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Neutrophils are the first cells to achieve the sites of infection or inflammation in the lungs. The massive
accumulation of these cells is associated with acute and chronic lung injury. Therefore, they have been
implicated in the pathogenesis of many lung diseases through the release of reactive oxygen intermedi-
ates, proteolytic enzymes and Neutrophil Extracellular Traps (NETs). The excessive and continuous
release of NETs, fibers composed by decondensed chromatin coated with neutrophil proteins, are associ-
ated to the impairment of lung function in different pathological settings.
Flavonoids inhibit the respiratory burst of neutrophils in mammals. However, one of these flavonoids,

resveratrol has a particular chemical property. It reduce Cu(II) to Cu(I) form with concomitant formation
of reactive oxygen species, which can produce DNA breakage as reported in several in vitro models.
We hypothesize that direct resveratrol administration in lungs can cleave DNA in NETs, improving lung

function during acute airway infections or chronic inflammatory lung diseases.
If the hypothesis is correct, the control of NET formation can be used to reduce the inflammatory envi-

ronment in lung after neutrophil stimuli. Additionally, the production of proinflammatory cytokines by
neutrophils could be also diminished by resveratrol administration. In this sense, this flavonoid provides
a multifaceted opportunity for treatment of lung diseases with strong or chronic neutrophil activation.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Neutrophils constitute the first line of defense against infections
by eliminating phagocytosed pathogenic bacteria, fungi and
viruses [1–5]. Generally, neutrophils are present in pulmonary cap-
illaries in higher numbers compared to systemic blood even in the
absence of inflammatory stimuli [6]. This phenomenon allows neu-
trophils to migrate into the lungs as a response to an inflammatory
insult. During inflammation, neutrophils are activated upon stimu-
lation and migrate into the lungs [7].

Neutrophils recruited to the lungs engulf microbes into a
phagocytic vacuole that fuse with intracellular granules [8]. These
granules contain an overlapping set of antimicrobial proteins, such
as gelatinase, lipocalin, and lysozyme among other proteins [9].
More recently, neutrophils have been shown to possess an alterna-
tive mechanism of pathogen killing, designated as Neutrophil
Extracellular Traps (NETs). NETs are extracellular structures com-
posed by decondensed chromatin complexed with granule and
cytoplasmic proteins [10–12]. These traps bind and kill pathogens
by juxtaposing microbes with neutrophil antimicrobial proteins
and histones [10,11]. NET formation is accompanied by neutrophil
death (NETosis), a non-conventional form of cell death [11–13].
Besides being expressed on NETs, neutrophil elastase and
myeloperoxidase also regulate NET formation [14]. Furthermore,
histone deimination by peptidylarginine deiminase 4 (PAD4) is a
central step to NET formation [15]. Additionally, reactive oxygen
species produced by the assembly and activation of NADPH oxi-
dase are also required for NET release [13,16].

Although NETs are released to kill microorganisms and prevent
microbial spreading, the excessive NET formation leads to tissue
injury. Massive NET production has been demonstrated to be
involved in the pathogenesis of several diseases, such as acute res-
piratory distress syndrome (ARDS), viral infections, cystic fibrosis,
asthma and chronic obstructive pulmonary disease (COPD) [6,17–
19]. In an inflamed tissue, prolonged or excessive release of cyto-
toxic molecules anchored on NETs, accompanied by delayed apop-
tosis of neutrophils, amplify inflammation, increasing tissue
damage [20] and reduction of lung function [21–23], as is the case
in severe influenza pneumonia, where NETs contribute to lung tis-
sue injury [24].

Current development of therapies to target NETs in inflamma-
tory lung diseases include treatment with recombinant human
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DNase (dornase alfa/pulmozyme) [25,26], anti-histone antibodies
[27,28] and antiproteases [29]. However, these therapies require
the use of recombinant DNA technologies with high-quality purifi-
cation. Therefore, the need for alternative approaches to dismantle
NETs structure is clear.

Flavonoids, a group of plant secondary metabolites, affect
inflammation and particularly neutrophil activity [30]. This group
have been attributed to the capacity of plant phenols to prevent
activation of nuclear factor-kappa B (NF-jB) and the subsequent
overexpression of pro-inflammatory mediators (cytokines, adhe-
sion molecules, cyclooxygenase-2, 5-lipoxygenase, myeloperoxi-
dase or inducible nitric oxide synthase), and to inhibit neutrophil
apoptosis [20]. However, a flavonoid member, resveratrol has an
additional property; it is capable of inducing oxidative damage in
DNA in the presence of certain transition metal ions [31–33]. This
characteristic can be used to develop chemical modulators of NETs.
Hypothesis

We hypothesize that resveratrol (Rsv) could act as a DNA cleav-
age agent of NETs, produced by inflammatory lung diseases and
microbial infections improving lung function. Our hypothesis is
represented in Fig. 1.

