
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MESTRADO EM SISTEMAS DE COMUNICAÇÃO

ALINE SCHRÖPFER FRACALOSSI

DEVELOPMENT OF AN INTELLECTUAL-PROPERTY CORE
TO DETECT TASK SCHEDULING ERRORS IN RTOS-BASED

EMBEDDED SYSTEMS

Porto Alegre

2021

Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS

Graduate Program in Electrical Engineering

DEVELOPMENT OF AN
INTELLECTUAL-PROPERTY CORE TO DETECT
TASK SCHEDULING ERRORS IN RTOS-BASED

EMBEDDED SYSTEMS

ALINE SCHRÖPFER FRACALOSSI

Dissertation presented as partial require-
ment for obtaining the degree of Master in
Electrical Engineering at Pontifícia Uni-
versidade Católica do Rio Grande do Sul

Advisor: Prof. Dr. Fabian Luis Vargas
Co-advisor: Prof. Dr. César Augusto Missio Marcon

Porto Alegre

2021

To my mother Regina, my husband Pedro and my little son Marcelo, for
being always with me.

Acknowledgements

First of all, I thank God.

I thank my parents, Regina and Joacir, for always believing in me and for
all the support, you make me more strong and confident. Especially my mother,
who was always there for me when I needed it most. I also thank my husband
Pedro and my son Marcelo, who were my inspiration in the final part of this work.

I thank my advisor, Fabian Vargas, and my co-advisor Cesar Marcon, for
all the advice and help during this period. And also to my friends and teachers.

To CAPES for the financial support to carry out this research work.

“It is the time you have wasted for your rose
that makes your rose so important.”

(The Little Prince)

Abstract
The employment of a Real-Time Operating System (RTOS) has become an at-
tractive solution for designing critical real-time embedded systems that are part
of our daily lives. For these systems, the correct functioning depends not only on
the correct logical response, but also on the time at which the answer is given. In
this regard, RTOS has emerged as an interesting solution for multiple processing
cores. Furthermore, the market pressures to reduce the energy consumption that
these multicore embedded systems need to operate. The main consequence of this
pressure is the higher susceptibility to transient failures. This type of failure can
affect the task scheduling process and change the system correct functioning. In this
scenario, it is necessary to have a solution to improve the reliability of the scheduling
process. Therefore, this dissertation develops and validates an Intellectual-Property
Core (I-IP) able to monitor the Earliest Deadline First (EDF) scheduling algorithm
running on a single core system. The I-IP performs passive monitoring of the sys-
tem’s task scheduling to detect failures. Described in Very-High-Speed Integrated
Circuits Hardware Description Language (VHDL), the I-IP is connected to the
processor address bus to perform system monitoring. The proposed technique was
implemented in the HF-RISC softcore processor (namely Hellfire processor), which
was running under the control of the HF-RISC Operating System (HellfireOS).
Simulation results indicate that the proposed technique effectively detects faults
that induce task scheduling malfunctioning at runtime, while incurring acceptable
penalties, of low area overhead and negligible energy consumption increase.

Keywords: Task scheduler, Real-time operating system (RTOS), Embedded system
for critical application, Multicore processor, Fault-tolerance.

Resumo
Sistemas embarcados críticos fazem cada vez mais parte do nosso dia e devido à essa
criticidade, os sistemas operacionais de tempo real (RTOS) tornaram-se uma solução
atrativa. Para estes sistemas, o correto funcionamento depende primeiramente do
tempo no qual a resposta foi dada e então da resposta lógica correta. Juntamente
com eles surgiu a necessidade de vários núcleos de processamento e também a
necessidade de reduzir o consumo de energia destes sistemas. Em decorrência disso,
o sistema tem maior suscetibilidade a falhas transientes. Basicamente, este tipo de
falha pode afetar o escalonamento das tarefas, alterando o correto funcionamento
do sistema. Surge então a necessidade de promover uma solução que garanta
a confiabilidade do escalonamento das tarefas do sistema. E, esta dissertação
aborda o desenvolvimento e validação de um Intellectual-Property Core (I-IP)
para monitoramento do algoritmo de escalonamento Earliest Deadline First (EDF).
Seu objetivo é detectar falhas no escalonamento de tarefas, devendo realizar o
supervisionamento passivo do processo de escalonamento de tarefas. Descrito em
Very-High-Speed Integrated Circuits Hardware Description Language (VHDL),
o I-IP é conectado ao barramento de endereços de cada processador, para o
monitoramento. A técnica prosposta foi implementada no processador softcore
HF-RISC (nomeado, processador Hellfire), que estava rodando sob o controle do
Sistema Operacional HF-RISC (HellfireOS). Os resultados da simulação indicam
que a técnica proposta é muito eficaz para detectar falhas que induzem o mau
funcionamento do escalonamento de tarefas enquanto incorrem em penalidades
aceitáveis de baixa sobrecarga de área e aumento insignificante do consumo de
energia.

Palavras-chaves: Escalonamento de tarefas, Sistemas Operacional de Tempo Real
(RTOS), Sistemas embarcados para aplicações críticas, Processador Multicore,
Tolerância a falhas.

List of Figures

Figure 1 – Scheduler: Common components (source: [QING; YAO, 2003]). . 6
Figure 2 – Task types in operating systems (source: [ERCIYES, 2019]). . . 7
Figure 3 – Properties of the task (source: [IGNAT, 2008]). 8
Figure 4 – Task States (source: [QING; YAO, 2003]). 8
Figure 5 – Preemptive scheduling algorithm (source: [QING; YAO, 2003]). 10
Figure 6 – Round Robin (source: Author). 11
Figure 7 – Rate Monotonic (source: Author). 12
Figure 8 – Earliest Deadline First (source: Author). 13
Figure 9 – Relations among failure, error and defect (source: [PRADHAN,

1996]). 17
Figure 10 – Hellfire block diagram (source: [JOHANN, 2007]). 19
Figure 11 – Hellfire task example (source: Author). 21
Figure 12 – Hellfire task states (source: [JOHANN, 2007]). 22
Figure 13 – HellfireOS: Deadline missed example (source: Author). 27
Figure 14 – Rate Monotonic (source: Author). 28
Figure 15 – HF-RISC 3-Stage pipeline and the stage tasks (source: [JOHANN,

2016]). 30
Figure 16 – HellfireOS + HF-RISC (source: Author). 31
Figure 17 – Output file from HellfireOS + HF-RISC (source: Author). . . . 33
Figure 18 – Relations among firm, hard, soft real-time systems (source: [RA-

HEJA R.; CHENG, 2009]). 34
Figure 19 – Overview of the proposed approach (source: Author). 35
Figure 20 – External architecture of HF-RISC plus I-IP (source: Author). . 37
Figure 21 – I-IP Finite State Machine (source: Author). 38
Figure 22 – I-IP: Error detection (source: Author). 40
Figure 23 – I-IP Checks (source: Author). 43
Figure 24 – Test set 1 (source: Author). 44
Figure 25 – Task set of Table 3 scheduled by Cheddar (source: Author). . . 45

List of Tables

Table 1 – Task parameters. 10
Table 2 – Hellfire: task functions. 23
Table 3 – Hellfire: scheduling functions. 24
Table 4 – Task parameters. 44
Table 5 – “I-IP: FPGA area overhead. 47
Table 6 – I-IP: Power consumption. 47

List of abbreviations and acronyms

CAM Content-Addressable Memory
Ci Task Execution time
Di Task Deadline
EDF Earliest Deadline First
FSM Finite State Machine
GSE Embedded Systems Group
I-IP Infrastructure-Intellectual Property
ISR Interrupt Service Routines
LUT Look Up Table
MIPS Microprocessor without Interlocked Pipeline Stages
MIT Minimum Inter Arrival Time
OS Operating Systems
PC Program Counter
RISC Reduced Instruction Set Computing
RM Rate Monotonic
RR Round Robin
RTOS Real Time Operating Systems
SRAM Static Random Access Memory
Ti Task Period
VHDL VHSIC Hardware Description Language
WCET Worst Case Execution Time

Contents

1 INTRODUCTION . 1
1.1 Goals . 2
1.2 Structure of this Document . 2

2 THEORETICAL FOUNDATIONS 4
2.1 Real-Time Operating System 4
2.1.1 Scheduler . 5
2.1.2 Scheduling Algorithms . 9
2.2 Fault Tolerance . 15
2.3 Fault, Error and Defect . 16
2.4 Related Research . 17

3 OPERATING SYSTEM (HELLFIREOS) 19
3.1 HellfireOS Scheduling Algorithms 20
3.2 Task Functions . 20
3.3 Fault detection of HellfireOS 24

4 HF-RISC SOFTCORE PROCESSOR (HELLFIRE) 29
4.1 HF-RISC Architecture . 29
4.2 HF-RISC Organization . 30
4.3 HF-RISC + HellfireOS . 31

5 METHODOLOGY . 34
5.1 Specification . 34
5.2 Implementation . 37
5.2.1 I-IP . 39
5.2.2 I-IP Coverage . 39

6 VALIDATION . 42
6.1 I-IP Coverage . 42

6.1.1 Non identified task running . 43
6.1.2 Deadline missed . 44
6.1.3 Scheduling Error . 46
6.1.4 Earlier Scheduling Error detection 46
6.2 Error Latency Detection, Area Overhead, and Power Dissi-

pation . 47
6.3 Results . 47

7 CONCLUSION . 49

8 FUTURE WORK . 50

BIBLIOGRAPHY . 51

A CPU.VHD . 54

1

1 Introduction

Nowadays, various types of applications ranging from simple tasks to highly com-
plex tasks are based on embedded systems. The development of real-time critical
applications is a new technological trend within systems. Applications in the auto-
motive and medical areas, air traffic control systems, telecommunications systems,
industrial automation, and military systems can be cited as examples of critical
applications for real-time embedded systems.

