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Abstract
We investigated the association between amyloid-β deposition and white matter (WM) integrity as a determinant of brain glucose
hypometabolism across the Alzheimer’s disease (AD) spectrum.We assessed ninety-six subjects (27 cognitively normal, 49 mild
cognitive impairment, and 20 AD dementia) who underwent [18F]FDG and [18F]Florbetapir positron emission tomography
(PET) as well as magnetic resonance imaging (MRI) with diffusion tensor imaging. Among the regions with reduced fractional
anisotropy (FA) in the AD group, we selected a voxel of interest in the angular bundle bilaterally for subsequent analyses. Using
voxel-based interaction models at voxel level, we tested whether the regional hypometabolism is associated with FA in the
angular bundle and regional amyloid-β deposition. In the AD patients, [18F]FDG hypometabolism in the striatum, mesiobasal
temporal, orbitofrontal, precuneus, and cingulate cortices were associated with the interaction between high levels of
[18F]Florbetapir standard uptake value ratios (SUVR) in these regions and low FA in the angular bundle. We found that the
interaction between, rather than the independent effects of, high levels of amyloid-β deposition and WM integrity disruption
determined limbic hypometabolism in patients with AD. This finding highlights a more integrative model for AD, where the
interaction between partially independent processes determines the glucose hypometabolism.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegener-
ative disease and the leading cause of dementia worldwide [1].
AD pathophysiology has been conceptualized as a cascade of
sequential events triggered by amyloid-β deposition, followed
by downstream events such as tau hyperphosphorylation, glu-
cose hypometabolism, and eventually dementia [2–4].
However, the lack of a strong association between
amyloid-β deposition and cognitive and synaptic dysfunc-
tions has questioned whether amyloid-β deposition is a suffi-
cient condition to trigger AD progression [5]. Indeed, recent
studies have suggested that the synergistic interaction be-
tween, rather than the sequential effects of, pathological path-
ways such as amyloid-β and tau is the key element associated
with the pathophysiological progression of AD [6].

Since the original description, AD has been characterized
as a gray matter disease [7], and the most prominent
pathophysiological theories of AD postulate that cortical
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amyloidosis and tau accumulation underlie most neurobiological
processes [8, 9]. However, the disconnection of fiber bundles has
also been reported from the early stages of the disease [10, 11],
suggesting that white matter (WM) abnormalities are also
important in AD pathophysiology [12–15].

Diffusion tensor imaging (DTI) is a magnetic resonance
imaging (MRI) technique that assesses WM organization
and microstructure through fractional anisotropy (FA) [16].
In AD, WM tracts in the limbic system have shown reduced
FA, suggesting loss of axons and myelin, and hence impair-
ment in connectivity [17–20]. The pathological processes un-
derlying such changes are still undetermined, although both
Wallerian degeneration secondary to cortical neuronal loss
and retrogenesis with primary axonal damage and myelin
breakdown may contribute [21, 22].

[18F]Fluorodeoxyglucose ([18F]FDG) and [18F]Florbetapir
positron emission tomography (PET) measure cerebral glu-
cose metabolism and amyloid-β deposition, respectively
[23, 24]. Studies in non-human primates have shed light
on the relationship between WM disconnectivity and cere-
bral glucose metabolism in AD, showing that neurotoxic
lesions in the perirhinal and entorhinal cortices lead to
neocortical and hippocampal hypometabolism [25].
Subsequent human studies have correlated abnormalities
in topographically related tracts to hypometabolic regions
(for example, fornix FA abnormalities, and posterior cin-
gulate cortex hypometabolism), suggesting that the pro-
gression of cerebral hypometabolism temporally follows
amyloid-β deposition [26].

Such background information leaves it open whether and
how these two, at least, partially independent pathophysiolog-
ical processes—WM abnormalities and β-amyloid
deposition—interact to determine AD progression. Here, in
a cross-sectional study, we tested the hypothesis that
[18F]FDG uptake reduction in limbic regions depends upon
the i n t e r ac t i on be tween amy lo id -β depos i t i on
([18F]Florbetapir PET SUVR) and WM integrity (FA), rather
than their separated effects.

Methods

Database Description

Data used in the preparation of this article were obtained from
the Alzheimer’s disease Neuroimaging Initiative (ADNI) da-
tabase, phases ADNIGO and ADNI2 (adni.loni.usc.edu).
ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
PET, cerebrospinal fluid (CSF), and clinical assessment can be
combined to measure the progression of mild cognitive im-
pairment (MCI) and early AD.