For an easier analysis of our hypothesis, we support in two
interrelated points based on Rsv properties: DNA-damaging activ-
ity and bioavailability in the lungs.
Fig. 1. Schematic representation of hypothesis for resveratrol action on NETs. Viral or bac
activation in the lungs. These stimuli can promote NETosis, which leads to lung tissue
induce the improvement of lung function.
DNA-damaging activity of resveratrol

Rsv (3,40,5-trihydroxy-trans-stilbene) is a phytoalexin polyphe-
nolic found in grape skins, peanuts, and red wine, has been
reported to have a wide range of biological and pharmacological
properties [34–36]. These chemical properties facilitate their per-
meability across cellular membranes to interact with multiple pro-
tein targets [37], binding to DNA and chelating metal ions. These
properties combined with their pro-oxidant activity convert this
polyphenol in a multifaceted component with great therapeutic
potential. Rsv forms a complex with intracellular cooper metal
[Cu(II)], leading to its reduction [Cu(I)] with in situ formation of
reactive oxygen species (ROS), which induce DNA breakage. Sev-
eral experiments showed DNA damage mediated by the combined
reaction Rsv ± Cu(II) in different DNA substrates (bacteriophage
DNA, plasmids, calf thymus DNA and intracellular DNA of human
peripheral lymphocytes) [31–33].

Fukuhara and Miyata proposed that Cu(II)-dependent DNA
damage by Rsv is caused predominantly by a copper ± peroxide
complex with diffusible oxygen species production [38]. These
authors have further suggested that the reaction occurs without
oxygenated transformation of benzene nuclei. However, Ahmad
et al. [31] indicate that ‘‘transformed species” of Rsv, possibly in
an oxidized form, are produced in the presence of Cu(II). It is pos-
sible that more than one mechanism of DNA cleavage is involved,
but in consensus Cu ions are essentials to oxidative reaction to
account. Other metal ions such as [Co(II), Fe(II), Mn(II), Mg(II)
and Ni(II)] do not produce DNA cleavage reaction as they do not
interact with Rsv [31]. A summary of putative prooxidant reaction
terial airway infections or inflammatory diseases induce neutrophil recruitment and
damage and impair lung function. Resveratrol administration can cleave NETs and



Fig. 2. Putative mechanism showing mobilization of endogenous copper íons mediated by resveratrol. This figure was adapted from Villegas et al. [63].
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mediated by Rsv in presence of cooper ions is represented in the
Fig. 2.

Cooper metal bioavailability becomes a limiting factor for
Rsv ± Cu(II) reaction to induce DNA breakage. The real quantifica-
tion of cellular copper concentration is imprecise. It is due to the
non-existence of free cooper in the nature [39,40]. Extracellular
and intracellular cooper is bound to cellular components (i.e.,
cooper chaperones) [40,41]. Independent of these difficulties, cel-
lular copper concentration could be sufficient to complex to Rsv
to catalyze DNA damage reaction, which could support our
hypothesis.

Copper ions are closely associated with bases of DNA being a
normal component of chromatin. Different levels of copper pro-
mote structural and functional modifications of DNA and induce
chromatin condensation in a concentration-dependent manner
[42]. For this reason, copper is one of the etiological factors most
described in neurodegenerative diseases (Alzheimer’s disease,
Parkinson, Huntington and familial amyotrophic lateral sclerosis),
where an abnormal metal accumulation is associated directly to
the pathological state [43].

In situ endogenous copper ions are mobilized easily from DNA
by chelating agents and the consequent induction of pro-oxidant
reactions [31,44]. Gutteridge showed that cooper is loosely bound
copper to DNA, which is available for binding to the chelating
agent, as 1,10-phenanthroline that cause internucleosomal DNA
fragmentation [31,45]. Rsv would react in a similar manner that
1,10-phenanthroline with the intracellular cooper [33]. It is possi-
ble that such loosely bound copper of NETs can also be mobilized
by Rsv and cleave reaction can account. So far, to our knowledge,
any study has shown metal ions associations to NETs. However,
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it is possible that NETosis process could maintain cooper ions asso-
ciated to chromatin after neutrophil death in inflammatory
environments.