A Real-Time Operating System (RTOS) is defined as a computational system that
reacts to external events while respecting exact time conditions. However, the proper
behavior of this type of system depends not only on the computational value, but on
the time after the results are produced (STANKOVIC; RAMAMRITHAM, 1988).
Most safety-critical embedded systems are used for real-time applications, and
these systems need to respect stringent timing constraints. According to (IGNAT
et al., 2006b), the real-time systems must provide temporally correct results, not
only logically correct results.

Single Event Upset (SEU) can cause transient faults in Real-time operating sys-
tems affecting the applications that are running (ARLAT et al., 2003)(IGNAT et
al., 2006a). Some of the transient faults affecting the RTOS are responsible for
generating scheduling dysfunctions and, because of that, could lead to incorrect
system behavior (SILVA; BOLZANI; VARGAS, 2011).

Up to now, some solutions have been presented to treat the reliability problems
of real-time systems (IZOSIMOV et al., 2005). One of the proposals made in
(TARRILO; BOLZANI; VARGAS, 2009) was developed for operating systems
with the Round-Robin algorithm without interrupt support. In order to solve
this problem, an I-IP capable of manipulating interrupts was proposed in (SILVA;
BOLZANI; VARGAS, 2011). However, none of the techniques support preemptive
scheduling monitoring, later proposed by (OLIVEIRA; BOLZANI; VARGAS, 2015).

Through experiments, it was found that 34% of the transient faults led the RTOS to
malfunction in the task scheduler and an additional 17% resulted in system crashes

Chapter 1. Introduction 2

(NICOLESCU et al., 2005). And about 21% of these propagated failures lead to
application failures (IGNAT et al., 2006b). Because of this high rate of failure that
propagates to RTOS and the application resulting in errors, the effort to increase
system robustness is validated by detecting failures in the RTOS scheduler.

To detect task scheduling misbehavior, in this Thesis, we present a hardware-based
approach. This approach proposes to be monitoring the scheduling of EDF to
detect any violations during the scheduling process. To be more specific, the goal
is to detect the faults that can shift the tasks’ execution flow.

1.1 Goals
This Master’s Thesis aims to propose a technique based on hardware to monitor
the RTOS execution flow, capable of increasing the robustness of the system to
detect the misbehavior of the scheduling. In more detail, the proposed approach
provides fault detection in RTOS-based embedded systems that adopt preemptive
scheduling, which can change the flow of task execution. The proposed technique
is based on implementing an Infrastructure Intellectual-Property (I-IP) to detect
failures through real-time monitoring of application tasks.

The main difference between the new I-IP and the one previously proposed in
(TARRILO; BOLZANI; VARGAS, 2009), (SILVA; BOLZANI; VARGAS, 2011)
and (OLIVEIRA; BOLZANI; VARGAS, 2015), is that the I-IP proposed in this
work represents a broader solution since it can monitor a larger set of tasks that
would have lost its deadline in previously scheduler algorithms. The present work
improves the previous work, providing the I-IP capable of monitoring the scheduler
algorithm with dynamic priorities: Earliest Deadline First.

1.2 Structure of this Document
To better present this thesis, we divided this document into four major parts. The
first part presents a small introduction. The second part presents the theory behind
this work. The third part presents the methodology used to implement the proposal
and block diagrams of the architectures. The fourth part presents the test platform

Chapter 1. Introduction 3

and the results obtained after the experiments carried out to analyze and validate
the proposed technique, as well as the conclusion of this Master’s Work.

4

2 Theoretical Foundations

Real-time Systems have critical time constraints to perform their tasks, making
not only the logical results imperative but also the times at which these results
are produced (STANKOVIC, 1988), (MICCO L.; VARGAS, 2020a), (MICCO
L.; VARGAS, 2020b). The goal of real-time computing is to create ways to provide
predictable temporal behavior in a system.

Essentially, the RTOS can be classified according to the time restrictions in soft and
hard. The hard-RTOS represents the systems that have critical time restrictions;
if the tasks cannot fail, the time is precious, and the schedule has to respect
its deadlines. In contrast, the soft-RTOS can tolerate latencies and respond with
decreased service quality (QING; YAO, 2003), (JUHáSZ; PLETL; MOLNAR, 2019).

2.1 Real-Time Operating System
An Operating System (OS) is a program that virtualizes the system’s hardware
resources. In this way, users using a system resource will be manipulating logical
entities, and the OS converts these actions in operations with physical access to
the hardware (COSTA, 2010).

The kernel of an operating system is one of the main parts. For example, through
OS is that system calls, such as reading and writing to a file, access the hardware.
The OS is also responsible for detecting and starting the devices indispensable for
the operation of the machine. The main functionalities that an operating system
must implement are:

• Process management;
• Memory management;
• Input and output management;
• Synchronization of processes;
• File management.

Chapter 2. Theoretical Foundations 5

The performance of an OS has a significant influence on the performance of
applications. The system resources simplify the design of real-time applications by
offering native mechanisms to manage tasks, concurrency, memory, time as well
as interrupts. The efficient use of the CPU is considered the more critical and the
more important issue in RTOS (SILVA; BOLZANI; VARGAS, 2011).

As mentioned in (QING; YAO, 2003), an RTOS is a program that schedules the
execution of an application at the correct time, manages system resources, and
provides a basis for the development of application code, unlike a general-purpose
operating system, an RTOS is characterized by having time to complete a task
as a fundamental parameter. The kernel provides the basic services for the other
parts of the OS. All OSs have a kernel that typically includes memory, process, file
management, scheduler, and interrupt controller.

2.1.1 Scheduler

All kernels have a scheduler responsible for the choice of task and the processor
context switch. The task scheduling needs allocating resources and time to meet
specific performance requirements. The most widely researched topic within real-
time systems is scheduling. This is the basic problem of making sure the tasks
comply with their deadlines. The use of multicore processors becomes a challenge
due to the sharing of different physical resources, such as cache memory (GRACIOLI;
FROHLICH; PELLIZZONI, 2013), buses and peripherals (BETTI et al., 2013) and
(BOYD-WICKIZER et al., 2010), which make it difficult to estimate the worst-case
execution time of applications (ZHURAVLEV et al., 2012).

The scheduler consists of objects and services (Figure 1 adapted from the book Real-
Time Concepts (QING; YAO, 2003)). Figure 1 represents two concepts, objects,
and services. The objects represent tools that help the designer to develop their
applications. The services represent operations that the kernel performs on objects;
among these operations are timing, resource management and interrupt handling.

The scheduler efficiency depends not only on the algorithm used but also on the
nature of the application, for example, regarding the real-time requirement, that is,
an event must be started and completed in a predefined time. The most common

Chapter 2. Theoretical Foundations 6

Figure 1 – Scheduler: Common components (source: [QING; YAO, 2003]).

objects in RTOS are the Tasks, Semaphores, and Message Queues. However, there
may be other objects such as Timers and Pipes, can be used.

The objects in Figure 1 represent the tasks, semaphores, and the message queue,
as will be better explained below.

• Tasks
The main goal of the scheduler is to select the tasks to be executed. The tasks
are classified according to their periodicity as mentioned in (DAVIS; BURNS,
2011):
– Periodic tasks: have a period, that is, a fixed interval of time in which

they execute their computation;
– Aperiodic tasks: not periodic tasks. The tasks do not have definite

temporal behavior and can execute at any moment;
– Sporadic tasks: not follow a well-defined period, but have the guarantee

that, from the beginning of task execution, the same task will not be

Chapter 2. Theoretical Foundations 7

reintroduced for being scheduled for at least one Minimum Inter arrival
Time (MIT).

Figure 2 represents the periodicity of tasks, adapted from the book Distributed
Real-Time Systems (ERCIYES, 2019)).

