simple modeling of 
protein-ligand energetics. We consider protein-ligand 
interaction as a mass-spring system, as delineated in 
Fig. (1). In Fig. (1), we see that the energetics of the 
intermolecular interactions are imprinted in the three-
dimensional structure and model this complex net of 
interactions as independent mass-spring systems. In 
this representation, the energetics of the protein-ligand 
complex is the summation of each type of pair of atoms 
found in the structure. We express the potential energy 
of the protein system (V) by the following equation, 

V x, y, z = ω!,! d!,! − d!,!,!
!

!!          (1) 

In Equation (1), ωi,j is the weight of each independ-
ent variable. We determine these weights through the 
application of machine-learning techniques. The double 
summation in equation (1) is taken over all protein (i) 
and ligand atoms (j) inside a defined volume of the 
structure. The term d0,i,j is the average interatomic dis-
tance for a given pair of atoms i and j, which is calcu-
lated for all structures in the training set. The program 
Taba calculates the terms (ωi,j, and d0,i,j), taking all 
structures in the training set. The term di,j is the Euclid-
ean distance for a pair of atoms for one specific struc-
ture (not averaged for all structures) [46].  

Taba reads the coordinates of all structures in a da-
taset and calculates the average distance involving the 
atoms in the protein (P) and the ligand (L). In this ap-
proach, we have average distances for different types 
of pairs of atoms, one for carbon (P)-carbon (L), anoth-
er for oxygen (P)-nitrogen (L), and so on. In each pair 
of atoms (PL), we take one atom from the ligand and 
the second from the protein. Taba considers these aver-
age interatomic distances as the equilibrium distances of 
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our mass-spring system and determines the relative 
weights of each energy term using supervised machine 
learning techniques [71]. In the final model developed 
using Taba, we keep only the most relevant energy terms. 
In this review, we describe the machine learning models 
[72] developed for the CDK2Ki dataset. Taba takes an 
elegant combination of physical modeling with super-
vised machine learning techniques to address protein-
ligand interactions. Fig. (2) outlines a schematic flowchart 
with the major steps of the Taba methodology [46]. 

 
Fig. (1). Schematic representation of protein-ligand interac-
tions as mass-spring systems. We employ d0,i,j to indicate the 
average interatomic distance for a given pair of atoms i and j. 
Thin lines represent covalent bonds for the ligand and the 
thicker lines indicate the amino acids in the protein (A higher 
resolution / colour version of this figure is available in the 
electronic copy of the article). 

 

We briefly describe the Taba methodology, we start 
the application of Taba by defining a dataset of struc-
tures for which binding affinity data is available. Taba 
splits this dataset into training and test sets. For the 
structures in the training set, Taba calculates equilibri-
um distances, as previously defined. Taba employs this 
method to determine the weights of each independent 
variable defined in equation (1). Also, to avoid overfit-
ting Taba employs standard k-fold cross-validation 
[46], where it splits the data into k subsets, called folds. 
In this method, Taba takes a five-fold cross-validation 
procedure. Taba employs training and test sets in the 
cross-validated supervised machine learning methods. 
Taba determines the predictive performance of each 
model based on correlation coefficients [46] and re-
turns the best model. 

2.4. SAnDReS 

SAnDReS (version 1.1) is a suite of programs that 
aims to develop machine learning models based on the 
energy terms calculated by docking programs such as 
AutoDock4 [67, 68] and AutoDock Vina [69] in one 

computational tool [44, 45]. SAnDReS makes use of 
supervised machine learning methods available in the 
scikit-learn library [71] to generate polynomial empiri-
cal scoring functions to predict binding affinity [73-
76]. These polynomial equations employ the energy 
terms calculated using the previously highlighted pro-
tein-ligand docking programs [67-69] and the crystal-
lographic coordinates of protein and ligand. SAnDReS 
applies the same k-fold cross-validation approach de-
scribed for the program Taba. 

 
Fig. (2). Schematic flowchart for Taba methodology [46], 
where we combine physical modeling with machine learning 
methods. In the first two steps, we define the structures in the 
datasets. Taba automatically downloads structural and bind-
ing data from the PDB and binding affinity databases. In the 
next step, Taba determines the equilibrium distances for all 
structures in the training set. Taba considers protein-ligand 
interactions as a mass-spring system. Following this, Taba 
applies supervised machine learning to calculate the relative 
weights of each independent variable in Equation (1) to gen-
erate models to calculate the predicted affinity (PA) based on 
the atomic coordinates of protein-ligand complexes. Finally, 
Taba selects the scoring function based on the predictive 
performance against the structures in the test set. 

2.5. Machine Learning Models 

Taba and SAnDReS rely on scikit-learn [71] to gen-
erate machine learning models to predict binding af-
finity based on the atomic coordinates of protein-ligand 
complexes. In the SAnDReS approach, we have the 
development of machine learning models using energy 
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terms available in docking programs. On the other 
hand, Taba employs physical modeling of the intermo-
lecular interactions. SAnDReS and Taba have the fol-
lowing supervised machine learning methods taken 
from scikit-learn [71]: Ridge, Lasso, Elastic Net, and 
Ordinary Linear Regression. For the first three meth-
ods, we have an additional option with cross-
validation. Taken together, we have seven supervised 
machine-learning techniques in each program. 

2.6. Statistical Analysis 

We assessed the predictive power of the scoring 
functions calculating the correlation coefficients [77], 
p-values, and root-mean-squared error (RMSE) be-
tween the experimental data and the predicted binding 
affinity determined using the classical scoring func-
tions [67-71], the empirical polynomial scoring func-
tions developed using SAnDReS [44, 45], and the Taba 
mass-spring models [46, 47]. We generated the ma-
chine learning models using approximately 70 % of the 
structures in the CDK2Ki dataset (training set) and ~30 
% of the dataset as a test set as suggested by Cichero et 
al. 2010 [78]. 

Taba uses four significant figures to express the in-
teratomic distances to model protein systems. With this 
number of significant figures for distances, we have 
values with 1/1000 of Å as adopted in the PDB to ex-
press atomic coordinates of macromolecular structures 
[6, 7]. For interatomic distances, the X-ray diffraction 
crystallographic resolution is not the associated error in 
the atomic coordinates. These errors are not necessarily 
in the range of 0.001 Å for the atomic coordinates and 
distances, but using statistical analysis of experimental 
X-ray diffraction data and the final structure model 
such as the Luzzati plot, we have an associated error in 
the range 0.2 Å for a CDK2 with a resolution of 2.4 Å. 
For log (Ki), we adopted two significant figures, taking 
the experimental data for Ki from the binding databases 
[60-66]. 

3. RESULTS AND DISCUSSION 

3.1. Biological System 

In this review, we focus on the application of ma-
chine learning techniques to predict the binding affinity 
of ligands against structures of CDK2. This protein 
comprises an interesting biological system for the de-
velopment of scoring functions for two main reasons. 
Firstly, the availability of crystallographic structures 
for which binding affinity data is known. Secondly, it 
is due to the importance of CDK2 for drug discovery 
and development [79]. CDK2 is a target for the devel-

opment of anticancer drugs [80-83]. A search on clini-
caltrials.gov using as keywords CDK2 and cancer re-
turned 11 trials, including six which are either recruit-
ing or active (search carried out on March 24, 2021). 
Among the CDK inhibitors identified so far, we may 
highlight the FDA-approved drug palbociclib, which 
can treat postmenopausal women with breast cancer 
[84-91]. 

Considering the filtered CDK2Ki dataset [46], 
where we removed the data related to CDK9 and elim-
inated ligands for which information about binding af-
finity from the PDB showed inconsistencies in the in-
formation associated with the PDBBind, BindingDB, 
and Binding MOAD, we ended up with 29 structures. 
These inconsistencies are related to different values of 
binding affinity for the same ligand.  

In the CDK2Ki dataset, all crystallographic struc-
tures have competitive inhibitors non-covalently bound 
to the ATP-binding pocket of CDK2, with resolution 
ranging from 1.55 to 2.8 Å. The CDK2 has two do-
mains with the N-terminal composed of a distorted be-
ta-sheet and the C-terminal made mostly of alpha-
helical structures as indicated in Fig. (3). The ATP-
binding pocket of CDK2 lies between the two domains. 
All competitive inhibitors bind to this pocket. Calcula-
tion of the volume of this binding site using Molegro 
Virtual Docker (MVD) (version 6) [92-95] and a probe 
with a radius of 1.2 Å indicated a volume of 201.728 
Å3, which allows a wide range of different ligand struc-
tures to fit into this volume [82, 83]. 

In Fig. (4), we have the binding pocket of the struc-
ture of CDK2 in complex with roscovitine [96], where 
we highlight the two main residues of CDK2 participat-
ing in intermolecular interactions. Previously published 
intermolecular contact analyses of the residues partici-
pating in interactions involving inhibitors and the ATP-
binding pocket indicated the participation of main-
chain oxygen and nitrogen atoms of Leu 83 and Glu 81 
of CDK2 in most complexes with high specific CDK2 
inhibitors [97-112]. 

We have 415 structures of CDK2 deposited in the 
PDB (search carried out using UniProt Molecule Name 
as cyclin-dependent kinase 2 on March 24, 2021). 
Among these structures, 212 entries have validated in-
hibitors bound to the ATP-binding pocket of CDK2. 
Most of these ligands have data about IC50 and the mi-
nority about Ki. Analysis of the intermolecular interac-
tions of these complex structures indicated that most of 
the inhibitors show intermolecular hydrogen bonds in-
volving main-chain nitrogen and oxygen of Leu 83 and 
Glu 81, forming a sequence of spots for the binding of 
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inhibitors named the molecular fork [82]. In Fig. (4), 
we see two of these intermolecular hydrogen bonds 
with the participation of main-chain atoms of the resi-
due Leu 83. 

 
Fig. (3). Structure of human CDK2 in complex with the in-
hibitor roscovitine (PDB access code: 2A4L). The roscovit-
ine is indicated with thick lines and the ribbons represent the 
protein structure. We used the program MVD (version 6) 
[92-95] to generate this figure (A higher resolution / colour 
version of this figure is available in the electronic copy of the 
article). 

