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ABSTRACT

Introduction. Gene-expression signatures for prognosis have
been reported in localized renal cell carcinoma (RCC). The aim
of this study was to test the predictive power of two different
signatures, ClearCode34, a 34-gene signature model [Eur Urol
2014;66:77–84], and an 8-gene signature model [Eur Urol
2015;67:17–20], in the setting of systemic therapy for meta-
static disease.
Materials and Methods. Metastatic RCC (mRCC) patients from
five institutions who were part of TCGA were identified and
clinical data were retrieved.We trained and implemented each
gene model as described by the original study. The latter was
demonstrated by faithful regeneration of a figure and results
from the original study. mRCC patients were dichotomized to
good or poor prognostic risk groups using each gene model.
Cox proportional hazard regression and concordance index (C-
Index) analysis were used to investigate an association between
each prognostic risk model and overall survival (OS) from first-
line therapy.
Results. Overall, 54 patients were included in the final analysis.
The primary endpoint was OS. Applying the ClearCode34
model, median survival for the low-risk—ccA (n 5 17)—and
the high-risk—ccB (n 5 37)—subtypes were 27.6 and 22.3
months (hazard ratio (HR): 2.33; p 5 .039), respectively. Clear-
Code34 ccA/ccB and International Metastatic Renal Cell Carci-
noma Database Consortium (IMDC) classifications appear to

represent distinct risk criteria in mRCC, and we observed no sig-
nificant overlap in classification (p > .05, chi-square test). On
multivariable analyses and adjusting for IMDC groups, ccB
remained independently associated with a worse OS
(p 5 .044); the joint model of ccA/ccB and IMDC was signifi-
cantly more accurate in predicting OS than a model with IMDC
alone (p 5 .045, F-test). This was also observed in C-Index anal-
ysis; a model with both ccA and ccB subtypes had higher accu-
racy (C-Index 0.63, 95% confidence interval [CI]5 0.51–0.75)
and 95% CIs of the C-Index that did not include the null value
of 0.5 in contrast to a model with IMDC alone (0.60, CI5 0.47–
0.72). The 8-gene signature molecular subtype model was a
weak but insignificant predictor of survival in this cohort
(p 5 .13). A model that included both the 8-gene signature and
IMDC (C-Index 0.62, CI5 0.49–0.76) was more prognostic than
IMDC alone but did not reach significance, as the 95% CI
included the null value of 0.5. These two genomic signatures
share no genes in common and are enriched in different biolog-
ical pathways. The ClearCode34 included genes ARNT and
EPAS1 (also known as HIF2a), which are involved in regulation
of gene expression by hypoxia-inducible factor.
Conclusion. The ClearCode34 but not the 8-gene molecular
model improved the prognostic predictive power of the IMDC
model in this cohort of 54 patients with metastatic clear cell
RCC.The Oncologist 2017;22:286–292
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Implications for Practice: The clinical and laboratory factors included in the International Metastatic Renal Cell Carcinoma Database
Consortium model provide prognostic information in metastatic renal cell carcinoma (mRCC). The present study shows that
genomic signatures, originally validated in localized RCC, may add further complementary prognostic information in the metastatic
setting. This study may provide new insights into the molecular basis of certain mRCC subgroups. The integration of clinical and
molecular data has the potential to redefine mRCC classification, enhance the understanding of mRCC biology, and potentially
predict response to treatment in the future.

INTRODUCTION

Gene-expression signatures for prognosis have been reported
in localized renal cell carcinoma. The objective of the present
study was to test the predictive power of two different signa-
tures, ClearCode34 (a 34-gene signature model [1]) and an 8-
gene signature model [2], in the setting of systemic therapy for
metastatic disease. Renal cell carcinoma (RCC) has a variable
natural history in terms of aggressiveness for which there are
few validated genomic prognostic markers [3, 4]. Prognostic
classification and risk assessment models have been based on
pathologic variables to predict individual patient prognosis.
Commonly used algorithms to assess the risk of disease recur-
rence after surgery for localized disease include the Stage Size
Grade and Necrosis score [5] and the UCLA Integrated Staging
System [6]. In advanced disease, Memorial Sloan Kettering Can-
cer Center (MSKCC) and International Metastatic Renal Cell Car-
cinoma Database Consortium (IMDC) models are commonly
used for prognostic stratification of patients with metastatic
RCC (mRCC) [7, 8].