Figure 2 – Task types in operating systems (source: [ERCIYES, 2019]).

Each task also has a priority that determines the precedence of execution in relation
to the other tasks that make up the system. The main properties of a task are:

• Computing time: time during which the task effectively executes;
• Period: the interval in which the task must replay the processor;
• Deadline: absolute time at which execution must end;
• Priority: importance value of the task in the system.

Figure 3 represents the properties of the task: computing time, period and deadline.
The priority is defined according to the scheduler algorithm.

Chapter 2. Theoretical Foundations 8

Figure 3 – Properties of the task (source: [IGNAT, 2008]).

For the control of the scheduling process, states have been created that are assigned
to these tasks during the execution of the application. From the book Real-Time
Concepts (QING; YAO, 2003), Figure 4 demonstrates these states and possible
transitions.

Figure 4 – Task States (source: [QING; YAO, 2003]).

As demonstrated in Figure 4, Ready is the initial state of the tasks; in this state,
the task waits for the scheduler execution. The blocked state is when a task requests
some unavailable resource or is waiting for some semaphore. When the task has

Chapter 2. Theoretical Foundations 9

the highest priority and is not locked, the task assumes the running state, and the
process starts to consume the processing time.

• Semaphores
The semaphore is used to control access to shared resources in a multitasking
environment. The semaphore is used for synchronization and mutual exclusion.
The semaphore has to block the resource before it is used, and after using, the
resource must be released. While the feature is in use, any other process that
uses it should wait for the release.

• Message Queue
The message queue is an RTOS object, as illustrated in Figure 1. The message
queue is a buffer through which messages are sent from the sender to the
receiver for communication and synchronization purposes.

Moreover, the main function of the Services in Figure 1 is to help in the develop-
ment of the application. These services are usually for the interface between the
application and hardware, such as Input/Output devices, in addition to facilitating
time management and attendance of interruptions (QING; YAO, 2003).

All of the services and objects presented in Figure 1 are essential for the most
important requisite of the real-time systems; the time conditions and the time
requisition are guaranteed for the scheduling algorithms.

2.1.2 Scheduling Algorithms

The part of the OS that chooses which process to execute is called the scheduler,
and the algorithm used is called the scheduling algorithm. The scheduling process
affects system performance because it determines which processes to expect and
which ones to progress.

Some of the most common algorithms (Round Robin, Rate Monotonic and Earli-
est Deadline First) are presented in (FARINES J.; FRAGA, 2000)); this Thesis
addresses the EDF algorithm. It is essential to clarify the parameters that model
each task (execution time (Ci), period (Ti) and deadline (Di)) and how these pa-
rameters influence the scheduling process. Moreover, those parameters are essential

Chapter 2. Theoretical Foundations 10

to determine if the tasks can be scheduled.

Regardless of the scheduler algorithm, the main goal of the scheduler process is
to decide which process will run at each point in time. Usually, it is a preemptive
scheduler, as demonstrated in Figure 5 from (QING; YAO, 2003), meaning that it
can control the process by stopping, switching, moving back or forward the queue,
or even initiating a new process.

Figure 5 – Preemptive scheduling algorithm (source: [QING; YAO, 2003]).

In order to better demonstrate this scenario, Table 1 has two tasks that need to be
scheduled. To represent the scheduler process with algorithms RR, RM, and EDF,
a Real-Time scheduling analysis with Cheddar (SINGHOFF F.; LEGRAND, 2004)
is demonstrated in Figure 6, Figure 7, and Figure 8.

Task Ci Ti Di
T1 10 20 20
T2 25 50 50

Table 1 – Task parameters.

• Round Robin (RR) is a scheduler algorithm that seeks to be fair with all tasks;
RR does not prioritize tasks. A periodic interruption exchanges task execution
in the processor guaranteeing slices of time for all tasks. This scaling style is
generally not used in real-time systems because of the lack of priority between
tasks. If there is a critical task in the system, it will not have any privileges
over the others. As demonstrated in Figure 6.

Chapter 2. Theoretical Foundations 11

Figure 6 – Round Robin (source: Author).

• Rate Monotonic (RM) is one of the real-time scheduling algorithms. This
algorithm has the following assumptions:
– Tasks are periodic and independent.
– Computing time, period and deadline are known and constant.
– Fixed priorities. In RM, the task priorities are inversely proportional to

the period; thus, the task with the shortest period has the highest priority.
When tasks from Table 1 are scheduled by the Rate Monotonic algorithm, it is
possible to observe that Task ’T2’ has its deadline missed. In time 50, Task
’T2’ is available again, implying that, the period ’Ti’ is reached; however, only
in time 55, Task ’T2’ completes the total execution time, as demonstrated in
Figure 7.

Chapter 2. Theoretical Foundations 12

Figure 7 – Rate Monotonic (source: Author).

• Earliest Deadline First (EDF) is also one of the real-time scheduling algorithms.
Has the premises very similar to the RM, being:
– Tasks are periodic and independent.
– Computing time, period and deadline are known and constant.
– Has dynamic priorities and, task priorities are sorted according to the time

remaining for the period to occur. The shorter the term, has the higher
priority.

When tasks from Table 1 are scheduled by the Earliest Deadline First algorithm,
it is possible to observe that Task ’T2’ does not have your deadline missed.
Till time 40, RM and EDF have the same schedule; the main difference here is
that, with the EDF algorithm, in time 40, task T2 continues executing. This
happens because, in time 40, task T2 has a shorter term, so T2 has the highest
priority and can continue running. None of the tasks from Table 1 have missed
deadlines with EDF, as demonstrated in Figure 8.

Chapter 2. Theoretical Foundations 13

Figure 8 – Earliest Deadline First (source: Author).

As mentioned before, the EDF algorithm is similar to RM, but it has a dynamic
priority. The most important task is the one that has the deadline closest to the
current time (FARINES J.; FRAGA, 2000). The assumptions of this scheduling
algorithm are similar to those of RM. To guarantee that a set of tasks is scheduled
with RM and have all deadlines met, the following Equation 2.1 is used.

U =
n∑
i

Ci

T i
(2.1)

Knowing U (Utilization), inequality is used:

U <= n(2 1
n − 1)

If this condition is respected, it will be possible to schedule using Rate Monotonic
without losing any deadline.

Applying Equation 2.1 for tasks from Table 1:

U =
n∑
i

Ci

T i

U = C1
T1 + C2

T2

Chapter 2. Theoretical Foundations 14

U = 10
20 + 25

50

U = 1

Then checking the schedulability with:

U <= n(2 1
2 − 1)

1 <= 0.41

It is possible to observe that some tasks will have the deadline missed.

For scheduling a set of tasks with EDF and have all deadlines met, the following
test is used Equation 2.2.

U =
n∑
i

Ci

T i
(2.2)

Then, the utilization is checked using:

U <= 1

If U is greater than 1, then the EDF algorithm cannot schedule the task set; if U
is less or equal than 1, it is possible to schedule using Earliest Deadline First.

Applying Equation 2.2 for tasks from Table 1, it is possible to observe that none
tasks will have the deadline missed.

U =
n∑
i1

Ci

T i
<= 1

U = C1
T1 + C2

T2

Chapter 2. Theoretical Foundations 15

U = 10
20 + 25

50

Then checking the schedulability with:

1 <= 1

The algorithms Rate Monotonic and Earliest Deadline First were designed specifi-
cally for systems with more rigid time constraints, thus meeting real-time system
requirements. For real-time systems, fault tolerance is also an important matter.

2.2 Fault Tolerance
The goal of fault tolerance is to achieve dependability. The term dependability
indicates the quality of service provided by a given system and the trust placed
in the service provided. Fault tolerance and dependability are not properties of a
system to which numerical values can be assigned directly. However, all attributes of
dependability correspond to numerical measures. According (PRADHAN, 1996) and
(ANSARI et al., 2019), key attributes of dependability are reliability, availability,
safety, security, maintainability, testability, and performability.

Reliability and availability are increasingly desirable in computing systems as
day by day increases the dependency of society on automated and computerized
systems. Whether in the control of terrestrial and aerial traffic or power plants,
in the maintenance of sensitive data on the lives and finances of citizens and
companies, in telecommunication and international commercial transactions of all
kinds, computers are active and continuous.

Failures are inevitable, but the consequences of failures, like system collapse, service
interruption and data loss, can be avoided by the proper use of feasible and easy-to-
understand techniques. So, fault tolerance is the ability to identifying a failure in
one component or system and decide from this what to do to avoid more damages,
for example, restart the system (LAPRIE, 1985), (SCHERRER; STEININGER,
2003).

Chapter 2. Theoretical Foundations 16

It is easy to imagine that defects in these systems can lead to major catastrophes.
The high complexity of the software also acts as a villain in this scenario. However,
defects can be avoided using fault-tolerance techniques in two approaches, hardware
or software (TARRILO; BOLZANI; VARGAS, 2009).