 

 
Fig. (4). Intermolecular hydrogen bonds of the inhibitor ros-
covitine (RRC) with the residue Leu 83 of the CDK2. 
Dashed lines indicate hydrogen bonds. On the right, we have 
the structure of the residue Glu 81 that participates in inter-
molecular hydrogen bonds in other CDK2-inhibitor struc-
tures. We used the program MVD (version 6) [92-95] to 
generate this figure (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 

 

3.2. Binding Affinity with Classical Scoring Func-
tion 

AutoDock4 and AutoDock Vina have been success-
fully applied to different protein targets to identify po-
tential hits. Their scoring functions are fully described 
in the following references [113-115]. On the other 
hand, the evaluation of binding affinity using the avail-
able scoring functions in these programs was not relia-
ble [46, 47, 116-118]. Application of AutoDock4 to 
predict binding affinity using the crystallographic posi-
tion of the ligands in the CDK2Ki (training set) gener-
ated a Spearman rank correlation coefficient (ρ) of 

0.358 with a p-value of 0.12. Analysis of the predictive 
power of each energy term used in the AutoDock4 
scoring function generated ρ ranging from -0.348 to 
0.359, all with p-values > 0.1. Analysis of the predic-
tive performance for the structures in the test set pro-
duced ρ ranging from -0.183 to 0.367, all with p-values 
> 0.1. Supplementary materials 2 and 3 bring the pre-
dicted and experimental binding affinities for all struc-
tures in the CDK2Ki training and test sets, respectively. 

Assessment of the binding affinity of the structures 
in the training set using a full scoring function and en-
ergy terms available in AutoDock Vina generated ρ 
ranging from -0.171 to 0.224, with p-values > 0.1. The 
highest correlation was obtained for the full scoring 
function of AutoDock Vina. Analysis of the correlation 
for the structures in the test set showed ρ ranging from 
-0.417 to 0.117, with p-values > 0.1. Supplementary 
materials 4 and 5 have the binding affinities calculated 
using AutoDock Vina for all structures in the CDK2Ki 
training and test sets, respectively.  

The predictive performance of both classical scoring 
functions is poor. One possible reason for this failure in 
predicting binding affinity using classical scoring func-
tions is the methodology applied in the creation of the-
se computational models. We may highlight that most 
of the classical scoring functions use energy terms for 
van der Waals, electrostatic energy, hydrogen bonding, 
and solvation effects and then determine the relative 
weight of each energy term based on the regression 
method [1, 119-124]. Such an approach creates a model 
bias against the structures not employed in the training 
set so that these computational models to predict bind-
ing affinity are prone to work for proteins present in the 
training set used to determine the relative weights of 
each energy term in the empirical scoring function. On 
the other hand, protein systems not present in the origi-
nal training set or poorly represented in it could be out 
of the scope of the classical scoring function [44, 45], 
which generates a low correlation with experimental 
data as observed for the structures in the CDK2Ki da-
taset.  

3.3. Binding Affinity with SAnDReS 

SAnDReS aims to integrate all necessary steps to 
create machine learning models in one suite of pro-
grams [44]. SAnDReS has been applied to a wide range 
of different protein systems [125-143] and has success-
fully generated machine learning models that outper-
form classical scoring functions in the prediction of 
binding affinity [45, 144-151].  
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Application of the machine learning methods of 
SAnDReS to the structures in the training set and the 
energy terms calculated using the program AutoDock4 
generated polynomials equations with three independ-
ent variables (features in the machine learning termi-
nology), which gives more than six observations for 
each independent variable. These polynomial scoring 
equations are described elsewhere [125-143]. The ratio 
of five observations (structures) per independent varia-
ble (or descriptor) is the minimum requested by the 
rule of thumb recommended for regressions models 
[152, 153]. Amongst the seven machine learning meth-
ods available in SAnDReS, the Elastic Net with cross-
validation showed the best overall predictive perfor-
mance. The highest correlation model has an ρ = 0.319, 
a p-value of 0.17, and an RMSE = 1.1, a correlation 
worse than the classical scoring functions. The correla-
tion for the structures in the test set was also poor, with 
an ρ = -0.183, p-value = 0.64, and an RMSE of 1.7. 
Fig. (5a) shows the scattering plot for the test set struc-
tures. The polynomial equation for the predicted affini-
ty (PA) generated using SAnDReS is shown in equa-
tion (2), 
PA  (model  1) = −6.5 − 0.0416(Final  Intermolecular  Energy)   +
  0.0416(vdW + Hbond + Desolvation  Energy)   +
  0.192(Final  Total  InternalEnergy)   (2) 

In equation (2), the variables vdW and Hbond rep-
resent van der Waals and hydrogen bond energy terms, 
respectively. A detailed description of the expression of 
each energy term is available elsewhere [67].  

Using the same approach for the energy terms cal-
culated using AutoDock Vina, we have the highest cor-
relation model with an ρ = 0.537, a p-value of 0.015, 
and RMSE = 1.0. The expression of this machine learn-
ing model is in equation (3), as follows, 
PA  (model  2) = −3.2   − 0.00288(Gauss2)   +   0.00982(Repulsion)   +
  0.0220(Hydrophobic)  (3) 

The descriptions for the energy terms in equation 
(3) are presented elsewhere [69]. Analysis of this poly-
nomial model against the structures in the test indicated 
an ρ = 0.067, a p-value of 0.86, and an RMSE = 2.0. In 
Fig. (5b), we have the scattering plot for the test set 
structures. Although the model generated using the en-
ergy terms of the AutoDock Vina showed some prom-
ising results for the training set, the evaluation against 
the test set showed poor predictive power. 

3.4. Binding Affinity with Taba 

Taba addresses protein-drug interactions as a mass-
spring system and combines it with an integrated appli-
cation of supervised machine learning techniques to 

generate a targeted scoring function where the inde-
pendent variables are mass-spring micro-systems com-
posed of pairs of atoms. A previously published study 
using this approach to generate a computational model 
calibrated for CDK structures [46, 47] was able to pre-
dict binding affinity with superior performance com-
pared with classical scoring functions. 

In the present study, we focused on a previously de-
scribed CDK machine learning model [46] filtered for 
CDK2 structures to create a CDK2-targeted scoring 
function. In this model, we deleted the CDK9 data to 
have only CDK2 structures. We used a polynomial 
equation with three independent variables taking as 
energy terms the contributions of the following pairs of 
atoms: C-C, C-S, and O-O. Each independent variable 
is a mass-spring potential energy function. The equilib-
rium distances for each pair of atoms were calculated 
using the average distance taking all structures in the 
training set. We tested seven machine learning ap-
proaches available in Taba, and the Elastic Net with 
cross-validation also showed the highest correlation 
between experimental and predicted affinities. The ma-
chine learning model determined using Taba has the 
following expression (equation (4)), 
PA  (model  3) = ω! + ω!(d!,! − d!,!,!)! + ω!(d!,! −
d!,!,!)! + ω!(d!,! − d!,!,!)!  (4) 

In equation (4), the weights are the following: ω0 = - 
6.6, ω1 = 0.132, ω2 = 0.461, and ω3 = 0.226. The equi-
librium distances have the following values: d0,C,C = 
4.078 Å, d0,C,S = 4.120 Å, and d0,O,O = 3.663 Å. 

For the training set, the Taba model has a correla-
tion ρ = 0.750 with a p-value = 0.0001 and RMSE = 
5.1. For the test set, we have ρ = 0.817 with a p-value = 
0.007 and a RMSE = 5.7. Supplementary materials 6 
and 7 bring the predicted binding affinity for the train-
ing and test sets, respectively. In Fig. (5c) we have the 
scattering plot for the test set structures. 

Considering the correlation, the Taba model showed 
the best predictive performance, compared with the 
classical scoring functions and the SAnDReS machine 
learning models. Nevertheless, the RMSE values for 
training and test sets are relatively high for the Taba 
model, over 5.0. RMSE values of the SAnDReS mod-
els were all below 2.1. This might be due to the sim-
plicity of the mass-spring approach to protein-ligand 
interactions. 

 Taking the classical scoring functions and the three 
machine learning models, we may say that these mod-
els show some potential but failed in at least one key 
aspect of the statistical analysis of the predictive per-
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formance. Using the suite of programs SAnDReS, we 
developed a novel scoring function (model 4) consider-
ing the models generated using terms from AutoDock4 
(model 1), AutoDock Vina (model 2), and Taba (model 
3). Applying the cross-validated Elastic Net method 
taking the previously generated models, we have the 
following expression (equation (5)), 
PA   model  4 =   −  0.36 + 0.770  PA(model  1)   +
  0.0931  PA(model  2)   +   0.200  PA(model  3)           (5) 

Taking the training set, the new machine learning 
model (model 4) has a ρ = 0.750 with a p-value = 
0.0001, and an RMSE = 0.7. For the test set, we have 
an ρ = 0.733 with a p-value = 0.03, and an RMSE = 

1.3. In Fig. (5d), we have the scattering plot for the test 
set structures. The correlation for the training set is the 
same and for the test set, we have a worse result, when 
compared with model 3. Taking the RMSE, we observe 
a significant improvement of model 4 in the training 
and test sets. This progress in model 4 is due to the ad-
dition of terms for electrostatics, desolvation, and hy-
drogen bonding, not present in model 3.  

These differences in the predictive performance of 
the machine learning models should always be consid-
ered in the context where we applied it and keeping in 
mind the limitations of the training sets for protein sys-
tems. We chose to focus on structures for which exper-
imental data for atomic coordinates and inhibition con-

 

 
Fig. (5). Scatter plots for predicted and experimental binding affinities. a) PA generated using energy terms available in Auto-
Dock4 with machine learning modeling performed with SAnDReS (model 1) (ρ = -0.183, p-value = 0.64, and RMSE = 1.7). b) 
PA generated using energy terms available in AutoDock Vina with regression modeling carried out with SAnDReS (model 2) 
(ρ = 0.067, p-value = 0.86, and RMSE = 2.0). c) Mass-spring model generated using Taba (model 3) (ρ = 0.817, p-value = 
0.007, and RMSE = 5.7). d) Machine learning model involving the three previous models performed using SAnDReS (model 
4) (ρ = 0.733, p-value = 0.03, and RMSE = 1.3). We used cross-validated Elastic Net to generate all machine learning models. 
We used the program SAnDReS [44] to generate all plots in this figure.  
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stants are available. This criterion limits the ratio ob-
servations per independent variable but creates ma-
chine learning models strictly based on robust experi-
mental information. Also, although we have a poor ra-
tio of observations per independent variable from the 
machine learning point of view, considering the criteria 
used for modeling scoring functions to assess binding 
affinitybased on atomic coordinates, we satisfy a well-
established rule of thumb [152, 153]. In summary, con-
sidering RMSE and p-value, model 4 exhibits the best 
overall performance for the CDK2Ki dataset. 