Study Participants

For the present study, we only included ADNI participants
who had [18F]Florbetapir, [18F]FDG, and DTI acquisitions at
same visit. Cognitively normal (CN) individuals had a mini-
mental state examination (MMSE) score of 24 or higher and a
clinical dementia rating (CDR) of 0. MCIs had aMMSE score
equal to or greater than 24, a CDR of 0.5, subjective and
objective memory deficits, and essentially normal activities
of daily living. AD patients had a MMSE score lower or equal
26, CDR higher than 0.5, and met the National Institute of
Neurological and Communicative Disorders and Stroke-
Alzheimer’s Disease and Related Disorders Association
criteria for probable AD [27]. All individuals had absence of
any other neuropsychiatric disorders. Importantly, the ADNI
study was approved by the Institutional Review Boards
(IRBs) of each participating site and was conducted in accor-
dance with Federal Regulations, the Internal Conference on
Harmonization (ICH), and good clinical practices (GCP). The
ADNI Research Committee has approved all the protocols
used in the study. The study subjects provided written in-
formed consent at the time of enrollment for imaging and
completed questionnaires that were approved by each partic-
ipating site’s IRB. Further information regarding the ADNI
inclusion/exclusion criteria are described in detail at www.
adni-info.org [accessed November 2016].

DTI Methods

The images were acquired conforming ADNI protocols
(www.adni-info.org[accessed November 2016]). Briefly,
all diffusion images were scanned on 3 Tesla (3 T) GE
Medical Systems scanners. Scans comprised of 41
diffusion encoding and five resting (b0) directions. A voxel
size of 1.4 mm × 1.4 mm × 2.7 mm and b = 1000 s/mm2 was
used. All scans used in this study were corrected for EPI
current. T1 scans were acquired on the same GE 3 T scanner
with a 1.2 mm × 1 mm × 1 mm voxel size. Further acquisi-
tion details are available from ADNI website (ADNI-INFO.
org). After processing the DTIs, FA maps were generated
using FSL-DTIFIT from the skull-stripped eddy current
corrected images in the native MRI space (Fig. 1). A statis-
tical comparison of voxel-wise FA values was performed to
identify the differences between each diagnostic group
(Fig. 2). The anatomical WM bundles have been identified
by theMRI Atlas of human white matter. For the subsequent
analysis, the angular bundle was defined a prior, since it is a
well-defined tract related to AD dementia, which directly
connects the hippocampus to the entorhinal cortex. Avoxel-
of-interest (VOI) was obtained from the angular bundle bi-
laterally and was used to extract FAvalues from each subject
(see supplementary information).
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PET Methods

PET images were acquired following the ADNI acquisi-
tion protocols (http://adni.loni.usc.edu/methods, accessed
in January 2016). Imaging analysis methods are
summarized in Fig. 1. In summary, during the pre-
processing stage, the acquired images were blurred to
match a common point spread function of 8-mm full-
width half–maximum Gaussian kernel, aligned to the
AC-PC line, and resampled to achieve a common uniform
resolution. Subsequently, in the post-processing stage, the
images underwent non-linear spatial normalization to the
MNI 152 template space using the transformation derived
from the automatic PET/T1-MRI transformation and ana-
tomical MRI registration for each subject. Voxel-wise
standardized uptake value ratio (SUVR) images were gen-
erated for [18F]Florbetapir and [18F]FDG using the cere-
bellum gray matter/global white matter and pons as the
reference regions, respectively. A global PET SUVR val-
ue for each subject was estimated using a composite of
the precuneus, prefrontal, orbitofrontal, parietal, temporal,
anterior, and posterior cingulate cortices.

Statistical Methods

The analyses were performed using Matlab® (http://www.
mathworks.com; accessed November 2016) with a novel
computational platform developed to perform complex
voxel–wise statistical operations, such as interaction models,
with different imaging modalities [28].

First, we compared the FA between CN andADgroups and
identified clusters of FA reduction in the bilateral angular bun-
dle and the fornix (Fig. 2). After correcting for multiple com-
parisons (false discovery rate at p < 0.05), we extracted the FA
values in VOIs in bilateral angular bundles for the subsequent
analyses.

