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EDITORIAL 

Application of Machine Learning Techniques for Drug Discovery 

Let the light of science end the darkness of denial. 

Following the pioneering work of Geoffrey Hilton about the application of a deep neural network to ana-
lyze handwritten digits [1], we have seen a boom in the use of machine learning techniques. Additionally, in 
the last decade, we have witnessed the increasing participation of machine learning in the development of 
computational models to address protein-ligand binding affinity and investigate docking simulation results [2-
10]. Molecular docking simulations allow us to create 3D models of receptor-drug complexes using as a target 
the atomic coordinates of an experimentally determined structure or a computer-generated model [11-16]. 
These structures also provide the source to calculate the binding affinity by scoring functions based on their 
atomic coordinates [2, 17-20]. Such computational studies contribute to revealing key structural features able 
to enhance ligand specificity for a drug target. 

Structural studies of protein targets made it possible to perform docking simulations focused on these com-
plexes to determine the physical basis for the binding of small organic molecules to the pockets of receptors. 
Such approaches recognize the residues responsible for the binding affinity and reveal the most promising 
chemical moieties involved in inhibiting the protein targets. Also, several authors have built computational 
models to predict binding based on the atomic coordinates of protein-ligand complexes [21-34]. These models 
rely heavily on computational methods and structural and protein-ligand binding affinity data to develop tar-
geted scoring functions with superior predictive performance compared with classical scoring functions.  

Among the most successful machine learning algorithms used to generate models to assess protein-ligand 
interactions, we have the following techniques: random forest, deep learning, support vector machine, least-
absolute shrinkage, and selection operator (Lasso), ridge, and elastic net [26, 34]. This volume of Current Me-
dicinal Chemistry covers efforts directed to drug discovery focusing on the state-of-art applications of machine 
learning techniques to address the protein-ligand interactions.  

The successful application of machine learning algorithms to develop targeted-scoring functions furnished the 
evidence to establish the theoretical framework to address protein-ligand interactions. We can envisage receptor-
drug interactions as a relationship involving the chemical space [35-40] and the protein space [41]. With this ap-
proach, we see these spaces as a unique complex system, where the use of machine learning algorithms could 
contribute to establishing the structural basis for the specificity of ligands for proteins. Such methods generate 
new scoring functions to evaluate the binding affinity. These models showed improved predictive power when 
contrasted with classical approaches. In previous works, researchers used the abstraction of a scoring function 
space constituted of computational models to predict protein-ligand binding affinity [9, 28]. 

Among the recently proposed machine learning techniques to assess binding affinity or thermodynamic da-
ta from the atomic coordinates of receptor-ligand complexes, we highlight the following computational tools: 
Property-encoded shape distributions together with standard support vector machine (PESD-SVM) [42], Ran-
dom Forest Score (RF-Score series)[43, 44], Neural-Network-Based Scoring function (NNScore series) [45-
47], Pafnucy [48], Tool to Analyze the Binding Affinity (Taba) [26], and SAnDReS [34]. The recent race to 
design and develop potential new drugs to fight COVID-19 has benefited from the applications of machine 
learning methods to drug design. Several works focused on protein targets of SARS-CoV-2 were able to iden-
tify potential new ligands to these protein targets using a combination of machine learning techniques and pro-
tein-ligand docking simulations [49-53]. 

In summary, machine learning techniques made the computational tools used in drug discovery more relia-
ble [26, 34, 43, 44]. These techniques paved the way to speed up drug screenings and decrease the costs in-
volved in the early stages of drug discovery. This fast-growing area has brought a positive impact on the simu-
lation of complex systems related to protein-drug interactions. This volume brings a fresh and authoritative 
view of this fascinating research field, where we emphasize the integration of machine learning with systems 
biology with a focus on drug discovery efforts. 
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