
A CTL Model Checker

for Stochastic Automata Networks�

Lucas Oleksinski, Claiton Correa, Fernando Lúıs Dotti, and Afonso Sales��

PUCRS - FACIN, Porto Alegre, Brazil
{lucas.oleksinski,claiton.correa}@acad.pucrs.br,

{fernando.dotti,afonso.sales}@pucrs.br

Abstract. Stochastic Automata Networks (SAN) is a Markovian for-
malism devoted to the quantitative evaluation of concurrent systems.
Unlike other Markovian formalisms and despite its interesting features,
SAN does not count with the support of model checking. This paper dis-
cusses the architecture, the main features and the initial results towards
the construction of a symbolic CTL Model Checker for SAN. A parallel
version of this model checker is also briefly discussed.

1 Introduction

Stochastic Automata Networks (SAN) was proposed by Plateau [12], being de-
voted to the quantitative evaluation of concurrent systems. It is a Markovian
formalism that allows modeling a system into several subsystems which can
interact with each other. Subsystems are represented by automata and inter-
actions by synchronizing transitions of cooperating automata on same events.
Dependencies among automata can also be defined, using functions. Functions
evaluate on the global state of the automata network and can be used to specify
the behavior of specific automata. The use of functions allows the description
of complex behaviors in a very compact way [1]. Quantitative analysis of SAN
models is possible using specialized software tools (e.g., PEPS [13] or SAN Lite-
Solver [14]), fundamentally allowing one to associate probabilities to the states
of the model, using a steady state or transient analysis.

While developing models for involved situations it is highly desirable to reason
about their computation histories and thus model checking becomes important.
Indeed, many formalisms for quantitative analysis count with the support of
specialized model checking tools. In the context of CTMC-based model checking,
we can mention PRISM [8], SMART [4] and CASPA [7]. Such support however
is lacking for SAN. In this paper we report our results towards the construction
of the first SAN model checker. In this initial version, the tool is restricted to
CTL model checking opposed to the stochastic verification as offered by the
aforementioned tools.
� Paper partially sponsored by CNPq (560036/2010-8) and FAPERGS (PqG 1014867).

�� Afonso Sales receives grant from PUCRS (Edital 01/2012 – Programa de Apoio à
Atuação de Professores Horistas em Atividades de Pesquisa na PUCRS).

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 286–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A CTL Model Checker for SAN 287

2 Tool Overview

Fig. 1 illustrates the main processing steps of the SAN model checker. It has as
input a model written in the SAN modeling language [13], a CTL (Computation
Tree Logic) property, and an additional information if a witness or a counterex-
ample to the property is desired. As output it offers the answer whether the
property is true or false, and a witness or counterexample as chosen. The tool
supports the standard CTL where atomic propositions are assertions about the
global state of the automata network according to the SAN language [13].

The compilation of the SAN model generates a Markovian descriptor which
is used as the system transition relation, i.e., a set of tensors which operated by
generalized Kronecker algebra allows the achievement of next states. The initial
states of the model are those considered as reachable in the reachability decla-
ration of the SAN model. Multi-valued Decision Diagrams (MDD) are used to
encode the Reachable State Space (RSS) of the SAN model, which is calculated
using an extension [15] of the saturation based approach [3]. The satisfaction
sets calculation (SAT in Fig. 1) follows a breadth-first search algorithm. During
this process, the RSS is labelled with all subformulas of the input formula.

(MDD)
RSS

Descriptor
Markovian

generation
RSS

Model
SAN

State(s)
Initial

or Witness
Couterexamples

CTL
Property

RSS Labeled w/
Atomic Propositions

ENF−CTL

End

RSS Labeled w/

(sub)formulas
Witness

generation
Witness

Compilation Labeling

CTL Handling

SAT

yes

no

Fig. 1. The tool architecture

Whenever a counterexample is desired, the tool negates the input formula
to generate a witness. The witness generator supports ENF-CTL operators and
generates trace structured witnesses. To enrich witness information, whenever
a branching is avoided the respective state of the trace is annotated with the
subformula that holds from that state.

A parallel approach was proposed that replicates the entire RSS and assigns
specific partitions of the state space to be computed by different nodes. Each
node may locally compute successor states even these cross partition borders,
without requiring communication. Communication is only required for fix-point
calculation, which is executed as rounds of synchronization between nodes.

3 Experiments

We report CTL model checking results1 on both sequential and parallel imple-
mentations of the model checker through set of experiments with two different
models: the dining philosophers (DP) problem [15] and a model for an ad hoc

1 As mentioned, our tool does not perform stochastic verification and thus numerical
analysis is not carried out.