To evaluate whether the interaction between WM abnor-
malities (FA in bilateral angular bundle) and amyloid-β depo-
sition ([18F]Florbetapir SUVR at every voxel) determines the
regional hypometabolism, we used the following statistical
model:

FDG ¼ β0þ β1 Florbetapirð Þ þ β2 FAð Þ
þ β3 Florbetapir*FAð Þ þ covariatesþ error

Fig. 1 Summary of image analysis methods
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The model was adjusted for Hachinski score [29] to limit
the impact of vascular WM load, age, gender, education, and
APOE ε4 status. The statistical parametric maps were
corrected for multiple comparisons using false discovery rate
at p < 0.05 [30].

Results

Demographic features are summarized in Table 1. The CN
group has [18F]Florbetapir global mean SUVR of 1.10 (stan-
dard deviation [SD] = 0.14), [18F]FDG global mean SUVR
1.20 ([SD = 0.11]). The CN group has [18F]Florbetapir global
mean SUVR of 1.19 [SD = 0.15), [18F]FDG global mean 1.20
[SD = 0.10]. The AD group has [18F]Florbetapir global mean
SUVR mean of 1.37 [SD = 0.23] and [18F]FDG global mean
SUVR of 1.156 [SD = 0.14] . The [18F]FDG and
[18F]Florbetapir group statistical comparisons are summarized
in Table 2.

Patients with AD had significantly reduced FAs in the
angular bundle bilaterally and in the fornix compared to
CN (P < 0.05) (Fig. 2), but not in relation to the MCI group.
SinceWM abnormalities on the angular bundle were related
to a diagnosis of AD dementia, a VOI was defined in this
region for the subsequent analysis. Importantly, the three
diagnostic groups showed distinct averaged FA values in

the VOI bilaterally. The CN group had the highest values,
with statistical significance between CN and AD (left angu-
lar bundle (LAB) mean = 0.14 [SD = 0.03]; CN–AD: P =
0.10; CN–MCI: P = 0.45; and right angular bundle (RAB)
mean = 0.16 [SD = 0.02]; CN–AD: P = 0.01; CN–MCI: P =
0.11). The AD group had non-statistical significant lower
FAs (LAB mean = 0.12 [SD = 0.02], RAB mean = 0.12
[SD = 0.02]) compared to MCI group (LAB mean = 0.13
[SD = 0.04], P = 0.46; RAB mean = 0.14 [SD = 0.04], P =
0.19).

In the AD group, a voxel-based analysis revealed that
[18F]FDG hypometabolism in the striatum, basal and mesi-
al temporal, orbitofrontal, precuneus, anterior, and posteri-
or cingulate cortices were driven by the interaction between
high levels of [18F]Florbetapir uptake in these regions and
low FA in the angular bundle (Fig. 3). Moreover, the
laterality of the angular bundle VOI was associated with
distinct patterns of regional hypometabolism. The interac-
tion of RAB disconnections with amyloid-β deposition
was associated with [18F]FDG hypometabolism in the
precuneus and posterior cingulate cortex (Fig. 3a), while
disconnections in the LAB were associated with the stria-
tum, basal and mesial temporal, orbitofrontal, and anterior
cingulate cortices [18F]FDG hypometabolism (Fig. 3b).
Notably, this interaction was not found in the CN and
MCI groups.

Fig. 2 Regional diagnostic effect
on fractional anisotropy.
Statistical parametrical maps
represent areas of reduced FA in
patients with AD (n = 20) as
compared to CN (n = 27). FA
reduction was found in
parahippocampal WM, angular
bundle, and fornix regions (data
false discovery rate corrected at
P < 0.05). AD, Alzheimer’s
disease; CN, cognitively normal;
FA, fractional anisotropy; WM,
white matter
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Discussion

We showed that the interaction between amyloid-β accumu-
lation and FA reduction in the angular bundle is significantly
associated with hypometabolism in limbic regions in patients
with AD dementia.