3.5. Scoring Function Space 

The success of the application of targeted-scoring 
functions to predict binding affinity established the ba-
sis for the creation of a mathematical abstraction for 
the development of computational models to address 
protein-ligand interactions [9, 58]. Taking a systems-
level approach to address this problem, we may inves-
tigate the relation involving the chemical [126, 154-
161] and protein [162, 163] spaces. Defining a subset 
of the chemical space as formed by the inhibitors of a 
specific enzyme and seeing this protein as an element 
of the protein space, we may envisage this relation as a 
base to search the scoring function space. This mathe-
matical space has all potential computational models 
able to predict the binding affinity taking as input the 

atomic coordinates of protein-ligand complexes. We 
apply machine learning methods to identify an ade-
quate function to predict binding affinity for an element 
of the protein space considering the relation with a sub-
set of the chemical space.  

Fig. (6) illustrates the relations involving protein, 
chemical, scoring function spaces. We consider CDK2 
as an element of the protein space. We highlight a sub-
set in the chemical space composed of CDK2 inhibi-
tors. Then, we may use machine learning approaches to 
identify a model to predict binding affinity for this en-
zyme [9, 46-54]. With this mathematical abstraction, 
we have a solid theoretical background to explain the 
superior predictive performances of machine learning 
models developed using SAnDReS [44] and Taba [46], 
when compared with classical scoring functions. Tar-
geted scoring functions are the results of explorations 
of the scoring function space. So, we define their func-
tions for a single protein.  

One way to think about this abstraction is taking the 
experimental binding and the crystallographic data 
available for a given protein as a system, where 
through the application of machine learning methods 
we create a computational model tailored to this bio-
logical system. In doing so, we give up to find a gen-
eral scoring function for all proteins; we address this 

 
Fig. (6). Schematic diagram illustrating the relations involving protein, chemical, and scoring function spaces. On the right, we 
take an element of the protein space, indicated by the green sphere. This element is the CDK2. Then, we highlight a subset of 
the chemical space composed of CDK2 inhibitors. Finally, we apply machine learning techniques to explore the scoring func-
tion space to find an adequate model to predict the binding affinity. We used the program MVD (version 6) [92-95] to generate 
the chemical and protein spaces in this figure (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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problem by generating a fine-tuned computational 
model. This approach seems realistic considering the 
restricted volume of experimental data, especially see-
ing the complex structures for which experimental 
binding affinity is available. Also, we assume that as 
being proteins dependent on the evolution and integrat-
ed into a complex chemical environment, as found in 
the biological systems, the use of a targeted machine-
learning model is suitable to predict binding affinity. 
Besides the studies reviewed here, other authors carried 
out machine-learning studies focused on CDK [164, 
165]. 

CONCLUSION 

The application of machine learning methods for the 
development of empirical scoring functions to predict 
protein-ligand binding affinity gave support to the use 
of these techniques to address the energetics of these 
molecular systems. The superior predictive perfor-
mance of targeted scoring served as the basis for the 
development of the concept of scoring function space 
[9]. This mathematical abstraction makes it possible to 
integrate computational systems biology with machine 
learning techniques to address protein-ligand interac-
tions. By the use of supervised machine learning tech-
niques, we can explore this scoring function space to 
build a computational model targeted to a specific pro-
tein system. Here, we highlighted the superior predic-
tive power of supervised machine learning approaches 
when compared to classical scoring functions using 
CDK2 as an example. Specifically for CDK2, machine 
learning models outperform classical scoring functions 
available in protein-ligand docking programs (Auto-
Dock4 and AutoDock Vina). Although target-specific 
scoring functions show superior predictive perfor-
mance compared with generalized approaches, there 
are two major weaknesses of this approach. Targeted 
machine learning models capture the essence of the 
binding focused on a specific pocket. Therefore allo-
steric ligands exhibiting a different binding mode 
would require another targeted machine learning model 
for the same enzyme, and most surely, protein targets 
with highly flexible binding pockets would prove to be 
very challenging to cope with since the training of tar-
geted scoring function rely exclusively on crystallo-
graphic structures, at least for the methods we present-
ed here. 

LIST OF ABBREVIATIONS 

CDK2 = Cyclin-dependent Kinase 2 

CDK2Ki = CDK2 Dataset for which Ki is 
Known 

CDK9 = Cyclin-dependent Kinase 9 

FDA = Food and Drug Administration 

Ki = Inhibition Constant 

ITC = Isothermal Microcalorimetry 

MOAD = Mother of All Databases  

MVD = Molegro Virtual Docker 

NNScore = Neural-network-based Scoring 
Function 

PA = Predicted Affinity 

PDB = Protein Data Bank 

PESD-SVM = Property-encoded Shape dIstri-
butions Together with Standard 
support Vector Machine 

ρ = Spearman Rank Correlation 
Coefficient 

RF-Score = Random Forest Score 

RMSE = root-mean-square Error 

SAnDReS = Statistical Analysis of Docking 
Results and Scoring Functions 

Taba = Tool to Analyze the Binding 
Affinity 

CONSENT FOR PUBLICATION 

Not applicable. 

FUNDING 

WFA is a researcher for CNPq (Brazil) (Process 
Number: 309029/2018-0). This study was financed in 
part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) – Finance Co-
de 001.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest, financial 
or otherwise.  

ACKNOWLEDGEMENTS 

We acknowledge the assistance of the reviewers of 
this work, who helped us in many ways through their 
enlightening comments and valuable suggestions. 
Without their contributions, this manuscript would not 
be possible. This study was financed in part by the 
Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior - Brasil (CAPES) – Finance Code 001. MVA 
acknowledges the receipt of the Dieter H. Haenicke 
Scholarship (Haenicke Institute for Global Education). 

 



Computational Prediction of Binding Affinity Current Medicinal Chemistry, XXXX, Vol. XX, No. XX    11 

SUPPLEMENTARY MATERIAL 

Supplementary material can be found on the pub-
lishers website along with the published article.  

REFERENCES 
[1] Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. 

Evidence of protein binding by a nucleopeptide based on a 
thymine-decorated L-diaminopropanoic acid through CD 
and in silico studies. Curr. Med. Chem., 2021, 28(24), 
5004-5015. 

 http://dx.doi.org/10.2174/0929867328666210201152326 
PMID: 33593247 

[2] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. Electrostatic 
potential energy in protein-drug complexes. Curr. Med. 
Chem., 2021, 28(24), 4954-4971. 

 http://dx.doi.org/10.2174/0929867328666210201150842 
PMID: 33593246 

[3] Bondžić, A.M.; Vasić Anićijević, D.D.; Janjić, G.V.; Ze-
ković, I.; Momić, T.; Nikezić, A.V.; Vasić, V.M. Na, K-
ATPase as a biological target for gold(III) complexes: a 
theoretical and experimental approach. Curr. Med. Chem., 
2021, 28(23), 4742-4798. 

 http://dx.doi.org/10.2174/0929867328999210101233801 
PMID: 33397227 

[4] Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in 
docking. Curr. Med. Chem., 2019, 26(42), 7555-7580. 

 http://dx.doi.org/10.2174/0929867325666180904115000 
PMID: 30182836 

[5] Veit-Acosta, M.; de Azevedo, W.F.Jr. The impact of crys-
tallographicdata for the development of machine learning 
models to predict protein-ligand binding affinity. Curr. 
Med. Chem., 2021. Online ahead of print. 

 http://dx.doi.org/10.2174/0929867328666210210121320 
PMID: 33568025 

[6] Berman, H.M.; Vallat, B.; Lawson, C.L. The data universe 
of structural biology. IUCrJ, 2020, 7(Pt 4), 630-638. 

 http://dx.doi.org/10.1107/S205225252000562X PMID: 
32695409 

[7] Westbrook, J.D.; Soskind, R.; Hudson, B.P.; Burley, S.K. 
Impact of the protein data bank on antineoplastic approvals. 
Drug Discov. Today, 2020, 25(5), 837-850. 

 http://dx.doi.org/10.1016/j.drudis.2020.02.002 PMID: 
32068073 

[8] Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction 
domains and post-translational modifications: structural fea-
tures and drug discovery applications. Curr. Med. Chem., 
2020, 27(37), 6306-6355. 

 http://dx.doi.org/10.2174/0929867326666190620101637 
PMID: 31250750 

[9] Heck, G.S.; Pintro, V.O.; Pereira, R.R.; de Ávila, M.B.; 
Levin, N.M.B.; de Azevedo, W.F. Supervised machine 
learning methods applied to predict ligand-binding affinity. 
Curr. Med. Chem., 2017, 24(23), 2459-2470. 

 http://dx.doi.org/10.2174/0929867324666170623092503 
PMID: 28641555 

[10] Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, 
W.F.Jr. Van der Waals potential in protein complexes. 
Methods Mol. Biol., 2019, 2053, 79-91. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_6 PMID: 
31452100 

[11] Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, 
W.F.Jr. Electrostatic energy in protein-ligand complexes. 
Methods Mol. Biol., 2019, 2053, 67-77. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_5 PMID: 
31452099 

[12] Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, 
W.F.Jr. Hydrogen bonds in protein-ligand complexes. 
Methods Mol. Biol., 2019, 2053, 93-107. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_7 PMID: 
31452101 

[13] Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D.J.; 
Kellogg, G.E.; Mozzarelli, A. Free energy of ligand binding 
to protein: evaluation of the contribution of water molecules 
by computational methods. Curr. Med. Chem., 2004, 
11(23), 3093-3118. 

 http://dx.doi.org/10.2174/0929867043363929 PMID: 
15579003 

[14] Peters, M.B.; Raha, K.; Merz, K.M.Jr. Quantum mechanics 
in structure-based drug design. Curr. Opin. Drug Discov. 
Devel., 2006, 9(3), 370-379. 
PMID: 16729734 

[15] Gupta, A.; Kumar, V.; Aparoy, P. Role of topological, elec-
tronic, geometrical, constitutional and quantum chemical 
based descriptors in QSAR: mPGES-1 as a case study. 
Curr. Top. Med. Chem., 2018, 18(13), 1075-1090. 

 http://dx.doi.org/10.2174/1568026618666180719164149 
PMID: 30027847 

[16] Cavasotto, C.N.; Adler, N.S.; Aucar, M.G. Quantum chem-
ical approaches in structure-based virtual screening and lead 
optimization. Front Chem., 2018, 6, 188. 