In the lungs, an alternative mechanism should compensate the
possible low ion concentration of cooper in NETs. For example, a
redox cycle of this metal ion should result in increased rate of
DNA hydrolysis in situ on NETs in the presence of Rsv. Ahmed
showed that Cu(I) recycled in the reaction [31,46]. This study sug-
gests that ‘‘oxidized species” of Rsv are also able to catalyze the
reduction of recycled copper ions [Cu(II)]. It facilitates to obtain
cooper concentration necessary to DNA break to takes place.

Other alternative is the administration of Rsv together with Cu
(II) ions to the lungs, but it should be performed with precautions,
since high levels of cooper can to be toxic to the respiratory tract
[47].
Resveratrol bioavailability in the lungs

The bioavailability of a chemical compound is defined by the
capacity to become available to the target tissue after its adminis-
tration [48]. Current knowledge on metabolism and bioavailability
of Rsv has been described in humans, dependent on route of
administration. The oral bioavailability of Rsv is very low due to
its rapid and extensive metabolism, elimination through ABC
transporters and incomplete intestinal absorption [49–51]. It is
important to note that lungs (along with gut and liver) are third
in a series of three putative metabolism sites, which orally ingested
Rsv must cross before entering the circulation. First step metabo-
lism by gut, liver and lungs can synergistically promote total body
clearance of Rsv [52]. Considering our hypothesis, oral administra-
tion of this polyphenol is a problem for therapeutic use. In addi-
tion, metabolism of Rsv would produce unexpected difficulties.
The metabolism of this polyphenol involves complex pathways
that produce alterations on its structure trough glucuronides and
sulfates conjugations [53]. In in vitro experiments, Rsv induces
DNA damage in a non-metabolized form (above-discussed in pre-
vious section). Chemical modifications on Rsv could be important
determinants of its pharmacological activity [54]. However, other
study suggest that resveratrol’s glucuronide or sulfate conjugates
may be unconjugated at the target sites of action, thereby releasing
to elicit his biological activity [55]. In addition, was described that
resveratrol’s glucuronide has comparable or same degree of activ-
ity that non-metabolized Rsv depending on the test model [56]. In
this sense, more studies will be required to understand its effects
on the DNA damage.

Aerosol version of Rsv for inhalation probably would be a better
option. Ulterior work showed that atomization inhaled Rsv could
alleviate rat COPD lung injury inducing an amelioration of patho-
logical changes [57]. Considering our hypotheses, this route of
administration offer two major advantages. Firstly, it is a non-
invasive manner to deliver drugs or compounds rapidly and
directly into the airways. In a second point, aerosol Rsv could
increase directly the polyphenol-DNA interactions (without
metabolized intermediate, simulating in vitro experiments). In
our case, Rsv would interact with extracellular DNA derived from
NETosis process. In addition, several approaches to improve
inhaled versions of Rsv using vehicles were developed, ie Rsv-
loaded gelatin nanoparticles used to treat lung cancer [58] or
inhalable microparticles containing budesonide and Rsv to reduce
alveolar inflammation [59]. However, the delivery of Rsv directly to
the lungs continues to be a challenge.

It is noteworthy that we could not discard the use of other
routes of Rsv administration. Rsv administered by an intraperi-
toneal (IP) route, inhibits airway inflammation, and airway remod-
eling which are the main contributors to airway hyper reactivity
and irreversible lung function loss in rats [60]. However, this route
of Rsv delivery has similar availability limitations of oral adminis-
tration in humans. Additionally, abdominal pain is a common and
undesired consequence of the IP route of drug delivery, as
described for chemotherapy treatments [61].

We focused our hypothesis to improve lung function using Rsv
during Netosis promoted during inflammatory lung diseases. How-
ever, other stilbenoid, piceatannol, was described with similar
properties (DNA breakage in presence of cooper ions) [62]. Given
that the biological properties of Rsv has been more studied, we
decided to explore Rsv for this hypothesis, but we do not discard
the potential of piceatannol to improve lung function.
Conclusion

Resveratrol could act as a DNA cleavage agent of NETs, pro-
duced by inflammatory lung diseases or viral and microbial infec-
tions. In this sense, this study could help researchers to develop
chemical modulators based on resveratrol to improve lung
function.
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