• Software Approach: Software techniques use redundant instructions, flow con-
trol through checkpoints, or even both. The performance reduction is around
40% by fault detection (SHYE et al., 2009). Because these techniques are
based on the insertion of instructions, thus they cause delays; this effect can
be diminished through profiling. In other words, the algorithm is protected
only in the most critical regions; however, the delay cannot be eliminated.

• Hardware Approach: Watchdog timer is a module responsible for monitoring
some function in the system and when this function was violated, this module
can reset the system, for example. The watchdog timer is the most common
I-IP used in embedded systems for fault-tolerant purposes (JACK, 2004).

Moreover, directly connected with fault tolerance, it is necessary to explain three
concepts, failure, error, and defect, and explain how these concepts are connected.

2.3 Fault, Error and Defect
According (PRADHAN, 1996), there is a relationship between failure, error, and
defect; its definitions are presented below:

• Failure: Internal and external natural phenomena can origin failures, as well,
accidental or intentional human actions. A failure may be generated due to
interference or aging components. The fault just is considered active when it
produces an error. The failures occur in the physical universe;

• Error: The error evidences the defect; for example, when there is a difference
between the value obtained and the expected value, it is an error. The error
can be propagated; that is, one error is transformed into another error. The
errors occurs in the information universe;

• Defect: Occurs when there is a deviation from the project specifications. The
defect occurs when an error is propagated. The defect occur in the user universe.

Chapter 2. Theoretical Foundations 17

Figure 9 from the book Fault-tolerant computer system design (PRADHAN, 1996)
demonstrates the relation among failure, error, and defect.

Figure 9 – Relations among failure, error and defect (source: [PRADHAN, 1996]).

2.4 Related Research
Over the years, and due to the increasing complexity of applications and the
demand for low-power devices, simply increasing the frequency of processors has
become inappropriate. The evolution in manufacturing technology impacts directly
in the complexity of the designs for high-frequency processors has greatly increased.

It is necessary to highlight that all the techniques have a common goal: detecting
transient or permanent failures during the execution of the application itself.
To date, no technique has been found in the literature that has the purpose of
detecting failures during the execution of the operating system, more specifically,
the execution of the task scheduling process with dynamic priorities.

The existing techniques demonstrated promising results, but just for algorithms
like Round Robin, with static priorities. Even the preemptive scheduler did not
have dynamic priorities. For critical real-time systems, loss of performance should
be avoided at all costs, as a timing failure can compromise the system or cause
severe damage.

Chapter 2. Theoretical Foundations 18

The first one proposed by (TARRILO; BOLZANI; VARGAS, 2009) was developed
for operating systems with the Round-Robin algorithm that does not support
interrupts. In order to solve this problem, an I-IP capable of manipulating interrupts
and with support for preemptive operating systems was proposed by (SILVA;
BOLZANI; VARGAS, 2011).

However, due to the increasing use of multicore technology in modern systems,
it was proposed by (OLIVEIRA; BOLZANI; VARGAS, 2015), the development
of a hardware-based technique. The central idea of the proposal is focused more
specifically on the process of scheduling tasks, being able to detect more failures
that the native protection of the operating systems can detect and with less latency.

19

3 Operating System (HellfireOS)

In this chapter, the Hellfire Real-Time operating system (HellfireOS) will be
introduced. Scheduling options, system characteristics, memory and system calls
will also be exposed.

HellfireOS is a preemptive real-time system with dynamic task scheduling and
system calls to deal with a missed deadline, context switch, processor capacity and
memory management. Moreover, HellfireOS is open source, and it is available in
(FILHO S. J.; AGUIAR, 2007) and it is illustrated by Figure 10.

Figure 10 – Hellfire block diagram (source: [JOHANN, 2007]).

Figure 10 demonstrate the three layers in the system:

• Tasks;
• Hellfire;

Chapter 3. Operating System (HellfireOS) 20

• Hardware.

The first one, Tasks, has the tasks and parameters created by the user. The second
one, Hellfire, has the scheduler algorithms in the ’Real-time Scheduler’ block, has
the ’Interrupt Management’ block with the management of the IRQ’s and ’Task
Control Block’ with the management of the queues, also, memory management
and Mutex. And, the third one, the Hardware layer.

3.1 HellfireOS Scheduling Algorithms
HellfireOS counts with the following scheduling algorithms:

• Round Robin: take a task from the run queue, copy its entry and put it back
at the tail of the run queue. If the task is in the blocked state, it is put back
at the tail of the run queue and the next task is picked up.

• Rate Monotonic: sort the queue of tasks by period, update real-time information
(remaining deadline and capacity) of the whole task set. If the task at the head
of the queue fits the requirements to be scheduled, then register the task to be
scheduled.

• Earliest Deadline First: sort the queue of tasks by period, update real-time
information (remaining deadline and capacity) of the whole task set. If the task
at the head of the queue fits the requirements to be scheduled (not blocked,
has jobs to execute and no task with higher priority according to EDF was
selected), then register the task to be scheduled.

3.2 Task Functions
Functions that monitor the task behavior are defined in a specific block of code of
the OS. They are included in the system during the initialization or execution. A
simple task creation is illustrated in Figure 11.

Chapter 3. Operating System (HellfireOS) 21

Figure 11 – Hellfire task example (source: Author).

To create a task set to be executed by the HellfireOS, it is needed to create a new file,
include the file hellfire.h. It is needed to call function hf_spawn() to pass the task
parameters (period, capacity, deadline, name and, stack_size) for each task. And
also, function hf_selfid() to get the task id of the current task. Function hf_jobs is
also called to get the number of executed jobs of a task. Function hf_selfname() is
called to get the current task name and, the last one, hf_dlm is called to get the
number of deadline misses of a task.

For the control of the scheduling process, states have been created that are assigned
to these tasks during the execution of the application. Figure 12 demonstrates
these states and possible transitions for the HellfireOS.

All tasks are started on state ’Not executed yet’. After the first execution, if the
task is not blocked or waiting for a semaphore, it will be in Ready state; in this
state, the task is waiting for the scheduler to select the task to be executed by the
processor. Tasks on Blocked state are waiting for an unavailable resource. Tasks on
Waiting status are waiting for a semaphore. And, the task on Running state is being
executed by the processor. If at the state Ready are no tasks to be executed, the
Idle task will assume the processor. The Idle task is always on Ready or Running
state; it cannot be on Blocked or Waiting state.

Chapter 3. Operating System (HellfireOS) 22

Figure 12 – Hellfire task states (source: [JOHANN, 2007]).

Moreover, communication among tasks occurs by shared memory, using mutexes
and semaphores. Still, in the context of task management, HellfireOS has several
functions to manage the tasks, as demonstrated in Table 2.

Chapter 3. Operating System (HellfireOS) 23

HellfireOS Format Description
hf_id int32_t hf_id(int8_t *name); Get a task id by its name
*hf_name int8_t *hf_name(uint16_t id); Get a task name by its id.
hf_selfid uint16_t hf_selfid(void); Get the current task id.
*hf_selfname int8_t *hf_selfname(void); Get the current task name.

hf_state int32_t hf_state(uint16_t id); Get the current state of
a task.

hf_jobs int32_t hf_jobs(uint16_t id); Get the number of executed
jobs of a task.

hf_dlm int32_t hf_dlm(uint16_t id); Get the number of deadline
misses of a task.

hf_spawn

int32_t hf_spawn
(void (*task)(),
uint16_t period,
uint16_t capacity,
uint16_t deadline,
int8_t *name,
uint32_t stack_size);

Spawn a new task.
- task is a pointer to a task
function / body.
- period is the task RT
period (in quantum /
tick units).
- capacity is the amount of
work to be executed in a
period (in quantum /
tick units).
- deadline is the task
deadline to complete the
work in the period
(in quantum / tick units).
- name is a string used to
identify a task.
- stack_size is the stack
memory to be allocated
for the task.

hf_yield void hf_yield(void);
Yields the current task.
The current task gives up
execution.

hf_block int32_t hf_block(uint16_t id); Blocks a task.
hf_resume int32_t hf_resume(uint16_t id); Resumes a blocked task.
hf_kill int32_t hf_kill(uint16_t id); Kills a task.

hf_delay int32_t hf_delay
(uint16_t id, uint32_t delay);

Delays a task for an
amount of time.

Table 2 – Hellfire: task functions.

Chapter 3. Operating System (HellfireOS) 24

Equally important, HellfireOS has several functions to manage the scheduling
process, as demonstrated in Table 3.