 http://dx.doi.org/10.3389/fchem.2018.00188 PMID: 
29896472 

[17] Crespo, A.; Rodriguez-Granillo, A.; Lim, V.T. Quantum-
mechanics methodologies in drug discovery: applications of 
docking and scoring in lead optimization. Curr. Top. Med. 
Chem., 2017, 17(23), 2663-2680. 

 http://dx.doi.org/10.2174/1568026617666170707120609 
PMID: 28685695 

[18] Barbault, F.; Maurel, F. Simulation with quantum mechan-
ics/molecular mechanics for drug discovery. Expert Opin. 
Drug Discov., 2015, 10(10), 1047-1057. 

 http://dx.doi.org/10.1517/17460441.2015.1076389 PMID: 
26289577 

[19] Habgood, M.; James, T.; Heifetz, A. Conformational 
searching with quantum mechanics. Methods Mol. Biol., 
2020, 2114, 207-229. 

 http://dx.doi.org/10.1007/978-1-0716-0282-9_14 PMID: 
32016896 

[20] Heifetz, A.; Townsend-Nicholson, A. Characterizing rho-
dopsin-arrestin interactions with the fragment molecular or-
bital (FMO) method. Methods Mol. Biol., 2020, 2114, 177-
186. 

 http://dx.doi.org/10.1007/978-1-0716-0282-9_12 PMID: 
32016894 

[21] Świderek, K.; Tuñón, I.; Moliner, V.; Bertran, J. Computa-
tional strategies for the design of new enzymatic functions. 
Arch. Biochem. Biophys., 2015, 582, 68-79. 

 http://dx.doi.org/10.1016/j.abb.2015.03.013 PMID: 
25797438 

[22] Morao, I.; Heifetz, A.; Fedorov, D.G. Accurate scoring in 
seconds with the fragment molecular orbital and density-
functional tight-binding methods. Methods Mol. Biol., 2020, 
2114, 143-148. 

 http://dx.doi.org/10.1007/978-1-0716-0282-9_9 PMID: 
32016891 

[23] Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; 
Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug 
discovery in the 21st century: innovations for novel drug 
discovery. Int. J. Mol. Sci., 2018, 19(6), 1578. 



12    Current Medicinal Chemistry, XXXX, Vol. XX, No. XX Veit-Acosta and de Azevedo Junior 

 http://dx.doi.org/10.3390/ijms19061578 PMID: 29799486 
[24] de Azevedo, W.F.Jr. Molecular dynamics simulations of 

protein targets identified in Mycobacterium tuberculosis. 
Curr. Med. Chem., 2011, 18(9), 1353-1366. 

 http://dx.doi.org/10.2174/092986711795029519 PMID: 
21366529 

[25] Sforça, M.L.; Oyama, S., Jr; Canduri, F.; Lorenzi, C.C.; 
Pertinhez, T.A.; Konno, K.; Souza, B.M.; Palma, M.S.; 
Ruggiero Neto, J.; Azevedo, W.F.Jr.; Spisni, A. How C-
terminal carboxyamidation alters the biological activity of 
peptides from the venom of the eumenine solitary wasp. Bi-
ochemistry, 2004, 43(19), 5608-5617. 

 http://dx.doi.org/10.1021/bi0360915 PMID: 15134435 
[26] Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; 

Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, 
J.C. Current tools and methods in molecular dynamics 
(MD) simulations for drug design. Curr. Med. Chem., 2016, 
23(34), 3909-3924. 

 http://dx.doi.org/10.2174/0929867323666160530144742 
PMID: 27237821 

[27] de Azevedo, W.F.Jr.; Canduri, F.; Fadel, V.; Teodoro, L.G.; 
Hial, V.; Gomes, R.A. Molecular model for the binary 
complex of uropepsin and pepstatin. Biochem. Biophys. 
Res. Commun., 2001, 287(1), 277-281. 

 http://dx.doi.org/10.1006/bbrc.2001.5555 PMID: 11549287 
[28] Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Taj-

khorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; 
Schulten, K. Scalable molecular dynamics with NAMD. J. 
Comput. Chem., 2005, 26(16), 1781-1802. 

 http://dx.doi.org/10.1002/jcc.20289 PMID: 16222654 
[29] Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating 

molecular docking and molecular dynamics simulations. 
Methods Mol. Biol., 2019, 2053, 13-34. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_2 PMID: 
31452096 

[30] Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; 
Kanase, A.; Singh, S.P.; Johnston, B.; Tentschert, J.; Laux, 
P.; Luch, A. Artificial intelligence and machine learning 
empower advanced biomedical material design to toxicity 
prediction. Adv. Intell. Syst, 2020, 2, 2000084. 

 http://dx.doi.org/10.1002/aisy.202000084 
[31] Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; 

Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-
learning-based approach to decode the influence of nano-
material properties on their interaction with cells. ACS Appl. 
Mater. Interfaces, 2021, 13(1), 1943-1955. 

 http://dx.doi.org/10.1021/acsami.0c18470 PMID: 33373205 
[32] Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, 

R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; 
Laux, P.; Luch, A. Artificial intelligence and machine learn-
ing in computational nanotoxicology: unlocking and em-
powering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), 
e1901862. 

 http://dx.doi.org/10.1002/adhm.201901862 PMID: 
32627972 

[33] Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de 
Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F.Jr. 
Development of CDK-targeted scoring functions for predic-
tion of binding affinity. Biophys. Chem., 2018, 235, 1-8. 

 http://dx.doi.org/10.1016/j.bpc.2018.01.004 PMID: 
29407904 

[34] de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, 
W.F.Jr. Supervised machine learning techniques to predict 
binding affinity. A study for cyclin-dependent kinase 2. Bi-
ochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310. 

 http://dx.doi.org/10.1016/j.bbrc.2017.10.035 PMID: 
29017921 

[35] Pintro, V.O.; de Azevedo, W.F. Optimized virtual screening 
workflow: towards target-based polynomial scoring func-
tions for HIV-1 protease. Comb. Chem. High Throughput 
Screen., 2017, 20(9), 820-827. 

 http://dx.doi.org/10.2174/1386207320666171121110019 
PMID: 29165067 

[36] Yang, Y.; Lu, J.; Yang, C.; Zhang, Y. Exploring fragment-
based target-specific ranking protocol with machine learn-
ing on cathepsin S. J. Comput. Aided Mol. Des., 2019, 
33(12), 1095-1105. 

 http://dx.doi.org/10.1007/s10822-019-00247-3 PMID: 
31729618 

[37] Li, F.; Wang, Y.; Li, C.; Marquez-Lago, T.T.; Leier, A.; 
Rawlings, N.D.; Haffari, G.; Revote, J.; Akutsu, T.; Chou, 
K.C.; Purcell, A.W.; Pike, R.N.; Webb, G.I.; Ian Smith, A.; 
Lithgow, T.; Daly, R.J.; Whisstock, J.C.; Song, J. Twenty 
years of bioinformatics research for protease-specific sub-
strate and cleavage site prediction: a comprehensive revisit 
and benchmarking of existing methods. Brief. Bioinform., 
2019, 20(6), 2150-2166. 

 http://dx.doi.org/10.1093/bib/bby077 PMID: 30184176 
[38] Pethe, M.A.; Rubenstein, A.B.; Khare, S.D. Large-scale 

structure-based prediction and identification of novel prote-
ase substrates using computational protein design. J. Mol. 
Biol., 2017, 429(2), 220-236. 

 http://dx.doi.org/10.1016/j.jmb.2016.11.031 PMID: 
27932294 

[39] Kabra, R.; Singh, S. Evolutionary artificial intelligence 
based peptide discoveries for effective Covid-19 therapeu-
tics. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(1), 
165978. 

 http://dx.doi.org/10.1016/j.bbadis.2020.165978 PMID: 
32980462 

[40] Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; 
Cherukara, M.J.; Sankaranarayanan, S.K.R.S. Screening of 
therapeutic agents for COVID-19 using machine learning 
and ensemble docking studies. J. Phys. Chem. Lett., 2020, 
11(17), 7058-7065. 

 http://dx.doi.org/10.1021/acs.jpclett.0c02278 PMID: 
32787328 

[41] Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; 
Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers 
targeting the receptor-binding domain of the SARS-CoV-2 
spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900. 

 http://dx.doi.org/10.1021/acs.analchem.0c01394 PMID: 
32551560 

[42] Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.W. 
Repositioning of 8565 existing drugs for COVID-19. J. 
Phys. Chem. Lett., 2020, 11(13), 5373-5382. 

 http://dx.doi.org/10.1021/acs.jpclett.0c01579 PMID: 
32543196 

[43] Onawole, A.T.; Sulaiman, K.O.; Kolapo, T.U.; Akinde, 
F.O.; Adegoke, R.O. COVID-19: CADD to the rescue. Vi-
rus Res., 2020, 285, 198022. 

 http://dx.doi.org/10.1016/j.virusres.2020.198022 PMID: 
32417181 

[44] Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; 
Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F.Jr. SAnDReS a 
computational tool for statistical analysis of docking results 
and development of scoring functions. Comb. Chem. High 
Throughput Screen., 2016, 19(10), 801-812. 

 http://dx.doi.org/10.2174/1386207319666160927111347 
PMID: 27686428 



Computational Prediction of Binding Affinity Current Medicinal Chemistry, XXXX, Vol. XX, No. XX    13 

[45] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. SAnDReS: a 
computational tool for docking. Methods Mol. Biol., 2019, 
2053, 51-65. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_4 PMID: 
31452098 

[46] da Silva, A.D.; Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. 
Taba: a tool to analyze the binding affinity. J. Comput. 
Chem., 2020, 41(1), 69-73. 

 http://dx.doi.org/10.1002/jcc.26048 PMID: 31410856 
[47] Bitencourt-Ferreira, G.; Duarte da Silva, A.; Filgueira de 

Azevedo, W.Jr. Application of machine learning techniques 
to predict binding affinity for drug targets: a study of cy-
clin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 
253-265. 

 http://dx.doi.org/10.2174/2213275912666191102162959 
PMID: 31729287 

[48] Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Sie-
dlecki, P. Development and evaluation of a deep learning 
model for protein-ligand binding affinity prediction. Bioin-
formatics, 2018, 34(21), 3666-3674. 

 http://dx.doi.org/10.1093/bioinformatics/bty374 PMID: 
29757353 

[49] Das, S.; Krein, M.P.; Breneman, C.M. Binding affinity 
prediction with property-encoded shape distribution signa-
tures. J. Chem. Inf. Model., 2010, 50(2), 298-308. 

