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An imbalance in Th1/Th2 cytokine immune response has been described to influence the pathogenesis of
respiratory syncytial virus (RSV) acute bronchiolitis and the severity of infection. Th2-driven response
has been well described under first RSV vaccine (formalin-inactivated RSV vaccine antigens) and repli-
cated in some conditions for RSV-infected mice, in which a Th2-dependent lung eosinophilia increases
illness severity, accompanied of tissue damage. Currently, several prototypes of RSV vaccine are being
tested, but there is no vaccine available so far. The advance of bioinformatics can help to solve this issue.
Systems biology approaches based on network topological analysis may help to identify new genes in
order to direct Th1 immune response during RSV challenge. For this purpose, network centrality analyses
from high-throughput experiments were performed in order to select major genes enrolled in each
T-helper immune response. Thus, genes termed Hub (B) and bottlenecks (H), which control the flow of
biological information (Th1 or Th2 immune response, in this case) within the network, would be
identified. As these genes possess high potential to promote Th1 immune response, they could be cloned
under regulation of specific promoters in a plasmid, which will be available as a gene-transfer adjunctive
to vaccines. Th1 immune response potentiated by our strategy may contribute to accelerate Th1/Th2 shift
from neonatal immune system, which might favor protective immunity against RSV infection and reduce
lung damage.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Respiratory syncytial virus (RSV) is the single major cause
of viral lower respiratory tract infection with high levels of
hospitalization and mortality in children around the world [1–4].
It is estimated that all infants by two years of age have been
infected by RSV and more than a half of them are re-infected [5].
Acute bronchiolitis is commonly associated with RSV infection in
children under 1 year of age, which is associated with subsequent
asthma diagnosis later in life [6–8]. Additional, in immunocompro-
mised infants, RSV infection may also increase the risk of longer
hospitalization periods [9].
The treatment of RSV infection is highly dependent on symptom
presentation and severity. RSV treatment is based on supportive
care, requiring adequate hydration, use of antipyretics and
ventilator support. Other conventional treatments based on
administration of bronchodilators and corticosteroids have not
been shown to be effective for the majority of cases [10].

RSV preventive treatments would reduce morbidity and poten-
tial costs for patients and societies. However, many difficulties due
to the complexity of anti-viral immune responses impair the devel-
opment of cost-effectiveness therapies. Currently, the prophylactic
therapy is based on the treatment with human monoclonal anti-
body palivizumab, which is a high-cost therapy for high-risk
infants [11].

Natural RSV infection does not promote long-term protection
[12], possibly due to the ability of RSV to interfere in host immu-
nity [13]. A few trials were performed on vaccine development,
but deaths occurred with intervention, and high eosinophilic
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infiltrates on lower respiratory tracts were observed [10,13].
Currently, several prototypes of vaccines are under study. The
majority of vaccines are based on the use of RSV viral peptides
[14,15], live attenuated viruses [15,16] and RSV subunit particles
[17]. These new vaccines are focused to produce efficient humoral
and cellular immune responses, which would result in lower lung
inflammation and higher protection against RSV infection.
However, until the present date there is no licensed RSV vaccine
available, supporting the search for different approaches towards
a more effective RSV-specific preventive therapy.

Expanding the knowledge of immunomodulation may enhance
our capacity to develop novel therapies to direct a specific immune
response. In this sense, systems biology, an interdisciplinary
approach that analyses complex interactions as parts of a biologi-
cal system, can be applied to elucidate new intracellular proteins
that could promote or inhibit specific CD4 T cell responses. Thus,
this approach may provide gene candidate to develop new adju-
vants for use in humans.
Hypothesis

We hypothesize that an immunomodulator plasmid can be pro-
duced based on selection of key endogenous genes that direct the
immune response to Th1 immune profile during RSV infection.
Hence, the aim of this paper is to use systems biology strategies
in combination with DNA recombinant technologies to generate
hypothesis for preventive strategy to RSV acute bronchiolitis. Our
hypothesis will be supported in two interrelated sections: Th1/
Th2 balance explored by systems biology networks and develop-
ment of an immunomodulatory plasmid for gene transfer.
Th1/Th2 balance explored from systems biology networks

Some questions must be performed to understand in silico strat-
egy proposed in this section.
What is the importance of differentiation of CD4+ T cells during RSV
infection?

When the host reacts against RSV infection, the ensuing
immune response involves a complex set of cellular responses dis-
tributed across many different types of cells. However, CD4+ T cells
differentiation plays a major role during the control of RSV infec-
tion. CD4+ T cells are responsible for RSV clearance (when Th1
immune response is induced) or disease (when Th2 immune
response is induced).