HellfireOS Description

dispatch_isr

The job of the dispatcher is responsible for:
- save the current task context;
- update its state to ready;
- invoke the real-time scheduler;
- update the scheduled task state to running and restore
the context of the task.

sched_edf

The scheduling algorithm Earliest Deadline First:
- Sort the queue of RT tasks by the remaining deadline;
- Update real-time information (remaining deadline and
capacity) of the whole task set.
- If the task at the head of the queue fits the requirements
to be scheduled (not blocked, has jobs to execute and no
task with higher priority according to EDF was selected),
then register the task to be scheduled.

hf_semwait

Wait on a semaphore. The semaphore count is decremented
and the calling task is blocked and queued on the
semaphore if the count reaches a negative value.
If not, the task continues its execution.

hf_sempost
Signal a semaphore. The semaphore count is incremented,
and the task from the head of the semaphore queue is
unblocked if the count is less than or equal to zero.

Table 3 – Hellfire: scheduling functions.

3.3 Fault detection of HellfireOS
HellfireOS counts with the following native function to detect faults during the
execution of the task scheduling algorithm:

• Missed deadline
HellfireOS counts with a deadline missed verification; if a task has your deadline
missed, function hf_dlm, get the number of deadline misses of a task during all
the execution time. This is illustrated by Figure 13; task b has your deadline

Chapter 3. Operating System (HellfireOS) 25

missed when trying to execute the time unit 21 (RM Scheduling algorithm,
the same example from Figure 7.

HellfireOS also counts with a scheduler function named rt_schedule() that verifies
if the task that will be executed by the processor has met their deadline; if so, it
verifies if the task has completed the capacity. If the task was has the capacity fully
executed, no deadline is missed. Otherwise, the deadline is missed. This process is
executed for all tasks and function hf_dlm stores how many times the deadline
was missed during the HelfireOS execution.

The HellfireOS scheduling results are logged in an output file that can be observed
in Figure 13. This output file contains information regarding the architecture, clock,
heap size, and max number of tasks. Later, once the tasks are loaded, we can check
the tasks that are planned to be executed. In this example, there are two tasks (a
and b) created by the user and an idle task created by the system to assume the
processor once the processor is idle. It is also logged the task parameters:

• Task name;
• Task id;
• Task period;
• Task capacity;
• Task deadline.

For example, these parameters can be observed on "KERNEL: [task a], id:1, p:20,
c:10, d:20".

Once the HellfireOS is up and the task execution starts, at the output, it is possible
to check the execution time of each task.

• Task name;
• Task id;
• Task capacity;
• Number of deadline misses.

For example, the results of the execution can be observed on "task a (1)[1][0]".

Chapter 3. Operating System (HellfireOS) 26

Checking the results from Figure 13, it is possible to check that task a was the first
to be executed and has the capacity completely executed.

"task a (1)[1][0]" to "task a (1)[10][0]"

After that, task b assumes the processor and it is executed till task a be available
again.

"task b (2)[1][0]" to "task b (2)[10][0]"

After that, task a assumes the processor and is fully executed again.

"task a (1)[11][0]" to "task a (1)[20][0]"

After that, task b assumes the processor and it is executed till task a be available
again.

"task b (2)[11][0]" to "task b (2)[20][0]"

After that, task a assumes the processor and is fully executed again.

"task a (1)[21][0]" to "task a (1)[30][0]"

Then, task b assumes the processor; however, the deadline is missed because a new
period starts and, the capacity of task b was not completely executed. In this case,
the number of deadline misses is increased to 1.

"task b (2)[21][1]"

It is possible to observe the same, that task b has the deadline missed when tries
to execute the computational unit of time 21 in the red block (Figure 13).

Chapter 3. Operating System (HellfireOS) 27

Figure 13 – HellfireOS: Deadline missed example (source: Author).

Chapter 3. Operating System (HellfireOS) 28

The results of Figure 13 can be compared with the results of Figure 14.

Figure 14 – Rate Monotonic (source: Author).

29

4 HF-RISC Softcore Processor (Hellfire)

In this chapter, the HF-RISC softcore processor will be introduced. HF-RISC was
selected because it is an open-source system, and in this way, it is possible to make
adjustments to processor files to include the proposed I-IP.

4.1 HF-RISC Architecture
HF-RISC is a small 32-bit, in-order, 3-stage pipelined softcore processor designed
at the Pontifical Catholic University of Rio Grande do Sul - PUCRS. All registers
/ memory accesses are synchronized to the rising edge of the clock. The core can
be easily integrated into several applications, and interfaces directly to standard
synchronous memories. It was implemented with the C programming language,
having some architectural features:

• Memory is accessed in little endian-mode.
• No unaligned loads/stores.
• No co-processor is implemented and all peripherals are memory-mapped.
• Loads and stores take 3 cycles. The processor datapath is organized as a Von

Neumann machine; therefore, only one memory interface is shared between
code and data accesses.

• Interrupts are handled using memory-mapped VECTOR, CAUSE, MASK,
STATUS, and EPC registers:
– The VECTOR register is used to hold the address of the default (non-

vectored) interrupt handler.
– The CAUSE register is read-only, and peripheral interrupt lines are con-

nected to this register.
– The MASK register is read/write and holds the interrupt mask for the

CAUSE register.
– The interrupt STATUS register is automatically cleared on interrupts and

is set by software when returning from interrupts.

Chapter 4. HF-RISC Softcore Processor (Hellfire) 30

– The EPC register holds the program counter when the processor is inter-
rupted. As an interrupt is accepted, the processor jumps to the VECTOR
address, where the first level of irq handling is done. A second-level han-
dler (in C) implements the interrupt priority mechanism and calls the
appropriate ISR for each interrupt.

4.2 HF-RISC Organization
As illustrated by (JOHANN S. F.; MOREIRA, 2016), Figure 15 depicts the stages
of the HF-RISC pipeline and the tasks executed at each of these stages.

• In the fetch stage, memory is accessed and an instruction becomes available in
one cycle. In this same cycle, the PC is updated.

• In the decode stage, an instruction is fed into the decoding and control logic, so
values are registered for the next stage. Pipeline bubble insertion is performed
in this stage for memory and branch operations.

• In the execute stage, the register file is accessed, and the ALU calculates
the result of the operation. Address and data are put on the data bus (on
store operations), or data are copied to the register file (on load operations).
On logic/arithmetic operations, the ALU result is written to the register file.
Branch outcomes are computed in this stage. Multiply operations write the
result to HI and LO registers.

Figure 15 – HF-RISC 3-Stage pipeline and the stage tasks (source: [JOHANN,
2016]).

Chapter 4. HF-RISC Softcore Processor (Hellfire) 31

4.3 HF-RISC + HellfireOS
HellfireOS needs to be connected to HF-RISC to generate a complete system. In
order to archive this scenario, it is needed to compile HellfireOS to generate file
code.txt and also compile HF-RISC to generate file boot.txt. After that, it will be
possible to use the Modelsim simulator to execute the whole system. The simulation
output is driven to the Output.txt file. See Figure 16 for details.

Figure 16 – HellfireOS + HF-RISC (source: Author).

The program (Figure 11) responsible for loading the tasks is located in folder
’../app’, and it is needed to map this path in the makefile program located in
’APP=hellfireos/platform/single-core’. This folder also needs to set the architecture
that will be used in the simulation ’ARCH=riscv/hf-riscv’. In the same file, it is
possible to set parameters like heap size, in this case ’HEAP_SIZE=1600’ and
also, the kernel logs. After setting these parameters, it is needed to compile the
HellfireOS + HF-RISCV, and to do that, the command make is used.

After integrating hardware and software, in order to simulate the whole system, it
will be needed to create a new project in Modelsim tool. Once the new project was

Chapter 4. HF-RISC Softcore Processor (Hellfire) 32

created the following files (FILHO S. J.; AGUIAR, 2007) are needed:

1. from folder ../riscv/core_rv32i:
a) alu.vhd - The Arithmetic Logic Unit (ALU) stores the logic and arithmetic

operations such as addition, subtraction, multiplication, division, etc.
b) bshifter.vhd - The Barrel Shifter is responsible for shifting a data word by

the needed number of bits.
c) control.vhd - This file describes how the HF-RISCV signals are managed

and sent to the datapath.
d) cpu.vhd - The Central Processing Unit file is responsible for handling the

input and output signals for the datapath and ALU.
e) datapath.vhd - It is responsible for describing the how the data will flow

inside the CPU.
f) int_control.vhd - As part of the ALU, it handles all the operations.
g) reg_bank.vhd - The Register Bank file describes how and wherein the

CPU the data will be temporarily stored.
2. from folder ../riscv/sim:

a) ram.vhd - The Random Access Memory file is responsible for describing
the how and where the data loaded will be temporarily stored.

b) boot_ram.vhd - This file loads the data in the boot.txt file to the memory
c) hf_riscv_tb.vhd - The Testbench file is responsible for setting the workspace

to simulate the hardware.
3. from folder ../devices/peripherals:

a) minimal_soc.vhd - The System on a chip file is a support for the whole
system operation. It is responsible for: counters, real-time timers, etc.