Global gene expression profiling has assisted to define sub-
types of cancer [9]. Advances in sequencing technologies and
collaborative genome projects are providing researchers with
massive lists of gene associations [10]. Indeed, The Cancer
Genome Atlas (TCGA) project has already provided deep
molecular knowledge in many cancer types, including RCC [3].
However, the potential utility of these data remains largely
unknown, and change in the clinical practice has yet to be
accomplished [11]. Since the first gene expression profiling
study described in RCC [12], several gene signatures have suc-
cessfully been developed that may predict outcomes in local-
ized RCC, often by dichotomizing (low/high risk of relapse) the
targeted population [1, 2, 12–14].

ClearCode34 is a validated gene expression signature that
measures the expression levels of 34 genes in a surgically
resected primary kidney cancer sample to classify a tumor as one
of two intrinsic subtypes (ccA and ccB), which have been shown
to be prognostic in localized patient populations, with ccB type
predicting for a worse outcome [1]. The 8-gene signature meas-
ures the expression levels of eight genes and classifies clear cell
RCC (ccRCC) into two clinical prognostic subtypes. This multigene
assay was validated in non-metastatic RCC and in a cohort of
mRCC patients was associated with response to targeted therapy
[1, 2]. The overall goal of this study aimed to explore the applic-
ability of these signatures in a cohort of mRCC from the TCGA
and to see if a model of genomic signature improved the prog-
nostic performance of the IMDC or MSKCC classifications.

MATERIALS AND METHODS

Tumor Samples and Patients
In total, 57 mRCC patients from five institutions (Dana-Farber
Cancer Institute, MD Anderson Cancer Center, University of

Pittsburgh Cancer Center, Memorial Sloan-Kettering Cancer
Center, and University of North Carolina) who were part of the
TCGA ccRCC cohort and treated with targeted therapy were
identified. Clinical and pathologic information was collected
from the medical records, including treatments received and
overall survival (OS). Of the 57 patients identified, 54 patients
with both available RNAseq gene expression data and outcome
information were finally included in survival analysis. Institu-
tional review board approval was obtained locally.

The Cancer Genome Atlas Data
Open and public TCGA (http://cancergenome.nih.gov/) data
repositories were our primary source of metadata. We exam-
ined several genomic signatures of which two gene signature
passed our criteria of size, feasibility and ability to reproduce
the models (Fig. 1). The R code to reproduce the analyses per-
formed are provided in the supplemental online Appendix.

Model Training of the ClearCode34 Gene Signature
The ClearCode34 gene signature model was trained as
described by Brooks et al. [1]. The 34-gene signature model
was trained on gene expression profiles of 40 tumors, of which
23 were ccA and 17 were ccB cases using the nearest centroid
classifier (PAM) algorithm using the pamr package in R [13]. R
code and training data were provided by the study authors
[13].

We performed two tests to verify we had faithfully imple-
mented the gene model. First, we predicted the ClearCode34
subtype of 153 tumors (UNC cohort) described in supplemen-
tary Table 4 from Brooks et al. [1]. We correctly assigned all
tumors (ccA n 5 67; ccB n 5 86) with probability of subtypes
identical to those previously reported [13], verifying we had
successfully replicated the model.

Secondly, we predicted the ClearCode34 subtypes of 380
tumors from The Cancer Genome Atlas Kidney Renal Clear Cell
Carcinoma (TCGA KIRC) study that had been also classified by
Brooks et al. [1]. The published classification for these tumors
was available in supplementary file 3 [1]. When we classified
the 380 tumors, we observed that the accuracy of prediction
results was dependent on data preprocessing. Data must be
log transformed, row median centered, and scaled. Without
row (gene) median centering, accuracy was reduced to 67%.
Scaling using the row (gene) medians of the 380 tumors
resulted in 14 misclassified samples (96% accuracy). The gene
(row) median is dependent on the subset of tumor profiles or,
more specifically, on proportion of ccA and ccB patients in the
study (see supplemental methods file). Therefore, TCGA tumors
were scaled using a constant median scaling factor (median
gene expression of the 533 patients’ cohort). Most tumors
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(304/308) were correctly classified using this scaling, resulting
in accuracy of 99% (4 ccA samples were misclassified as ccB).