Viral clearance requires Th1 polarization driven partially by IL-
12-secreting mature dendritic cells, which promote activation of
IFN-c-producing CD4+ T cells. IFN-c, in turn, promotes cytotoxic
T cell function by stimulating CD8+ T cells and NK cells in order
to clear virus-infected cells [18]. Additionally, these Th1 cells stim-
ulate macrophage phagocytic activity to promote clearance of dead
cells and induce production of neutralizing IgG antibodies by B
cells [19,20]. However, during RSV infection, high Th2 immune
response is reported, accompanied of excessive mucus production
[21], IgE production [22], airway hypersensitivity and lung injury,
after a second exposure to the virus (high numbers of eosinophils
were detected and appear to be associated with Th2 memory
response activation) [23]. This finding was reported during the
development of a first model of RSV vaccine, in which FI-RSV
was inefficient in inducing IFN-c-secreting NK cells and CD8+ T
lymphocytes [18]. Clinical evidences confirm an association
between severe pediatric RSV disease and elevated ratios of Th2/
Th1 response, in which Th2 cytokines are detected in higher levels
in nasal secretions or peripheral blood mononuclear cells stimu-
lated by RSV [24–26].

Are Th1 and Th2 signaling pathways related?

Several studies define cell signaling pathways for Th1 or Th2.
Originally, CD4+ Th1 cells express STAT4, which induces the tran-
scription factor T-bet (known as a master regulator of Th1 cells)
[27]. T-bet is induced by TCR signaling and is strongly enhanced
by STAT1 transcription factor activation, which occurs as a positive
feedback loop in response to auto/paracrine produced IFN-c [28].
One of the genes induced by T-bet encodes Runx3, which in asso-
ciation with T-bet, binds to several enhancers and the promoter of
the Ifng gene, inducing its transcription [29]. Runx3 and T-bet also
bind to a silencer in interleukin (IL)-4 gene, resulting in a transcrip-
tional repression of this gene [29]. On the other hand, Th2 cells
express Gata3 (Th2 master regulator) that inhibit Th1 response
by IL-4 production [30]. Today, it is recognized that these cellular
types possess plasticity, and the expression of a master regulator
is insufficient to define cell phenotype. Several signal pathways
and the cellular microenvironment are linked with this process.
Novel systems biology tools may help to organize this complex
information in hierarchical levels, leading to a co-evolution of
interrelated complexity of Th1 and Th2 signaling and to develop
a possible DNA immunomodulator.

How applied systems biology may develop an immunomodulator
based on CD4+ T biology?

We suggest a series of logical steps to test this hypothesis,
which is detailed in Fig. 1. Firstly, human or mouse naive CD4+ T
cells would be isolated from peripheral blood mononuclear cells
(PBMCs); alternatively, spleen cells could be the source of naive T
cells. Several protocols and commercial kits are available for naive
CD4+ T cell isolation [31–34]. A posterior step involves in vitro
naïve CD4+ T differentiation into Th1 or Th2 phenotypes. Specific
cytokines could be applied to direct selective Th differentiation,
such as IL-12 for Th1 [35] and IL-4 for Th2 [36].

The next step includes sample preparation for high-throughput
sequencing (RNA-seq or microarray) and proteomic (mass spec-
trometry) analysis, which will allow obtaining global cell signaling
expression of each in vitro-differentiated T cell type. For microar-
rays, we suggest to employ DNA chips with a high-density of genes,
not recommending commercial chips, including probes of specific
cell-signaling pathways. This may limit the search for genes differ-
entially expressed that would act as unexplored regulators of Th1
or Th2 cell signaling.

After processing high-throughput expression data, Th1 and Th2
protein–protein interacting (PPI) networks could be performed
through bioinformatics meta-search servers [37,38]. Studying
these PPI networks will help to understand the flow of information
through the network by relevant nodes (proteins or genes). In this
sense, a network centrality analysis allows us to identify genes that
have a relevant position in the overall network architecture with
high probability to be candidates in order to direct Th1 effector
pathways. Two major network centralities can be evaluated: node
degree and betweenness. Node degree correspond to the number
of nodes adjacent to a given node, in which adjacent means
directly connected [39]. According to this definition, highly con-
nected nodes in a network are termed hubs. On the other hand,
betweenness indicates in what extent a specific node is between
the others within the network [40]. Bottleneck is a term applied
to define all nodes with high betweenness values, indicating that
they are central points that control the communication between
other nodes within the network. Thus, H-Bs of Th1 PPI network
could be used to develop a recombinant plasmid to stimulate