4. will be needed to add the files generated by the HellfireOS:
a) boot.txt - This file loads the HF-RISCV, along with other system basic

settings.
b) code.txt - The code.txt file is the HellFireOS operating system code, already

compiled.

Chapter 4. HF-RISC Softcore Processor (Hellfire) 33

After including all the necessary files, it will be possible to compile all data and
start the simulation. Once the simulation finishes, it is possible to check the output
file (output.txt), as illustrated by Figure 17.

Figure 17 – Output file from HellfireOS + HF-RISC (source: Author).

34

5 Methodology

Real-time systems are classified according to temporal requirements. They can be
categorized as soft real-time systems, firm real-time systems and hard real-time
systems. If a hard real-time system fails to meet a time requirement, it can result
in catastrophic consequences, economically and in human lives. In a firm real-
time, a missed deadline can be tolerated, and for a soft real-time system degraded
performance is accepted. Figure 18, adapted from the paper (RAHEJA R.; CHENG,
2009), demonstrates the time curves for firm, hard, soft real-time adaptations.

Figure 18 – Relations among firm, hard, soft real-time systems (source: [RAHEJA
R.; CHENG, 2009]).

The hard real-time system is our focus in this document. This section addresses
the specification and implementation of the I-IP.

5.1 Specification
The I-IP module must perform the passive monitoring of the process of scheduling
tasks of the operating system. Passive monitoring cannot interfere with the normal
operation of the processor and, cannot reduce the performance of the system.

Chapter 5. Methodology 35

The solution to be proposed should generate hardware with the smallest possible
area compared to the processor area to reduce the probability of transient faults
reaching the I-IP itself. Besides that, the proposed technique is based on an I-IP
implemented in hardware connected to the address bus between the processor
and the memory. One of the main advantages of this approach, compared to the
approaches based on software solutions, where specific functions are embedded in
the OS kernel, is that the proposed approach does not imply system performance
degradation due to the addition of the monitoring functions. Moreover, as it will
be presented in the validation chapter, the fault detection latency is just a few
processor clock cycles, in contrast to thousands of clock cycles for software-based
approaches. The technique is based on a known set of tasks with dynamic priorities.

To develop the I-IP, it is necessary to know the scheduling routines of the operating
system; the addresses in which the compiler allocates the scheduling functions;
the parameters of the tasks; and if it is the case, the core constraints for system
execution (i.e., the set of tasks allocated to each core, if a multicore processor is
considered, the hardware resources allowed to be accessed by each task, etc.)

Figure 19 depicts the basic connections between the I-IP, processor, memory and
address bus.

Figure 19 – Overview of the proposed approach (source: Author).

The I-IP is connected to the CPU address bus in order to monitor the scheduling
process and inform if an error occurs. I-IP is connected to the CPU address, as
shown in Figure 19.

Furthermore, it is possible to have n cores; in this case, the same n number of I-IP
is required to perform the core monitoring. In other words, one I-IP is required

Chapter 5. Methodology 36

for each core. Each I-IP will indicate the occurrence of the scheduling in each core.
It means identifying the running task is performed by monitoring the addresses
accessed by the processor. Each task is associated with an address previously
defined and known in memory, and for each task, there is a previously allocated
address space in memory.

I-IP will receive the task information and will check if the scheduling process was
not violated. The address accessed in memory by the CPU is compared to the
address range for each task. If the address accessed is not the same as the address
of task, the control unit will indicate an error. The errors to be detected by the
I-IP are summarized below:

• Running task is not in the I-IP list;
• Deadline missed;
• Running task is not the one with the highest priority of the ready to-do list;
• A rescheduling event occurred, but the tasks were not rescheduled (and there

is at least one task ready to be executed with higher priority than the running
one at the moment of rescheduling).

As illustrated by Figure 20, the I-IP is connected to the CPU bus of the embedded
system and receive: an interruption signal and the addresses. And, to notify a
scheduling error, there is an output signal in the I-IP.

Chapter 5. Methodology 37

Figure 20 – External architecture of HF-RISC plus I-IP (source: Author).

The I-IP generates an error signal once a scheduling issue is identified. This error
signal is called ’MISS’.

5.2 Implementation
In order to implement an I-IP able to detect scheduling issues, HellFireOS was
selected because it is an open-source code. Other reasons that contributed to this
choice are the fact that the RTOS of the HellFireOS is written in C language,
supports semaphores, mutex, message queue, and has a real-time scheduler based
on priorities. In HellFireOS, each task can be in one of the five main states: "not
executed yet","running", "blocked", "waiting" and "ready", where tasks are organized
according to their priorities.

Another important point is knowing the scheduling functions that are implemented
in the operating system. Equally important is to describe the FSM (Finite State
Machine) that the I-IP should follow (Figure 21). Once the I-IP was developed, it
can be integrated into the address bus of the HF-RISC system. Furthermore, it
can be validated by simulation.

Chapter 5. Methodology 38

Figure 21 – I-IP Finite State Machine (source: Author).

As demonstrated by Figure 21, the FSM contains three states:

• S0: is the initial state where the queue is sorted by the system.
• S1: illustrate the conditions and validations to be performed by the I-IP.
• S2: update the task parameters. In each execution cycle, the task priority can

be changed following the EDF conditions.

The proposed I-IP will be implemented in VHDL, and the module will be located
in the processor bus. The I-IP needs to monitor the task scheduler process in order
to inform any violations in the scheduling process.

Chapter 5. Methodology 39

5.2.1 I-IP

The flow starts when HellfireOS + HF-RISCV + I-IP data structures are initialized.
After this initialization, interrupt handlers are registered and enabled. At this point,
initial tasks are added to the system and execution begins. The system is on hold
until an interruption event occurs. At this point, the interrupt service routine is
called, the basic processor context is saved, and an interrupt handler is invoked
according to the source of the interrupt. In a timer event, the interrupt handler for
scheduling (IRQ) is called, the task context is saved, and the scheduler is invoked.
After scheduling, the context of the chosen task is restored, and its execution is
continued. During the scheduling process, the bus addresses are checked, and if
necessary, an error is raised. So, the I-IP module keeps monitoring the scheduling
process to identify violations during the RTOS operation.

As illustrated in Figure 20, the I-IP will monitor the CPU address. Once a relevant
IRQ occurs, the I-IP module will compare the task address from Hellfire with
the task address from the I-IP simulation. If the address is not the expected one,
I-IP should raise an error flag. Otherwise, the I-IP must continue running and
monitoring.

5.2.2 I-IP Coverage

During the execution time, the I-IP should monitor the scheduling process. Here,
four cases of error must be identified, as shown in Figure 22. The first error to be
considered is if a task set can be scheduled without losing its deadline. This error
is checked by Equation 2.2. Then, the other three errors can be monitored, mainly
the deadline missed, then the unknown task being executed, and scheduling issues,
such as priority inversion.

Chapter 5. Methodology 40

Figure 22 – I-IP: Error detection (source: Author).

As demonstrated in Figure 22, once the execution starts, the I-IP is available and
ready to monitor the scheduling process. First, I-IP checks if the task set can be
scheduled without missing the deadline, this validation is made by Equation 2.2. If
it cannot be scheduled without deadline violation, the system will raise an exception
to inform the user that a task will have the deadline violated. This is represented
by ’Error: Cannot be scheduled’. This message is just a "warning", so even the task
set cannot be scheduled without losing some deadline, the execution will continue.

Subsequently, it will be checked if the IRQ occurs; if not, I-IP will stay in the loop

Chapter 5. Methodology 41

waiting for the IRQ. Once the IRQ occurs, it will be checked if it is the Idle task
that is in execution. If so, no action from the I-IP is needed. If it is not the Idle
task, the Task period will be checked, if the period is reached and the capacity is
not completely executed, the deadline is missed and the message ’Error: Deadline
Missed’ will be raised. However, if the capacity is fully executed (TC=0), the task
receives the initial parameters and the I-IP queue is sorted. Otherwise, if the Task
period is not reached, the I-IP queue is sorted. After sorting the queue, the sorted
address from I-IP is compared with the address bus from the HellfireOS. If the
address is not the same, it is verified if the task that HellfireOS is executing is
known; if so, the message ’Error: Scheduling Issue’ is raised, informing that some
scheduling issue occurred. If the address from HellfireOS is not recognized by the
I-IP, the message ’Error: Unknown task’ is raised. But if the I-IP address and
HellfireOS address are the same, the task parameters are updated, and the I-IP
waits for the next interruption.

The I-IP generates an error signal once a scheduling issue is identified. This error
signal is called ’MISS’ and will identify the following scenarios:

• Error: Cannot be scheduled (001)
• Error: Deadline Missed (010)
• Error: Scheduling Issue (011)
• Error: Unknown task (100)

42

6 Validation

In this chapter, the experiments used to analyze and validate the proposed technique
are presented. Some faults will be simulated in the execution of the task scheduling
process to notice if these faults will be detected by the I-IP as expected.