 http://dx.doi.org/10.1021/ci9004139 PMID: 20095526 
[50] Durrant, J.D.; McCammon, J.A. NNScore: a neural-

network-based scoring function for the characterization of 
protein-ligand complexes. J. Chem. Inf. Model., 2010, 
50(10), 1865-1871. 

 http://dx.doi.org/10.1021/ci100244v PMID: 20845954 
[51] Durrant, J.D.; McCammon, J.A. NNScore 2.0: a neural-

network receptor-ligand scoring function. J. Chem. Inf. 
Model., 2011, 51(11), 2897-2903. 

 http://dx.doi.org/10.1021/ci2003889 PMID: 22017367 
[52] Durrant, J.D.; Friedman, A.J.; Rogers, K.E.; McCammon, 

J.A. Comparing neural-network scoring functions and the 
state of the art: applications to common library screening. J. 
Chem. Inf. Model., 2013, 53(7), 1726-1735. 

 http://dx.doi.org/10.1021/ci400042y PMID: 23734946 
[53] Ballester, P.J.; Mitchell, J.B.O. A machine learning ap-

proach to predicting protein-ligand binding affinity with 
applications to molecular docking. Bioinformatics, 2010, 
26(9), 1169-1175. 

 http://dx.doi.org/10.1093/bioinformatics/btq112 PMID: 
20236947 

[54] Ballester, P.J.; Schreyer, A.; Blundell, T.L. Does a more 
precise chemical description of protein-ligand complexes 
lead to more accurate prediction of binding affinity? J. 
Chem. Inf. Model., 2014, 54(3), 944-955. 

 http://dx.doi.org/10.1021/ci500091r PMID: 24528282 
[55] Li, H.; Leung, K.-S.; Wong, M.-H. The impact of docking 

pose generation error on the prediction of binding affinity. 
In: Computational Intelligence Methods for Bioinformatics 
and Biostatistics; DI Serio, C.; Liò, P.; Nonis, A.; Tagliafer-
ri, R., Eds.; Springer: Cham, 2015, pp. 231-241. 
https://doi.org/10.1007/978-3-319-24462-4_20  

[56] Li, H.; Leung, K.S.; Ballester, P.J.; Wong, M.H. Istar: A 
web platform for large-scale protein-ligand docking. PLoS 
One, 2014, 9(1), e85678. 

 http://dx.doi.org/10.1371/journal.pone.0085678 PMID: 
24475049 

[57] Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building 
machine-learning scoring functions for structure-based pre-
diction of intermolecular binding affinity. Methods Mol. Bi-
ol., 2019, 2053, 1-12. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_1 PMID: 
31452095 

[58] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. Exploring the 
scoring function space. Methods Mol. Biol., 2019, 2053, 
275-281. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_17 PMID: 
31452111 

[59] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. Machine 
learning to predict binding affinity. Methods Mol. Biol., 
2019, 2053, 251-273. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_16 PMID: 
31452110 

[60] Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. 
BindingDB: A web-accessible database of experimentally 
determined protein-ligand binding affinities. Nucleic Acids 
Res., 2007, 35(Database issue), D198-D201. 

 http://dx.doi.org/10.1093/nar/gkl999 PMID: 17145705 
[61] Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; 

Chong, J. BindingDB in 2015: a public database for medic-
inal chemistry, computational chemistry and systems phar-
macology. Nucleic Acids Res., 2016, 44(D1), D1045-
D1053. 

 http://dx.doi.org/10.1093/nar/gkv1072 PMID: 26481362 
[62] Smith, R.D.; Clark, J.J.; Ahmed, A.; Orban, Z.J.; Dunbar, 

J.B.Jr.; Carlson, H.A. Updates to binding MOAD (mother 
of all databases): polypharmacology tools and their utility 
in drug repurposing. J. Mol. Biol., 2019, 431(13), 2423-
2433. 

 http://dx.doi.org/10.1016/j.jmb.2019.05.024 PMID: 
31125569 

[63] Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; 
Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding 
MOAD, a high-quality protein-ligand database. Nucleic Ac-
ids Res., 2008, 36(Database issue), D674-D678. 
https://doi.org/10.1093/nar/gkm911 PMID: 18055497 

[64] Ahmed, A.; Smith, R.D.; Clark, J.J.; Dunbar, J.B.Jr.; Carl-
son, H.A. Recent improvements to binding MOAD: a re-
source for protein-ligand binding affinities and structures. 
Nucleic Acids Res., 2015, 43(Database issue), D465-D469. 

 http://dx.doi.org/10.1093/nar/gku1088 PMID: 25378330 
[65] Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; 

Liu, Y.; Wang, R. PDB-wide collection of binding data: 
current status of the PDBbind database. Bioinformatics, 
2015, 31(3), 405-412. 

 http://dx.doi.org/10.1093/bioinformatics/btu626 PMID: 
25301850 

[66] Liu, Z.; Li, J.; Liu, J.; Liu, Y.; Nie, W.; Han, L.; Li, Y.; 
Wang, R. Cross-mapping of protein - ligand binding data 
between ChEMBL and PDBbind. Mol. Inform., 2015, 
34(8), 568-576. 

 http://dx.doi.org/10.1002/minf.201500010 PMID: 
27490502 

[67] Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Be-
lew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and Au-
toDockTools4: automated docking with selective receptor 
flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. 

 http://dx.doi.org/10.1002/jcc.21256 PMID: 19399780 
[68] Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F.Jr. 

Docking with AutoDock4. Methods Mol. Biol., 2019, 2053, 
125-148. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_9 PMID: 
31452103 

[69] Trott, O.; Olson, A.J. AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, effi-
cient optimization, and multithreading. J. Comput. Chem., 
2010, 31(2), 455-461. 



14    Current Medicinal Chemistry, XXXX, Vol. XX, No. XX Veit-Acosta and de Azevedo Junior 

https://doi.org/10.1002/jcc.21334 PMID: 19499576 
[70] Gasteiger, J.; Marsili, M. Iterative partial equalization of 

orbital electronegativity-a rapid access to atomic charges. 
Tetrahedron, 1980, 36(22), 3219-3228. 

 http://dx.doi.org/10.1016/0040-4020(80)80168-2 
[71] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; 

Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; 
Weiss, R.; Dubourg, V.; Verplas, J.; Passos, A.; Courna-
peau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. 
Scikitlearn: machine learning in python. J. Mach. Learn. 
Res., 2011, 12, 2825-2830. 

[72] Zou, H.; Hastie, T. Regularization and variable selection via 
the elastic net. J. R. Stat. Soc. Series B Stat. Methodol., 
2005, 67(2), 301-220. 

 http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x 
[73] de Azevedo, W.F., Jr; Dias, R. Evaluation of ligand-binding 

affinity using polynomial empirical scoring functions. 
Bioorg. Med. Chem., 2008, 16(20), 9378-9382. 

 http://dx.doi.org/10.1016/j.bmc.2008.08.014 PMID: 
18829335 

[74] Dias, R.; Timmers, L.F.; Caceres, R.A.; de Azevedo, 
W.F.Jr. Evaluation of molecular docking using polynomial 
empirical scoring functions. Curr. Drug Targets, 2008, 
9(12), 1062-1070. 

 http://dx.doi.org/10.2174/138945008786949450 PMID: 
19128216 

[75] Ducati, R.G.; Basso, L.A.; Santos, D.S.; de Azevedo, 
W.F.Jr. Crystallographic and docking studies of purine nu-
cleoside phosphorylase from Mycobacterium tuberculosis. 
Bioorg. Med. Chem., 2010, 18(13), 4769-4774. 

 http://dx.doi.org/10.1016/j.bmc.2010.05.009 PMID: 
20570524 

[76] de Azevedo, W.F.Jr.; Dias, R. Experimental approaches to 
evaluate the thermodynamics of protein-drug interactions. 
Curr. Drug Targets, 2008, 9(12), 1071-1076. 

 http://dx.doi.org/10.2174/138945008786949441 PMID: 
19128217 

[77] Zar, J.H. Significance testing of the Spearman rank correla-
tion coefficient. J. Am. Stat. Assoc., 1972, 67(339), 578-
580. 

 http://dx.doi.org/10.1080/01621459.1972.10481251 
[78] Cichero, E.; Cesarini, S.; Mosti, L.; Fossa, P. CoMFA and 

CoMSIA analyses on 1,2,3,4-tetrahydropyrrolo[3,4-
b]indole and benzimidazole derivatives as selective CB2 re-
ceptor agonists. J. Mol. Model., 2010, 16(9), 1481-1498. 

 http://dx.doi.org/10.1007/s00894-010-0664-1 PMID: 
20174844 

[79] Wang, S.; Griffiths, G.; Midgley, C.A.; Barnett, A.L.; 
Cooper, M.; Grabarek, J.; Ingram, L.; Jackson, W.; Kon-
topidis, G.; McClue, S.J.; McInnes, C.; McLachlan, J.; 
Meades, C.; Mezna, M.; Stuart, I.; Thomas, M.P.; Zheleva, 
D.I.; Lane, D.P.; Jackson, R.C.; Glover, D.M.; Blake, D.G.; 
Fischer, P.M. Discovery and characterization of 2-anilino-
4-(thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as 
anticancer agents. Chem. Biol., 2010, 17(10), 1111-1121. 

 http://dx.doi.org/10.1016/j.chembiol.2010.07.016 PMID: 
21035734 

[80] Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, 
W.; Caldon, C.E.; Wang, S. Targeting CDK2 in cancer: 
challenges and opportunities for therapy. Drug Discov. To-
day, 2020, 25(2), 406-413. 

 http://dx.doi.org/10.1016/j.drudis.2019.12.001 PMID: 
31839441 

[81] Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de 
Azevedo, W.F. Cyclin-dependent Kinase 2 in cellular se-

nescence and cancer. A structural and functional review. 
Curr. Drug Targets, 2019, 20(7), 716-726. 

 http://dx.doi.org/10.2174/1389450120666181204165344 
PMID: 30516105 

[82] Levin, N.M.B.; Pintro, V.O.; de Ávila, M.B.; de Mattos, 
B.B.; De Azevedo, W.F.Jr. Understanding the structural ba-
sis for inhibition of cyclin-dependent kinases. New pieces 
in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 
1104-1111. 

 http://dx.doi.org/10.2174/1389450118666161116130155 
PMID: 27848884 

[83] de Azevedo, W.F.Jr. Opinion paper: targeting multiple cy-
clin-dependent kinases (CDKs): a new strategy for molecu-
lar docking studies. Curr. Drug Targets, 2016, 17(1), 2. 