Fig. 1. Schematic representation of steps to immunomodulatory plasmid development. In vitro naïve CD4+ T cells are differentiated in Th1 or Th2. High throughput
experiments can be then developed to obtain Th1 or Th2 signatures. These data can be used to PPI networks development and can be submitted to network topological
analysis. Finally, text-mining can define hub-bottlenecks genes to be cloned in a plasmid backbone in order to promote Th1 immune response. The plasmid proposed in this
figure is an example, where an H-B Th1 cytokine is under regulation of citomegalovirus promoter (CMV), which robustly drove transgene expression. Additionally, DNA Th2
promoter to drive H-B Th1 differentiation factors, in the same plasmid; thus, the immunomodulatory plasmid can be expressed in a selective manner, when transfected to
activated Th2 cells during RSV infection.
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Th1 response. However, topological analysis and the knowledge of
Th2 network are necessary to an adequate choice of H-Bs to be
cloned. In this sense, we suggest to use textmining tools to under-
stand how H-Bs nodes of Th1 PPI network inhibit H-Bs nodes from
PPI Th2 network (Fig. 2). Commonly, text-mining is applied to
define stimulatory or inhibitory mechanisms between genes or
proteins [41–45]. Thus, H-Bs candidates for cloning would be
selected according to their inhibitory effect on Th2 PPI network.
Development of a DNA plasmid for gene transfer therapy

In order to generate a vector plasmid containing H-Bs, the
knowledge on the lung biology and its immune microenvironment
is essential. Thus, some fundamental questions must be answered
to ensure the functioning of the plasmid proposed.
For generating functional immunomodulatory plasmid, what would be
the minimum number of genes to be expressed or repressed?

Recent studies suggest that the phenotype of Th cells is not
based on a single master regulator expression (above described).
According it, the function of the ‘master regulators’ is different
from the classic molecular cell biology ones (e.g. MyoD expression
can promote muscle differentiation) [46]. In T cells, the master
regulators are not sufficient to induce a phenotype. Expression of
one master regulator, defined as classical for a specific Th cell, is
frequently described in diverse T cell types. It may be more exact
to think on co-expressed master regulators [47]. Hence, a minimal
number of two H-B genes should be cloned into a plasmid to
promote Th1 phenotype.
Is the size of plasmid a problem for a possible gene transfer therapy?

Cloning a high number of genes increase the size of plasmid
DNA molecules, which may become a difficulty for some gene
transfer protocols. However, plasmids with a size up to 20 kbp
were successfully in vivo transferred [48], showing that it is
not a limiting factor to test our hypothesis. In addition,
molecular biology strategies are available to reduce plasmid size,
if necessary, which allows the expression of a large number of
genes, in a cap-independent form, under the regulation of a sin-
gle promoter. For example, the use of internal ribosome entry
site (IRES) sequence [49–51] or 2A sequence are based on this
principle [52–54]. Polycistronic plasmids using these sequences
showed efficient transgene expression in different lung models
[55–57].



Fig. 2. Hypothetical Th PPI networks showing H-Bs nodes relation from single
topological structures. Textmining can be performed in order to choose Th1 H-Bs
genes with strong impact on Th2 PPI network.
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Is our hypothesis a versatile strategy?

It is important to note that the immunomodulatory plasmid
suggested in Fig. 1 is just an example. A variety of other
immunomodulatory plasmids (monocystronic or polycistronic)
may be developed using different promoters or H-B genes selected
based on our strategy.

Which is a better route for gene transfer administration?

According to the literature, plasmid inhalation probably would
be a better option for in vivo gene transfer. This is a non-invasive
manner to rapidly deliver DNA directly into the airways. Two
methods are frequently used in the airway gene transfer protocols,
DNA aerolization and nebulization of liquid-suspended gene
particles. The first option was used to correct specific genetic
disorders, such as a-1 antitrypsin deficiency [58] and other
non-genetic lung diseases, such as pulmonary hypertension [59]
and acute lung injury [60]. The second alternative has low
efficiency, but remains an alternative for inhaled-gene transfer in
lungs, as demonstrated in cystic fibrosis [61].

What is the importance of our hypothesis?

The possibility to direct Th1 immune response using systems
biology for driven plasmid design would be a faster way to guide
therapeutic gene therapy against RSV infection. In conclusion, we
propose a system that might help to maintain the integrity of the
lung tissue affected by a Th2-biased immune response during
RSV infection. If functional, similar therapies can be developed
using systems biology strategy to develop new immunomodula-
tory plasmids to improve immune response against other viral
infections. In addition, the flexibility of our strategy allows easy
adapting to direct immune response of other CD4+ T cell types or
a different lymphoid lineage, which can increase their potential
for biotechnology and therapeutic applications.
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