Overall, this finding is in agreement with an integrative
framework proposing that the co-occurrence of different path-
ophysiological processes potentiates neurodegeneration and
clinical progression in AD [6, 31–33]. As previously shown,
we found decreased FA values in WM tracts associated with
the memory system, including the angular bundle and the
fornix [34–36]. Microstructural WMdamage disrupts connec-
tions to cortical areas, as observed in regional changes in the
parahippocampal WM, leading to mesial temporal lobe deaf-
ferentation [37]. Most abnormalities are found in temporal
lobe regions, with frequent targets in the retrogenesis model
of WM impairment in AD. Previous reports have shown as-
sociations between reduced FA and both regional glucose
hypometabolism, particularly of the posterior cingulate cor-
tex, and the volume of the descending cingulum [38, 39].
The hippocampal atrophy, also a neurodegenerative

radiological feature of AD, has been also related with de-
creased FA [40]. The posterior cingulate cortex metabolism
was also inversely related to diffusivity increase in the hippo-
campus [41]. Assessing the temporal relationship between
biomarkers, Villain and colleagues posit that hippocampal at-
rophy leads to the disruption of the cingulum bundle and cin-
gulate fasciculus, with subsequent glucose hypometabolism in
these areas [42, 43].

Whereas biomarkers of neurodegeneration and WM dis-
ruption have been previously correlated, similar findings have
not been observed in regard to amyloid-β deposition PET
imaging in pre-dementia subjects [40]. In our interaction
study, we found hypometabolic areas related to angular bundle
abnormalities and also to amyloid-β deposition in the AD
group. Interestingly, these regions are described in Braak’s
neuropathological stages B and C involving isocortex associ-
ation areas, in patients with significant clinical decline [9].
These findings suggest a possible increase metabolic vulner-
ability to the interaction of the posterior limbic structures in
the right non-dominant hemisphere, and in the anterior and
basal nuclei areas in the dominant left hemisphere.

The relationship between CSF biomarkers (Aβ1–42 and p-
Tau181) andWM integrity has been studied in CN adults, and
a positive correlation was found between the Aβ1–42/p-
Tau181 ratio and FA in the fornix, corpus callosum, and infe-
rior, superior, and inferior fronto-occipital fasciculus [44].
Furthermore, significantly, reduced FA in the left posterior
cingulum was observed in patients with pathological CSF
total tau levels [45], and the concentration of Aβ1–42 has been
directly correlated with mean FA values [46]. In fact, de-
creased FA has been reported in frontotemporal dementia
and dementia with Lewy bodies [47, 48]. Interestingly, amy-
loid PET positive asymptomatic subjects have been shown to
display increased FA, suggesting a compensatory mechanism
in very early stages of the disease by glial response and axonal
pruning at regions of crossing fibers [49]. We speculate that

Table 2 PET FDG and Florbetapir SUVR global comparisons

PET Global SUVR Comparisons P value

[18F]Florbetapir: CN—MCI 0.2

[18F]Florbetapir: CN—AD 0.01

[18F]Florbetapir: MCI—AD 0.01

[18F]FDG: CN—MCI 0.97

[18F]FDG: CN—AD 0.08

[18F]FDG: MCI—AD 0.02

AD, Alzheimer disease; [18 F]FDG, [18 F]fluorodeoxyglucose;MCI, mild
cognitive impairment; SD, standard deviation; SUVR, standardized up-
take value ratio

Table 1 Demographics and key
characteristics of the population Characteristics All Control MCI AD

No. 96 27 49 20

Age, year, mean (SD) 73.81 (6.51) 74.4 (6.2) 73.1 (6.5) 74.5 (6.9)

Male, no. (%) 62 (64) 16 (59) 33 (67) 13 (65)

APOE ε4 carriers, no. (%) 55 (57) 11 (40) 30 (61) 14 (70)

Education, year, mean (SD) 16.39 (2.74) 16.9 (2.8) 16.1 (2.5) 16.2 (2.9)

MMSE, score, mean (SD) 27.14 (2.68) 28.6 (1.5) 27.9 (1.6) 23.2 (2.1)

Hachinski score (SD) 0.71 (0.70) 0.70 (0.46) 0.73 (0.72) 0.7 (0.92)

CDR score, mean (SD) 0.42 (0.31) 0 (0) 0.5 (0) 0.8 (0.25)

[18F]FDG, mean SUVR (SD) 1.18 (0.12) 1.20 (0.11) 1.20 (0.10) 1.11 (0.14)

[18F]Florbetapir, mean SUVR (SD) 1.20 (0.19) 1.10 (0.14) 1.19 (0.15) 1.37 (0.23)

AD, Alzheimer disease; CDR, clinical dementia rating; [18 F]FDG, [18 F]fluorodeoxyglucose; MCI, mild cogni-
tive impairment; MMSE, mini-mental state examination; SD, standard deviation; SUVR, standardized uptake
value ratio
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the latter mechanism may explain the non-significant results
observed in our CN and Bpre-dementia^MCI patients. Further
studies with a larger number of asymptomatic and MCI sub-
jects, with enriched amyloid tau status subjects, may help to
elucidate these questions and capture group differences.