6.1 I-IP Coverage
The implemented I-IP performs the procedure of monitoring the task scheduling
activity of the RTOS. The verification performed by I-IP is described in detail
below. The whole verification is done using Figure 23, because all task addresses
are checked with the I-IP list of addresses to validate any violation and, if it is the
case, generate an error. As demonstrated by Figure 23 this approach can be used
for multiple cores. In this case, each core will be monitored individually by the
I-IP and will receive an error message. For this work, one core validation will be
considered.

Chapter 6. Validation 43

Figure 23 – I-IP Checks (source: Author).

To validate I-IP coverage, three test programs were developed. These programs
were developed in order to analyze and validate the behavior of I-IP.

6.1.1 Non identified task running

Figure 24 presents the first test set; In this test was implemented five tasks in
HellfireOs that should execute without losing their deadline; and, in I-IP just four
tasks are mapped. The main goal here is to validate the Error: Unknown task.

Chapter 6. Validation 44

Figure 24 – Test set 1 (source: Author).

This check compares the running task with the expected tasks in I-IP. If the current
task is not in the list of tasks, one error is generated to indicate that one unexpected
task is in execution.

In this case, a new task was included in the HellfireOS, but was not mapped in the
I-IP module. Once the unexpected task assumes the processor, the I-IP raises the
MISS signal (100), meaning that some unknown task is being executed.

6.1.2 Deadline missed

This check verifies if some task has its deadline violated; if the task could not
complete the execution time before the period arises its deadline is missed. The
MISS signal shows this message error. This case considers the task set from Table 4:

Task Ci Ti Di
T1 10 20 20
T2 35 50 50

Table 4 – Task parameters.

Applying Equation 2.2 for tasks from Table 4, and checking the utilization (U <=
1), it is possible to observe that some task will have the deadline missed.

U =
n∑
i1

Ci

T i

Chapter 6. Validation 45

U = C1
T1 + C2

T2

U = 10
20 + 35

50

1.2 <= 1

When tasks from Table 4 are scheduled by the Earliest Deadline First algorithm, it
is possible to observe that Task ’a’ and ’b’ will miss the deadline. In time 50, Task
’b’ is available again; consequently, the period ’Ti’ is reached. However, only in time
55, the task completes the total execution time. Also, for this task set, Task ’a’ will
lose the deadline. Since Task ’a’ has ’Ti’ = 20, in time 60 Task ’a’ is available for
the third time, which means, the period ’Ti’ is reached again. However, only in
time 65 the Task ’a’ will complete the total execution time, as demonstrated in
Figure 25.

Figure 25 – Task set of Table 3 scheduled by Cheddar (source: Author).

Assuming the task set from Table 4, tasks a and b will have the deadline missed
and, the I-IP raises the MISS signal (010).

Chapter 6. Validation 46

6.1.3 Scheduling Error

Other errors that can occur during the operating system execution can be reschedul-
ing or priority inversion, for example. In this case, a fault occurs either if rescheduling
takes place, but the highest priority task does not assume the processor or a schedul-
ing event does not occur and, unexpectedly, another task assumes the execution.
Additionally, the I-IP verifies if scheduling events that occurred were executed,
that is, that the execution task was indeed switched (unless there is no other task
in the list of tasks ready to be executed with priority higher than the one under
execution). This check may return an error for two reasons: (i) a task assumed the
processor without a rescheduling event, or (ii) a rescheduling event occurred, but
the task did not release the processor.

I-IP also checks whether the current task is the highest priority available. That
means, I-IP checks the priority of the tasks ready with the current task, in order
to guarantee that the current task is the expected one; if not, the MISS signal will
also yield an error indication for this case of priority inversion.

In this case, to simulate a priority inversion, after calling the function sched_edf()
a lower priority task was called. Once the task with low priority assumes the
processor, the I-IP raises the MISS signal (011), meaning that a task with low
priority is being executed.

6.1.4 Earlier Scheduling Error detection

As demonstrated in Chapter 2, for a set of tasks to be scaled with EDF and have
all deadlines met, Equation 2.2 should be respected; otherwise, the deadline will
be missed. In this scenario, I-IP checks Equation 2.2 to identify if any task has
its deadline missed before the OS boot. If so, the MISS signal is raised (001),
identifying that a task will have the deadline missed. This test was performed using
task set from Table 4.

The verification of Equation 2.2 yields a "warning" indication. Nevertheless, it does
not prevent the operating system from executing all tasks.

Chapter 6. Validation 47

6.2 Error Latency Detection, Area Overhead, and Power Dis-
sipation
The error latency detection depends on the points where the error is generated and
also, the number of tasks that will have to be compared. For example, if I-IP has
to check the status of two tasks, the process will take six clock cycles to raise the
’MISS’ signal in case of one of the deadlines is missed.

Table 5 demonstrates an FPGA area overhead of 7,83% when adding I-IP to the
system.

HF_RISCV HF_RISCV + I-IP Overhad
Total Number of
4 input LUTs 2,208 2,381 7,83%

Table 5 – “I-IP: FPGA area overhead.

Furthermore, Table 6 demonstrates that adding I-IP to the system increase 1,21%
the FPGA power dissipation.

HF_RISCV HF_RISCV + I-IP
Power
dissipation 82mW 83mW

Table 6 – I-IP: Power consumption.

6.3 Results
I-IP can detect the missed deadline during the OS execution and identify scheduling
errors. Comparing with the validation present in HellFireOS, I-IP has the highest
coverage; once HellFireOS just cover the deadline misses.

Additionally, I-IP checks if the task set that the OS will execute can be scheduled
without violating deadlines; this validation occurs right before the OS boot.

Therefore, if some task has a deadline missed or some scheduling error happens
during the execution, I-IP will detect and update the MISS signal. In addition,

Chapter 6. Validation 48

before this happens, it is possible to know that some tasks can have the deadline
missed and, this will be informed before the execution starts.

49

7 CONCLUSION

This work described a hardware-based technique to detect faults occurring during
the operating system execution in real-time embedded systems. More precisely,
these faults occur during the execution of the task scheduling algorithm. The
greatest motivation of this work is due to the increasing use of embedded systems
in the daily routine and the gap in the monitoring of scheduling failures when it
comes to dynamic priority scheduling algorithms for real-time embedded systems.

The main contribution of this work is the robustness increase of embedded systems
since the I-IP detects errors that are not covered by the native functions of the RTOS
during the task scheduling analysis. Moreover, dynamic scheduling algorithms can
scale some sets of tasks that would previously lose deadline, thus having a higher
coverage.

The study was developed for the HF-RISC microprocessor and its HellFireOS
operating system. In conclusion, the I-IP can detect if any task will have the
deadline missed earlier than HellFireOS. I-IP can detect this condition before the
processor starts running. It is worth noting that the I-IP can detect in real-time,
i.e., with negligible delay, the missed deadline for each task, in addition to detecting
scheduling failures.

50

8 FUTURE WORK

As a suggestion for future work, tests can be carried out on the FPGA board with
radiation tests. Also, the main limitation of this I-IP module is the impossibility of
identifying the resources that are being released or blocked. Identifying such RTOS
resources will increase the detection capability of I-IP, as it will be possible to
identify which resource each task is waiting for. Then, when a resource is released,
it can be identified which task will be unlocked. Another suggestion for future
work is implementing I-IP module to monitor different operating systems and
the performance of respective fault injection experiments to verify the module’s
reliability in these new contexts.