 http://dx.doi.org/10.2174/138945011701151217100907 
PMID: 26687602 

[84] Pondé, N.; Wildiers, H.; Awada, A.; de Azambuja, E.; De-
liens, C.; Lago, L.D. Targeted therapy for breast cancer in 
older patients. J. Geriatr. Oncol., 2020, 11(3), 380-388. 

 http://dx.doi.org/10.1016/j.jgo.2019.05.012 PMID: 
31171494 

[85] Schoninger, S.F.; Blain, S.W. The ongoing search for bi-
omarkers of CDK4/6 inhibitor responsiveness in breast can-
cer. Mol. Cancer Ther., 2020, 19(1), 3-12. 

 http://dx.doi.org/10.1158/1535-7163.MCT-19-0253 PMID: 
31909732 

[86] Yuan, L.; Alexander, P.B.; Wang, X.F. Cellular senescence: 
from anti-cancer weapon to anti-aging target. Sci. China 
Life Sci., 2020, 63(3), 332-342. 

 http://dx.doi.org/10.1007/s11427-019-1629-6 PMID: 
32060861 

[87] Frassoldati, A.; Biganzoli, L.; Bordonaro, R.; Cinieri, S.; 
Conte, P.; Laurentis, M.; Mastro, L.D.; Gori, S.; Lauria, R.; 
Marchetti, P.; Michelotti, A.; Montemurro, F.; Naso, G.; 
Pronzato, P.; Puglisi, F.; Tondini, C.A. Endocrine therapy 
for hormone receptor-positive, HER2-negative metastatic 
breast cancer: extending endocrine sensitivity. Future On-
col., 2020, 16(5), 129-145. 

 http://dx.doi.org/10.2217/fon-2018-0942 PMID: 31849236 
[88] Tamura, K. Differences of cyclin-dependent kinase 4/6 

inhibitor, palbociclib and abemaciclib, in breast cancer. Jpn. 
J. Clin. Oncol., 2019, 49(11), 993-998. 

 http://dx.doi.org/10.1093/jjco/hyz151 PMID: 31665472 
[89] Rozeboom, B.; Dey, N.; De, P. ER+ metastatic breast can-

cer: past, present, and a prescription for an apoptosis-
targeted future. Am. J. Cancer Res., 2019, 9(12), 2821-
2831. 
PMID: 31911865 

[90] Bonelli, M.; La Monica, S.; Fumarola, C.; Alfieri, R. Multi-
ple effects of CDK4/6 inhibition in cancer: from cell cycle 
arrest to immunomodulation. Biochem. Pharmacol., 2019, 
170, 113676. 

 http://dx.doi.org/10.1016/j.bcp.2019.113676 PMID: 
31647925 

[91] Grizzi, G.; Ghidini, M.; Botticelli, A.; Tomasello, G.; 
Ghidini, A.; Grossi, F.; Fusco, N.; Cabiddu, M.; Savio, T.; 
Petrelli, F. Strategies for increasing the effectiveness of 
aromatase inhibitors in locally advanced breast cancer: an 
evidence-based review on current options. Cancer Manag. 
Res., 2020, 12, 675-686. 

 http://dx.doi.org/10.2147/CMAR.S202965 PMID: 
32099464 

[92] Thomsen, R.; Christensen, M.H. MolDock: a new technique 
for high-accuracy molecular docking. J. Med. Chem., 2006, 
49(11), 3315-3321. 

 http://dx.doi.org/10.1021/jm051197e PMID: 16722650 



Computational Prediction of Binding Affinity Current Medicinal Chemistry, XXXX, Vol. XX, No. XX    15 

[93] Heberlé, G.; de Azevedo, W.F.Jr. Bio-inspired algorithms 
applied to molecular docking simulations. Curr. Med. 
Chem., 2011, 18(9), 1339-1352. 

 http://dx.doi.org/10.2174/092986711795029573 PMID: 
21366530 

[94] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. Molegro vir-
tual docker for docking. Methods Mol. Biol., 2019, 2053, 
149-167. 

 http://dx.doi.org/10.1007/978-1-4939-9752-7_10 PMID: 
31452104 

[95] de Azevedo, W.F.Jr. Moldock applied to structure-based 
virtual screening. Curr. Drug Targets, 2010, 11(3), 327-
334. 

 http://dx.doi.org/10.2174/138945010790711941 PMID: 
20210757 

[96] de Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; 
Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinas-
es by purine analogues: crystal structure of human cdk2 
complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-
2), 518-526. 

 http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x PMID: 
9030780 

[97] Krystof, V.; Cankar, P.; Frysová, I.; Slouka, J.; Kontopidis, 
G.; Dzubák, P.; Hajdúch, M.; Srovnal, J.; de Azevedo, 
W.F.Jr.; Orság, M.; Paprskárová, M.; Rolcík, J.; Látr, A.; 
Fischer, P.M.; Strnad, M. 4-arylazo-3,5-diamino-1H-
pyrazole CDK inhibitors: SAR study, crystal structure in 
complex with CDK2, selectivity, and cellular effects. J. 
Med. Chem., 2006, 49(22), 6500-6509. 

 http://dx.doi.org/10.1021/jm0605740 PMID: 17064068 
[98] Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, 

W.F.Jr. CDK9 a potential target for drug development. 
Med. Chem., 2008, 4(3), 210-218. 

 http://dx.doi.org/10.2174/157340608784325205 PMID: 
18473913 

[99] Canduri, F.; de Azevedo, W.F.Jr. Structural basis for inter-
action of inhibitors with cyclin-dependent kinase 2. Curr. 
Comput. Aided Drug Des, 2005, 1(1), 53-64. 

 http://dx.doi.org/10.2174/1573409052952233 
[100] Canduri, F.; Uchoa, H.B.; de Azevedo, W.F.Jr. Molecular 

models of cyclin-dependent kinase 1 complexed with inhib-
itors. Biochem. Biophys. Res. Commun., 2004, 324(2), 661-
666. 

 http://dx.doi.org/10.1016/j.bbrc.2004.09.109 PMID: 
15474478 

[101] De Azevedo, W.F.Jr.; Mueller-Dieckmann, H.J.; Schulze-
Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S.H. Struc-
tural basis for specificity and potency of a flavonoid inhibi-
tor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. 
Sci. USA, 1996, 93(7), 2735-2740. 

 http://dx.doi.org/10.1073/pnas.93.7.2735 PMID: 8610110 
[102] Kim, S.H.; Schulze-Gahmen, U.; Brandsen, J.; de Azevedo 

Júnior, W.F. Structural basis for chemical inhibition of 
CDK2. Prog. Cell Cycle Res., 1996, 2, 137-145. 

 http://dx.doi.org/10.1007/978-1-4615-5873-6_14 PMID: 
9552391 

[103] Schulze-Gahmen, U.; De Bondt, H.L.; Kim, S.H. High-
resolution crystal structures of human cyclin-dependent ki-
nase 2 with and without ATP: bound waters and natural lig-
and as guides for inhibitor design. J. Med. Chem., 1996, 
39(23), 4540-4546. 

 http://dx.doi.org/10.1021/jm960402a PMID: 8917641 
[104] Schulze-Gahmen, U.; Brandsen, J.; Jones, H.D.; Morgan, 

D.O.; Meijer, L.; Vesely, J.; Kim, S.H. Multiple modes of 
ligand recognition: crystal structures of cyclin-dependent 
protein kinase 2 in complex with ATP and two inhibitors, 

olomoucine and isopentenyladenine. Proteins, 1995, 22(4), 
378-391. 

 http://dx.doi.org/10.1002/prot.340220408 PMID: 7479711 
[105] Oudah, K.H.; Najm, M.A.A.; Samir, N.; Serya, R.A.T.; 

Abouzid, K.A.M. Design, synthesis and molecular docking 
of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 
inhibitors. Bioorg. Chem., 2019, 92, 103239. 

 http://dx.doi.org/10.1016/j.bioorg.2019.103239 PMID: 
31513938 

[106] Ikwu, F.A.; Isyaku, Y.; Obadawo, B.S.; Lawal, H.A.; 
Ajibowu, S.A. In silico design and molecular docking study 
of CDK2 inhibitors with potent cytotoxic activity against 
HCT116 colorectal cancer cell line. J. Genet. Eng. Biotech-
nol., 2020, 18(1), 51. 

 http://dx.doi.org/10.1186/s43141-020-00066-2 PMID: 
32930901 

[107] Teng, M.; Jiang, J.; He, Z.; Kwiatkowski, N.P.; Donovan, 
K.A.; Mills, C.E.; Victor, C.; Hatcher, J.M.; Fischer, E.S.; 
Sorger, P.K.; Zhang, T.; Gray, N.S. Development of CDK2 
and CDK5 dual degrader TMX-2172. Angew. Chem. Int. 
Ed. Engl., 2020, 59(33), 13865-13870. 

 http://dx.doi.org/10.1002/anie.202004087 PMID: 32415712 
[108] Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, 

A.M. Optimization of pyrrolizine-based Schiff bases with 
4-thiazolidinone motif: design, synthesis and investigation 
of cytotoxicity and anti-inflammatory potency. Eur. J. Med. 
Chem., 2020, 185, 111780. 

 http://dx.doi.org/10.1016/j.ejmech.2019.111780 PMID: 
31655429 

[109] Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. 
Virtual screening identified compounds that bind to cyclin 
dependent kinase 2 and prevent herpes simplex virus type 1 
replication and reactivation in neurons. Antiviral Res., 2019, 
172, 104621. 

 http://dx.doi.org/10.1016/j.antiviral.2019.104621 PMID: 
31634495 

[110] Zhu, J.; Wu, Y.; Xu, L.; Jin, J. Theoretical studies on the 
selectivity mechanisms of glycogen synthase kinase 3β 
(GSK3β) with pyrazine ATP-competitive inhibitors by 
3DQSAR, molecular docking, molecular dynamics simula-
tion and free energy calculations. Curr. Computeraided 
Drug Des., 2020, 16(1), 17-30. 

 http://dx.doi.org/10.2174/1573409915666190708102459 
PMID: 31284868 

[111] Fassio, A.V.; Santos, L.H.; Silveira, S.A.; Ferreira, R.S.; de 
Melo-Minardi, R.C. nAPOLI: a graph-based strategy to de-
tect and visualize conserved protein-ligand interactions in 
large-scale. IEEE/ACM Trans. Comput. Biol. Bioinformat-
ics, 2020, 17(4), 1317-1328. 
https://doi.org/10.1109/TCBB.2019.2892099 PMID: 
30629512 