Importantly, previous studies did not observe strong asso-
ciations between regional amyloid-β deposition and glucose
hypometabolism in AD patients [50]. Here, we have shown
that the interaction with white matter integrity disruption is the
key element linking regional glucose hypometabolism and
amyloid pathology in the dementia phase of AD.

Integrating distinct modalities may foster a better under-
standing of the mechanisms underlying AD progression, be-
yond the role of individual biomarkers. It has been shown that
amyloid status combined with CSF tau levels, and also with
baseline cerebral metabolic decline, predicts conversion to
dementia in patients with MCI [51–53]. Therefore, integrative
biomarker studies may offer a new avenue to evaluate indi-
vidual risks of progression along the cognitive continuum of
aging. Specifically, since the interaction with WM disruption
is the key element linking amyloid-β and pathophysiological
progression in AD, we may argue that our results suggest that
the use of biomarkers of WM integrity could help to identify
those fated to develop dementia symptoms among MCIs with
amyloid-β pathology.

The major methodological strength of our study is the use of
only continuous biomarker values. Biomarkers occur on a con-
tinuum; therefore, dichotomization techniques are invariably
subject to analytical and methodological idiosyncrasies. Some
methodological issues limit the interpretation of our results. The
cross-sectional analysis prevents inferences on the progression
of WM abnormalities, amyloid deposition, and glucose metab-
olism. It is also important to highlight that FDG SUVR mea-
surement is sensitive to several biological factors such as blood
glucose levels, physical, and synaptic activity.

Also, because patients had to have performed the complete
imaging protocol, we included a relatively small number of
AD subjects, and thus our main findings need confirmation in
larger samples. Despite the limited number of subjects, in
order to avoid potential confounding effects, we performed
all the statistical analyses including covariates that could im-
pact the results, as age, gender, vascular WM load, education,
and APOE ε4 status. Notwithstanding these limitations, our
results show that combining glucose metabolism, amyloid-β,
and WM integrity in relevant brain regions offers the encour-
aging possibility to assess different pathological processes in
the same patient at the same time. More importantly, the inte-
gration of different biomarkers in sophisticated statistical
models may help clarify the pathological alterations observed
along the AD spectrum.

Fig. 3 The interaction between amyloid-β deposition and WM integrity
disruption determines limbic hypometabolism in patients with AD. (a)
Statistical parametric maps (false discovery rate corrected at P < 0.05)
overlaid on a structural MRI scan reveal areas where [18F]FDG uptake
declined as a function of the interaction between [18F]Florbetapir SUVR
at every voxel and FA in the right angular bundle. Significant interactive
effects between [18F]Florbetapir SUVR and FAwere observed in the right
precuneus and posterior cingulate cortex in the AD group (n = 20). (b)
Statistical parametric maps (false discovery rate corrected at P < 0.05)

overlaid on a structural MRI scan, reveal areas where [18F]FDG uptake
declined as a function of the interaction between [18F]Florbetapir SUVR
at every voxel and FA in the left angular bundle. Significant interactive
effects between [18F]Florbetapir SUVR and FAwere observed in the left
striatum, mesial temporal, orbitofrontal, and anterior cingulate cortices in
the AD group (n = 20). AD, Alzheimer’s disease; FA, fractional
anisotropy; [18F]FDG, [18F]Fluorodeoxyglucose; MRI, magnetic
resonance imaging; SUVR, standardized uptake value ratio
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Conclusion

In sum, the major result of our study demonstrates a strong
association between amyloid-β deposition and glucose
hypometabolism through a synergistic interaction with white
matter disruption. These results support a more integrative
model for AD progression, suggesting that the convergence
of partially independent pathological pathways drives disease
progression. These findings provide novel insights in AD
pathophysiology framework by suggesting that future
disease–modifying therapies using [18F]FDG as a biomarker
for efficacy should integrate measures of white matter integ-
rity in order to better interpret the therapeutic effects of the
intervention.
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