51

Bibliography

ANSARI, M. et al. Peak power management to meet thermal design power in
fault-tolerant embedded systems. IEEE Transactions on Parallel and Distributed
Systems, DOI: 10.1109/TPDS.2018.2858816, v. 30, n. 1, p. 161–173, 2019.
ARLAT, J. et al. Comparison of physical and software-implemented fault injection
techniques. IEEE Transactions on Computer, DOI: 10.1109/TC.2003.1228509,
2003.
BETTI, E. et al. Real-time i/o management system with cots peripherals. IEEE
Trans. Comput., IEEE Computer Society, DOI: 10.1109/TC.2011.202, v. 62, n. 1,
p. 45–58, 2013.
BOYD-WICKIZER, S. et al. An analysis of linux scalability to many cores.
in: Proceedings of the 9th usenix conference on operating systems design and
implementation. 9th USENIX conference on Operating systems design and
implementation, DOI: 10.5555/1924943.1924944, p. 1–8, 2010.
COSTA, C. M. da. Sistemas Operacionais – Programação concorrente com
Pthreads. 1. ed. Porto Alegre: EDIPUCRS, 2010.
DAVIS, R. I.; BURNS, A. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., DOI: 10.1145/2379776.2379780, 2011.
ERCIYES, K. Uniprocessor-Independent Task Scheduling. In: Distributed
Real-Time Systems. Computer Communications and Networks. 1. ed. Switzerland:
Springer, Cham, DOI: 10.1007/978-3-030-22570-4, 2019.
FARINES J.; FRAGA, J. O. R. Sistemas de tempo real. Florianópolis: [s.n.], 2000.
FILHO S. J.; AGUIAR, A. M. F. G. L. O. H. F. HellfireOS Realtime Operating
System. 2007. <https://github.com/sjohann81/hellfireos>. [Online; accessed
19-May-2019].
GRACIOLI, G.; FROHLICH, A.; PELLIZZONI, R. Implementation and evaluation
of global and partitioned scheduling in a real-time os. University Of Waterloo,
2013.
IGNAT, N. et al. Analysis of real-time systems sensitivity to transient
faults using microc kernel. IEEE Transactions on Nuclear Science, DOI:
10.1109/TNS.2006.880940, v. 53, n. 4, 2006.
IGNAT, N. et al. Soft-error classification and impact analysis on real-time
operating systems. IEEE Design, Automation and Test in Europe, DOI:
10.1109/DATE.2006.244063, 2006.

https://github.com/sjohann81/hellfireos

Bibliography 52

IZOSIMOV, V. et al. Design optimization of time- and cost constrained
fault-tolerant distributed embedded systems. IEEE Desgin Automation and Test
in Europe, DOI: 10.1109/DATE.2005.116, p. 864–869, 2005.
JACK, G. Great watchdogs. Gaanssel Group, 2004.
JOHANN S. F.; MOREIRA, M. T. C. N. L. V. H. F. P. The hf-risc processor:
Performance assessment. LASCAS, DOI: 10.1109/LASCAS.2016.7451018, 2016.
JUHáSZ, T. D.; PLETL, S.; MOLNAR, L. A method for designing and
implementing a real-time operating system for industrial devices. p. 149–154, 2019.
LAPRIE, J. C. Dependable computing and fault-tolerance: Concepts and
terminology. IEEE Proceedings, DOI: 10.1109/FTCSH.1995.532603, 1985.
MICCO L.; VARGAS, F. F. P. Guest editorial special issue on embedded systems.
IEEE Latin America Transactions, Vol. 18, Issue 02, Feb. 2020: Special Issue on
Embedded Systems, p. 180-187, ISSN 1548-0992, DOI: 10.1109/TLA.2020.9085270,
2020.
MICCO L.; VARGAS, F. F. P. A literature review on embedded systems”, ieee
latin america transactions. IEEE Latin America Transactions, Vol. 18 , Issue 02,
Feb. 2020: Special Issue on Embedded Systems, p. 188-205. ISSN 1548-0992, DOI:
10.1109/TLA.2020.9085271, 2020.
NICOLESCU, N. et al. Sensitivity of real-time operating systems to transient
faults: A case study for microc kernel. RADECS Radiation and Its Effects on
Components and Systems, DOI: 10.1109/RADECS.2005.4365596, p. 19–23, 2005.
OLIVEIRA, C.; BOLZANI, L.; VARGAS, F. A hardware-scheduler for fault
detection in rtos-based embedded systems. In Digital System Design, Architectures,
Methods and Tools, 12th Euromicro Conference, DOI: 10.5555/1674636, p. 10–13,
2015.
PRADHAN, D. K. Fault tolerant computer system design. Prentice-Hall, DOI:
10.5555/230303, 1996.
QING, L.; YAO, C. Real-time concepts for embedded systems. CMP Books, 2003.
RAHEJA R.; CHENG, S. G. D. S. B. Improving architecture-based self-adaptation
using preemption. SOAR, DOI: 10.1007/978-3-642-14412-72, 2009.

SCHERRER, C.; STEININGER, A. Dealing with dormant faults in an embedded
fault-tolerant computer system. IEEE Transactions on Reliability, DOI:
10.1109/TR.2003.821943, v. 52, n. 4, p. 512–522, 2003.
SHYE, A. et al. Plr: A software approach to transient fault tolerance for multicore
architectures,” ieee transactions on dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing, DOI: 10.1109/TDSC.2008.62,
p. 135–148, 2009.

Bibliography 53

SILVA, D.; BOLZANI, L.; VARGAS, F. An intellectual property core to detect
task scheduling-related faults in rtos-based embedded systems. IEEE 17th Int.
On-Line Testing Symposium (IOLTS), DOI; 10.1109/IOLTS.2011.5993805, p.
19–24, 2011.
SINGHOFF F.; LEGRAND, J. N. L. M. L. Cheddar : a flexible real time
scheduling framework. ACM SIGAda Ada Letters, DOI: 10.1145/1046191.1032298,
2004.
STANKOVIC, J.; RAMAMRITHAM, K. Tutorial on hard real-time systems.
IEEE Computer Society Press, 1988.
STANKOVIC, J. A. Misconceptions about real-time computing. IEEE Computer,
DOI: 10.1109/2.7053, v. 21, 1988.
TARRILO, J.; BOLZANI, L.; VARGAS, F. On-chip watchdog to monitor rtos
activity in mpsoc exposed to noisy environment. 10th International Workshop
on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), DOI:
10.1109/MEMC.0.7543957, p. 341–347, 2009.
ZHURAVLEV, S. et al. Survey of scheduling techniques for addressing
shared resources in multicore processors. ACM Computing Surveys, DOI:
10.1145/2379776.2379780, n. 4, 2012.

54

A CPU.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity processor is
port (clk_i: in std_logic;

rst_i: in std_logic;
stall_i: in std_logic;
addr_o: out std_logic_vector(31 downto 0);
data_i: in std_logic_vector(31 downto 0);
data_o: out std_logic_vector(31 downto 0);
data_w_o: out std_logic_vector(3 downto 0);
extio_in: in std_logic_vector(7 downto 0);
extio_out: out std_logic_vector(7 downto 0)

);
end processor;

architecture arch_processor of processor is
signal irq_cpu, irq_ack_cpu, exception_cpu, data_b_cpu, data_h_cpu,

data_access_cpu: std_logic;
signal irq_vector_cpu, address_cpu, data_in_cpu, data_out_cpu:

std_logic_vector(31 downto 0);
signal data_w_cpu: std_logic_vector(3 downto 0);

begin
-- HF-RISC core
core: entity work.datapath
port map(clock => clk_i,

reset => rst_i,

Appendix A. CPU.vhd 55

stall => stall_i,
irq_vector => irq_vector_cpu,
irq => irq_cpu,
irq_ack => irq_ack_cpu,
exception => exception_cpu,
address => address_cpu,
data_in => data_in_cpu,
data_out => data_out_cpu,
data_w => data_w_cpu,
data_b => data_b_cpu,
data_h => data_h_cpu,
data_access => data_access_cpu

);

-- interrupt controller
int_control: entity work.interrupt_controller
port map(

clock => clk_i,
reset => rst_i,
stall => stall_i,
irq_vector_cpu => irq_vector_cpu,
irq_cpu => irq_cpu,
irq_ack_cpu => irq_ack_cpu,
exception_cpu => exception_cpu,
address_cpu => address_cpu,
data_in_cpu => data_in_cpu,
data_out_cpu => data_out_cpu,
data_w_cpu => data_w_cpu,
data_access_cpu => data_access_cpu,
addr_mem => addr_o,
data_read_mem => data_i,
data_write_mem => data_o,
data_we_mem => data_w_o,

Appendix A. CPU.vhd 56

extio_in => extio_in,
extio_out => extio_out

);

--watchdog
watchdog: entity work.watchdog
port map(

clk => clk_i,
reset => rst_i,
addr_from_cpu => address_cpu,
data_access_cpu => data_access_cpu,
irq_to_cpu => irq_cpu

);
end arch_processor;

Appendix A. CPU.vhd 57

Appendix A. CPU.vhd 58

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Goals
	Structure of this Document

	Theoretical Foundations
	Real-Time Operating System
	Scheduler
	Scheduling Algorithms

	Fault Tolerance
	Fault, Error and Defect
	Related Research

	Operating System (HellfireOS)
	HellfireOS Scheduling Algorithms
	Task Functions
	Fault detection of HellfireOS

	HF-RISC Softcore Processor (Hellfire)
	HF-RISC Architecture
	HF-RISC Organization
	HF-RISC + HellfireOS

	Methodology
	Specification
	Implementation
	I-IP
	I-IP Coverage

	Validation
	I-IP Coverage
	Non identified task running
	Deadline missed
	Scheduling Error
	Earlier Scheduling Error detection

	Error Latency Detection, Area Overhead, and Power Dissipation
	Results

	CONCLUSION
	FUTURE WORK
	Bibliography
	CPU.vhd