[112] Zhang, X.; Shi, G.; Wu, X.; Zhao, Y. Gypensapogenin H 
from hydrolyzate of total Gynostemma pentaphyllum sapo-
nins induces apoptosis in human breast carcinoma cells. 
Nat. Prod. Res., 2020, 34(11), 1642-1646. 

 http://dx.doi.org/10.1080/14786419.2018.1525370 PMID: 
30470142 

[113] Lohning, A.E.; Levonis, S.M.; Williams-Noonan, B.; 
Schweiker, S.S. A practical guide to molecular docking and 
homology modelling for medicinal chemists. Curr. Top. 
Med. Chem., 2017, 17(18), 2023-2040. 

 http://dx.doi.org/10.2174/1568026617666170130110827 
PMID: 28137238 

[114] Cardamone, F.; Pizzi, S.; Iacovelli, F.; Falconi, M.; Desid-
eri, A. Virtual screening for the development of dual-
inhibitors targeting topoisomerase IB and tyrosyl-DNA 



16    Current Medicinal Chemistry, XXXX, Vol. XX, No. XX Veit-Acosta and de Azevedo Junior 

phosphodiesterase 1. Curr. Drug Targets, 2017, 18(5), 544-
555. 

 http://dx.doi.org/10.2174/1389450116666150727114742 
PMID: 26212266 

[115] Biesiada, J.; Porollo, A.; Velayutham, P.; Kouril, M.; 
Meller, J. Survey of public domain software for docking 
simulations and virtual screening. Hum. Genomics, 2011, 
5(5), 497-505. 

 http://dx.doi.org/10.1186/1479-7364-5-5-497 PMID: 
21807604 

[116] Bitencourt-Ferreira, G.; Rizzotto, C.; de Azevedo, W.F.Jr. 
Machine learning-based scoring functions. Development 
and applications with SAnDReS. Curr. Med. Chem., 2021, 
28(9), 1746-1756. 

 http://dx.doi.org/10.2174/0929867327666200515101820 
PMID: 32410551 

[117] Fresnais, L.; Ballester, P.J. The impact of compound library 
size on the performance of scoring functions for structure-
based virtual screening. Brief. Bioinform., 2021, 22(3), 
bbaa095. 

 http://dx.doi.org/10.1093/bib/bbaa095 PMID: 32568385 
[118] Ballester, P.J. Machine Learning for Molecular Modelling 

in Drug Design. Biomolecules, 2019, 9(6), 216. 
 http://dx.doi.org/10.3390/biom9060216 PMID: 31167503 
[119] Azevedo, L.S.; Moraes, F.P.; Xavier, M.M.; Pantoja, E.O.; 

Villavicencio, B.; Finck, J.A.; Proenca, A.M.; Rocha, K.B.; 
de Azevedo, W.F. Recent progress of molecular docking 
simulations applied to development of drugs. Curr. Bioin-
form., 2012, 7(4), 352-365. 

 http://dx.doi.org/10.2174/157489312803901063 
[120] Figueroa-Villar, J.D.; Petronilho, E.C.; Kuca, K.; Franca, 

T.C.C. Review about structure and evaluation of reactiva-
tors of acetylcholinesterase inhibited with neurotoxic or-
ganophosphorus compounds. Curr. Med. Chem., 2021, 
28(7), 1422-1442. 

 http://dx.doi.org/10.2174/0929867327666200425213215 
PMID: 32334495 

[121] Russo, S.; de Azevedo, W.F. Computational analysis of 
dipyrone metabolite 4-aminoantipyrine as a cannabinoid re-
ceptor 1 agonist. Curr. Med. Chem., 2020, 27(28), 4741-
4749. 

 http://dx.doi.org/10.2174/0929867326666190906155339 
PMID: 31490743 

[122] Scotti, M.T.; Monteiro, A.F.M.; de Oliveira Viana, J.; Men-
donça, F.J.B.Jr.; Ishiki, H.M.; Tchouboun, E.N.; De Araújo, 
R.S.A.; Scotti, L. Recent theoretical studies concerning im-
portant tropical infections. Curr. Med. Chem., 2020, 27(5), 
795-834. 

 http://dx.doi.org/10.2174/0929867326666190711121418 
PMID: 31296154 

[123] Lungu, C.N.; Bratanovici, B.I.; Grigore, M.M.; Antoci, V.; 
Mangalagiu, I.I. Hybrid imidazole-pyridine derivatives: an 
approach to novel anticancer DNA intercalators. Curr. Med. 
Chem., 2020, 27(1), 154-169. 

 http://dx.doi.org/10.2174/0929867326666181220094229 
PMID: 30569842 

[124] Halder, A.K.; Dias Soeiro Cordeiro, M.N. Advanced in 
silico methods for the development of anti- leishmaniasis 
and anti-trypanosomiasis agents. Curr. Med. Chem., 2020, 
27(5), 697-718. 

 http://dx.doi.org/10.2174/0929867325666181031093702 
PMID: 30378482 

[125] Zhu, Y.; Liang, M.; Li, H.; Ni, H.; Li, L.; Li, Q.; Jiang, Z. A 
mutant of Pseudoalteromonas carrageenovora arylsulfatase 
with enhanced enzyme activity and its potential application 

in improvement of the agar quality. Food Chem., 2020, 320, 
126652. 

 http://dx.doi.org/10.1016/j.foodchem.2020.126652 PMID: 
32229399 

[126] Taguchi, A.T.; Boyd, J.; Diehnelt, C.W.; Legutki, J.B.; 
Zhao, Z.G.; Woodbury, N.W. Comprehensive prediction of 
molecular recognition in a combinatorial chemical space us-
ing machine learning. ACS Comb. Sci., 2020, 22(10), 500-
508. 

 http://dx.doi.org/10.1021/acscombsci.0c00003 PMID: 
32786325 

[127] Jehangir, I.; Ahmad, S.F.; Jehangir, M.; Jamal, A.; Khan, 
M. Integration of bioinformatics and in vitro analysis reveal 
anti-leishmanial effects of azithromycin and nystatin. Curr. 
Bioinform., 2019, 14(5), 450-459. 

 http://dx.doi.org/10.2174/1574893614666181217142344 
[128] Lushington, G.H. Chemistry, Screening, and the democracy 

of publishing. Comb. Chem. High Throughput Screen., 
2019, 22(5), 288-289. 

 http://dx.doi.org/10.2174/1386207322999190715161959 
PMID: 31446889 

[129] Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational 
methods for protein-ligand binding site prediction. Comput. 
Struct. Biotechnol. J., 2020, 18, 417-426. 

 http://dx.doi.org/10.1016/j.csbj.2020.02.008 PMID: 
32140203 

[130] Zhang, W.; Li, W.; Zhang, J.; Wang, N. Data integration of 
hybrid microarray and single cell expression data to en-
hance gene network inference. Curr. Bioinform., 2019, 
14(3), 255-268. 

 http://dx.doi.org/10.2174/1574893614666190104142228 
[131] Wu, Y.; Guo, Y.; Xiao, Y.; Lao, S. AAE-SC: a scRNA-Seq 

clustering framework based on adversarial autoencoder. 
IEEE Access, 2020, 8, 178962-178975. 

 http://dx.doi.org/10.1109/ACCESS.2020.3027481 
[132] Li, M.; Zhang, S.; Yang, B. Urea transporters identified as 

novel diuretic drug targets. Curr. Drug Targets, 2020, 
21(3), 279-287. 

 http://dx.doi.org/10.2174/1389450120666191129101915 
PMID: 31782365 

[133] Safarizadeh, H.; Garkani-Nejad, Z. Investigation of MI-2 
analogues as MALT1 inhibitors to treat of diffuse large B-
cell lymphoma through combined molecular dynamics sim-
ulation, molecular docking and QSAR techniques and de-
sign of new inhibitors. J. Mol. Struct., 2019, 1180, 708-722. 

 http://dx.doi.org/10.1016/j.molstruc.2018.12.022 
[134] Lawal, M.M.; Sanusi, Z.K.; Govender, T.; Maguire, 

G.E.M.; Honarparvar, B.; Kruger, H.G. From recognition to 
reaction mechanism: an overview on the interactions be-
tween HIV-1 protease and its natural targets. Curr. Med. 
Chem., 2020, 27(15), 2514-2549. 

 http://dx.doi.org/10.2174/0929867325666181113122900 
PMID: 30421668 

[135] Sun, B.; Wang, W.; He, Z.; Zhang, M.; Kong, F.; Sain, M. 
Biopolymer substrates in buccal drug delivery: current sta-
tus and future trend. Curr. Med. Chem., 2020, 27(10), 1661-
1669. 

 http://dx.doi.org/10.2174/0929867325666181001114750 
PMID: 30277141 

[136] Aleksandrov, A.; Myllykallio, H. Advances and challenges 
in drug design against tuberculosis: application of in silico 
approaches. Expert Opin. Drug Discov., 2019, 14(1), 35-46. 

 http://dx.doi.org/10.1080/17460441.2019.1550482 PMID: 
30477360 

[137] Cavada, B.S.; Osterne, V.J.S.; Lossio, C.F.; Pinto-Junior, 
V.R.; Oliveira, M.V.; Silva, M.T.L.; Leal, R.B.; Nascimen-



Computational Prediction of Binding Affinity Current Medicinal Chemistry, XXXX, Vol. XX, No. XX    17 

to, K.S. One century of ConA and 40 years of ConBr re-
search: a structural review. Int. J. Biol. Macromol., 2019, 
134, 901-911. 

 http://dx.doi.org/10.1016/j.ijbiomac.2019.05.100 PMID: 
31108148 

[138] Jiang, M.; Li, Z.; Bian, Y.; Wei, Z. A novel protein de-
scriptor for the prediction of drug binding sites. BMC Bioin-
formatics, 2019, 20(1), 478. 

 http://dx.doi.org/10.1186/s12859-019-3058-0 PMID: 
31533611 

[139] Cavada, B.S.; Araripe, D.A.; Silva, I.B.; Pinto-Junior, V.R.; 
Osterne, V.J.S.; Neco, A.H.B.; Laranjeira, E.P.P.; Lossio, 
C.F.; Correia, J.L.A.; Pires, A.F.; Assreuy, A.M.S.; Nasci-
mento, K.S. Structural studies and nociceptive activity of a 
native lectin from Platypodium elegans seeds (nPELa). Int. 
J. Biol. Macromol., 2018, 107(Pt A), 236-246. 
https://doi.org/10.1016/j.ijbiomac.2017.08.174 PMID: 
28867234 