Model Training of the 8-Gene Signature
The model coefficients of the eight genes provided in supple-
mentary Table 7 [2] were used to derive a class-based outcome
variable for Cox proportional hazards analysis. To validate the
model, we reproduced Figure 2b, which presented results of
analysis of TCGA tumors (n 5 419). The authors did not provide
this list of 419 samples. In order to reproduce the analysis as
closely as possible, we filtered TCGA data to those cases
(n 5 470) with clinical annotation on October 2, 2013, as this is
the download date given in the supplement of the article, and
to those cases that were part of the TCGA publication (Nature,
Volume 499 Number 7456, July 4, 2013), which created a list of
418 cases (supplemental online Fig. 1 [3]). The relative risk of
418 cases was predicted using the Cox linear predictors of the
8-gene expression signature, which was stratified at zero, gen-
erating two groups of patients. In agreement with Choudhury
et al. [2], the smaller group (n 5 150) was associated with poor
survival (hazard ratio (HR): 2.52; p 5 2.9 3 1028), and 8-gene
signature was significantly associated with OS of TCGA KIRC
patients.

Descriptive and Survival Analysis
Continuous variables were described with the median and
range values. OS was calculated from the beginning of first-line
targeted therapy to death of any cause. Cox proportional haz-
ard models and likelihood ratio using OS were used to compare
competing survival models. Uno’s version of the concordance
index (C-Index) was used to predict the final risk model. The C-
Index is conceptually similar to receiver operating characteristic
curve analysis and ranges from 0 to 1, where 0.5 is null (ran-
dom, no discrimination). To be statistically significant, the C-
Index should have a 95% confidence interval (CI) not including
0.5. We calculated C-Index point estimates and 95% CIs using
the survC1 R package v1.0-2 with truncation time Tau5 3

years. Therefore, the C-Index should be interpreted as having
predictive value for events that occur in 0–3 years.

Analysis of Gene Expression of Signatures in the mRCC
The expression profile of genes in each gene signature was also
visualized using hierarchical cluster analysis using Pearson cor-
relation coefficient distance with average linkage clustering.
Gene set enrichment analysis (GSA) of gene signatures was per-
formed using the Bioconductor/R libraries DOSE, reactomePA
(function enrichPathway) and clusterprofiler (enrichGO) to test
if the gene signatures were enriched in genes in Reactome (R
package graphite_1.15.1, 1526 pathways) or Gene Ontology
(GO, GO.db_3.1.2) gene sets biological process (BP), molecular
function (MF) and cellular component. p values were adjusted
for multiple testing by controlling the False Discovery rate, also
called the Benjamini and Hochberg correction [15]. Only gene
sets or pathways with minimum size of 4 and maximum size of
500 (default setting) were studied. The default minimum gene
set size is ten, and this was modified given the small number of
genes in the ClearCode and C8 signatures

RESULTS

Patient Characteristics
Overall, 54 patients were included in the analysis. The main
clinical and demographic characteristics of the patients are
summarized in Table 1. The distribution of metastases was as
expected in a conventional mRCC cohort; with the lung, lymph
node, and bone being the most common sites of metastases.
The proportions of patients in IMDC prognostic risk groups
were 15%, 65%, and 20% for good, intermediate, and poor risk,
respectively.

Comparison of the Genes in Both Signatures
There was no gene overlap in genes in the 34-gene Clear-
Code34 and 8-gene Choudhury signature. GSA suggested that
there was no functional or pathway overlap in the gene signa-
tures. Genes in the 8-gene signature were not enriched in any
Reactome pathway or GO BP but were enriched in MF
“receptor binding” (adjusted p< .05).

By contrast, the 34 genes in ClearCode34 signature were
significantly enriched (adjusted p< .05) in two Reactome path-
ways and nine GOMF terms. The enriched Reactome pathways
were “Regulation of gene expression by Hypoxia-inducible
Factor” (adjusted p value<.05) and “Bicarbonate transporters”
(adjusted p value <.05), as these pathways contain the Clear-
Code34 genes EPAS1 and ARNT and SLC4A4 and SLC4A3,
respectively. The nine MF GO terms included “primary amine
oxidase activity” (adjusted p < .01), several MF-related inor-
ganic anion exchanger activity (adjusted p value <.05), Wnt-
protein binding, and Frizzled binding (adjusted p< .05; supple-
mental methods file).

When we compared the top 100 pathways and gene sets
that were highly ranked but not significant (unadjusted p value
<.05), we found no significant overlap in ClearCode34 and the
8-gene Reactome pathways or GO terms.Whilst not significant,
ClearCode34 but not the 8-genes signature included one gene
(PRKAA2) that is involved in mammalian target of rapamycin
(mTOR) signaling.

Figure 1. Flow chart shows selection of signatures.
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OS—ClearCode34
ClearCode34 stratified mRCC patients into two groups (Fig. 2):
ccA (n 5 17) and ccB (n 5 37) with a median OS of 27.6 and
22.3 months, respectively. The signature was distinct from the
IMDC and MSKCC clinical classification (Pearson’s chi-square
test, p> .05), confirming that the gene signature represents a
different substratification of the patients (Fig. 2).