[140] Abbasi, W.A.; Asif, A.; Ben-Hur, A.; Minhas, F.U.A.A. 
Learning protein binding affinity using privileged infor-
mation. BMC Bioinformatics, 2018, 19(1), 425. 

 http://dx.doi.org/10.1186/s12859-018-2448-z PMID: 
30442086 

[141] Ribeiro, F.F.; Mendonca Junior, F.J.B.; Ghasemi, J.B.; Ishi-
ki, H.M.; Scotti, M.T.; Scotti, L. Docking of natural prod-
ucts against neurodegenerative diseases: general concepts. 
Comb. Chem. High Throughput Screen., 2018, 21(3), 152-
160. 

 http://dx.doi.org/10.2174/1386207321666180313130314 
PMID: 29532756 

[142] Lemos, A.; Melo, R.; Preto, A.J.; Almeida, J.G.; Moreira, 
I.S.; Dias Soeiro Cordeiro, M.N.D.S In silico studies target-
ing G-protein coupled receptors for drug research against 
Parkinson’s disease. Curr. Neuropharmacol., 2018, 16(6), 
786-848. 

 http://dx.doi.org/10.2174/1570159X16666180308161642 
PMID: 29521236 

[143] Leal, R.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Wolin, 
I.A.V.; Nascimento, A.P.M.; Neco, A.H.B.; Araripe, D.A.; 
Welter, P.G.; Neto, C.C.; Correia, J.L.A.; Rocha, C.R.C.; 
Nascimento, K.S.; Cavada, B.S. Crystal structure of DlyL, a 
mannose-specific lectin from Dioclea lasiophylla Mart. Ex 
Benth seeds that display cytotoxic effects against C6 glioma 
cells. Int. J. Biol. Macromol., 2018, 114, 64-76. 

 http://dx.doi.org/10.1016/j.ijbiomac.2018.03.080 PMID: 
29559315 

[144] de Ávila, M.B.; Bitencourt-Ferreira, G.; de Azevedo, 
W.F.Jr. Structural basis for inhibition of enoyl-[Acyl carrier 
protein] reductase (InhA) from Mycobacterium tuberculo-
sis. Curr. Med. Chem., 2020, 27(5), 745-759. 

 http://dx.doi.org/10.2174/0929867326666181203125229 
PMID: 30501592 

[145] Freitas, P.G.; Elias, T.C.; Pinto, I.A.; Costa, L.T.; de Car-
valho, P.V.S.D.; Omote, D.Q.; Camps, I.; Ishikawa, T.; Ar-
curi, H.A.; Vinga, S.; Oliveira, A.L.; Junior, W.F.A.; da 
Silveira, N.J.F. Computational approach to the discovery of 
phytochemical molecules with therapeutic potential targets 
to the PKCZ protein. Lett. Drug Des. Discov., 2018, 15(5), 
488-499. 

 http://dx.doi.org/10.2174/1570180814666170810120150 
[146] Russo, S.; de Azevedo, W.F. Advances in the understanding 

of the cannabinoid receptor 1 - focusing on the inverse ago-
nists interactions. Curr. Med. Chem., 2019, 26(10), 1908-
1919. 

 http://dx.doi.org/10.2174/0929867325666180417165247 
PMID: 29667549 

[147] Wolin, I.A.V.; Heinrich, I.A.; Nascimento, A.P.M.; Welter, 
P.G.; Sosa, L.D.V.; De Paul, A.L.; Zanotto-Filho, A.; 
Nedel, C.B.; Lima, L.D.; Osterne, V.J.S.; Pinto-Junior, 
V.R.; Nascimento, K.S.; Cavada, B.S.; Leal, R.B. ConBr 
lectin modulates MAPKs and Akt pathways and triggers au-
tophagic glioma cell death by a mechanism dependent upon 
caspase-8 activation. Biochimie, 2021, 180, 186-204. 

 http://dx.doi.org/10.1016/j.biochi.2020.11.003 PMID: 
33171216 

[148] de Ávila, M.B.; de Azevedo, W.F.Jr. Development of ma-
chine learning models to predict inhibition of 3-
dehydroquinate dehydratase. Chem. Biol. Drug Des., 2018, 
92(2), 1468-1474. 

 http://dx.doi.org/10.1111/cbdd.13312 PMID: 29676519 
[149] Pinto-Junior, V.R.; Osterne, V.J.; Santiago, M.Q.; Correia, 

J.L.; Pereira-Junior, F.N.; Leal, R.B.; Pereira, M.G.; Chicas, 
L.S.; Nagano, C.S.; Rocha, B.A.; Silva-Filho, J.C.; Ferreira, 
W.P.; Rocha, C.R.; Nascimento, K.S.; Assreuy, A.M.; 
Cavada, B.S. Structural studies of a vasorelaxant lectin 
from Dioclea reflexa hook seeds: crystal structure, molecu-
lar docking and dynamics. Int. J. Biol. Macromol., 2017, 
98, 12-23. 

 http://dx.doi.org/10.1016/j.ijbiomac.2017.01.092 PMID: 
28130130 

[150] Bitencourt-Ferreira, G.; de Azevedo, W.F.Jr. Development 
of a machine-learning model to predict Gibbs free energy of 
binding for protein-ligand complexes. Biophys. Chem., 
2018, 240, 63-69. 

 http://dx.doi.org/10.1016/j.bpc.2018.05.010 PMID: 
29906639 

[151] Amaral, M.E.A.; Nery, L.R.; Leite, C.E.; de Azevedo, 
W.F.Jr.; Campos, M.M. Pre-clinical effects of metformin 
and aspirin on the cell lines of different breast cancer sub-
types. Invest. New Drugs, 2018, 36(5), 782-796. 

 http://dx.doi.org/10.1007/s10637-018-0568-y PMID: 
29392539 

[152] Borisa, A.; Bhatt, H. 3D-QSAR (CoMFA, CoMFA-RG, 
CoMSIA) and molecular docking study of thienopyrimidine 
and thienopyridine derivatives to explore structural re-
quirements for aurora-B kinase inhibition. Eur. J. Pharm. 
Sci., 2015, 79, 1-12. 

 http://dx.doi.org/10.1016/j.ejps.2015.08.017 PMID: 
26343315 

[153] Gramatica, P. On the development and validation of QSAR 
models. Methods Mol. Biol., 2013, 930, 499-526. 

 http://dx.doi.org/10.1007/978-1-62703-059-5_21 PMID: 
23086855 

[154] Triggle, D.J. The chemist as astronaut: searching for biolog-
ically useful space in the chemical universe. Biochem. 
Pharmacol., 2009, 78(3), 217-223. 

 http://dx.doi.org/10.1016/j.bcp.2009.02.015 PMID: 
19481639 

[155] Kell, D.B.; Samanta, S.; Swainston, N. Deep learning and 
generative methods in cheminformatics and chemical biolo-
gy: navigating small molecule space intelligently. Biochem. 
J., 2020, 477(23), 4559-4580. 

 http://dx.doi.org/10.1042/BCJ20200781 PMID: 33290527 
[156] Johnson, E.O.; Hung, D.T. A point of inflection and reflec-

tion on systems chemical biology. ACS Chem. Biol., 2019, 
14(12), 2497-2511. 

 http://dx.doi.org/10.1021/acschembio.9b00714 PMID: 
31613592 

[157] Fotis, C.; Antoranz, A.; Hatziavramidis, D.; Sakellaropou-
los, T.; Alexopoulos, L.G. Network-based technologies for 



18    Current Medicinal Chemistry, XXXX, Vol. XX, No. XX Veit-Acosta and de Azevedo Junior 

early drug discovery. Drug Discov. Today, 2018, 23(3), 
626-635. 

 http://dx.doi.org/10.1016/j.drudis.2017.12.001 PMID: 
29294361 

[158] Kirkpatrick, P.; Ellis, C. Chemical space. Nature, 2004, 
432(7019), 823. 

 http://dx.doi.org/10.1038/432823a 
[159] Lipinski, C.; Hopkins, A. Navigating chemical space for 

biology and medicine. Nature, 2004, 432(7019), 855-861. 
 http://dx.doi.org/10.1038/nature03193 PMID: 15602551 
[160] Shoichet, B.K. Virtual screening of chemical libraries. Na-

ture, 2004, 432(7019), 862-865. 
 http://dx.doi.org/10.1038/nature03197 PMID: 15602552 
[161] Stockwell, B.R. Exploring biology with small organic mol-

ecules. Nature, 2004, 432(7019), 846-854. 
 http://dx.doi.org/10.1038/nature03196 PMID: 15602550 
[162] Smith, J.M. Natural selection and the concept of a protein 

space. Nature, 1970, 225(5232), 563-564. 
 http://dx.doi.org/10.1038/225563a0 PMID: 5411867 
[163] Hou, J.; Jun, S.R.; Zhang, C.; Kim, S.H. Global mapping of 

the protein structure space and application in structure-

based inference of protein function. Proc. Natl. Acad. Sci. 
USA, 2005, 102(10), 3651-3656. 

 http://dx.doi.org/10.1073/pnas.0409772102 PMID: 
15705717 

[164] Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, 
D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; 
Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. 
Emerging application of nanorobotics and artificial intelli-
gence to cross the BBB: advances in design, controlled ma-
neuvering, and targeting of the barriers. ACS Chem. Neuro-
sci., 2021, 12(11), 1835-1853. 

 http://dx.doi.org/10.1021/acschemneuro.1c00087 PMID: 
34008957 

[165] Singh, A.V.; Jahnke, T.; Wang, S.; Xiao, Y.; Alapan, Y.; 
Kharratian, S.; Onbasli, M.C.; Kozielski, K.; David, H.; 
Richter, G.; Bill, J.; Laux, P.; Luch, A.; Sitti, M. Aniso-
tropic gold nanostructures: optimization via in silico model-
ing for hyperthermia. ACS Appl. Nano Mater., 2018, 1(11), 
6205-6216. 

 http://dx.doi.org/10.1021/acsanm.8b01406 
 

 
 

 
 

 
 

 

DISCLAIMER: The above article has been published, as is, ahead-of-print, to provide early visibility but is not the 
final version. Major publication processes like copyediting, proofing, typesetting and further review are still to be 
done and may lead to changes in the final published version, if it is eventually published. All legal disclaimers that 
apply to the final published article. 

 