Patients in the ccB group had significantly worse OS in uni-
variate Cox proportional-hazards analysis (HR: 2.33; 95% CI,
1.02–5.31; p 5 .039; Fig. 3A). In multivariable analysis, adjusted
for either the MSKCC or IMDC groups, ccB remained independ-
ently associated with a worse OS (likelihood ratio (LR) test
p 5 .025 and p 5 .044, respectively).

The C-Index of ccA/ccB, MSKCC, or IMDC was 0.57, 0.58,
and 0.60, respectively, but in each model, the 95% CIs include
the null model 0.5. The accuracy of both the IMDC and MSKCC
models was more accurate when the ClearCode34 molecular
subtype was added to the model. A multivariate model of ccA/
ccB subtype and IMDC or MSKCC risk score had a Uno’s C-Index
of 0.63 (CI5 0.51–0.75), and the CIs did not span the null
model, indicating that the multivariate model was a more accu-
rate predictor of outcome than IMDC or MSKCC alone (Fig. 3B).

OS—8-Gene Signature
The 8-gene signature stratified mRCC patients into a larger
group of poorer prognosis patients (n 5 31) and a smaller group
with favorable prognosis (n 5 23), with a median OS of 27.6
and 22.3 months, respectively. Both signatures predicted 16
patients as good prognosis and 29 patients as poor prognosis,
and this overlap was significant (Pearson’s chi-square test with
Yates’ continuity correction, p< .0001). The poor and good
prognosis 8-gene groups and ClearCode34 classification pro-
vided discordant predictions in 20% (n 5 11/54) of patients.

The tumor classification model of the 8-gene signature was not
significantly associated with worse OS (HR 1.68, CI 0.846–3.32;
p 5 .134; Fig. 4). Additionally, whilst a multivariate model of
the 8-gene classification and either IMDC (C-Index5 0.62,
CI5 0.49–0.76) or MSKCC (C-Index5 0.62, CI5 0.49–0.75)
improved prediction accuracy over IMDC or MSKCC alone, it did
not reach significance in this cohort of 54 cases, as the CIs of C-
Index of the multivariate model included the null value (0.5).

DISCUSSION

The established methods for risk stratification of mRCC patients
treated with targeted therapy rely on clinical factors, which
defined three subgroups (favorable, intermediate, and poor).
However, interpatient variability within these clinical subgroups
is high. Here, we sought to improve characterization of mRCC
subgroups by adding genomic classification. In contrast to clas-
sic methods, we evaluated patient survival prediction in a met-
astatic cohort from the TCGA using different molecular
signatures that were developed in primary RCC tumors. This
approach enables investigating the clinical utility of available
large-scale genomic data.

To this end, we studied two genomic signatures in mRCC
patients treated with targeted therapy. We were able to suc-
cessfully reproduce published results from the ClearCode34
and the 8-gene signatures with an accuracy of nearly 99%,
which is notable and is inconsistent with reports of poor repro-
ducibility in genomic studies [16]. Whilst this study has limita-
tions (discussed below), we provide evidence that molecular
and genomics biomarkers have potential in clinical decision
making in mRCC. Both gene expression signatures that we
tested stratified mRCC into groups that were significantly dis-
tinct from traditional clinical risk groups (IMDC, MSKCC).

Figure 2. Heat map showing hierarchical clustering analysis of the gene expression profiles of the ClearCode34 genes in metastatic renal
cell carcinoma TCGA tumors (n 5 54). Most tumors (n 5 37) were classified as ccB. There was no significant overlap in the ccA/ccB sub-
type classification and the MSKCC or IDMC risk class.
Abbreviations: IMDC, International Metastatic Renal Cell Carcinoma Database Consortium; MSKCC, Memorial Sloan Kettering Cancer

Center; TCGA, The Cancer Genome Atlas.
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Despite the fact that the 8-gene signatures did not validate, it
was weakly prognostic in this small cohort of patients. By con-
trast, the ClearCode34 subtypes had significant prognostic pre-
dictive power in this cohort of 54 mRCC patients. It stratified
patients into a good and poor prognosis groups that had signifi-
cantly different survival profiles, and this difference remained
significant even when adjusted for traditional risk-associated
clinical variables (IMDC).

Gene-based prognostic markers have been translated into
clinical practice in few diseases, most notably in breast cancer
[16], which is an important step toward personalized medicine.
Whilst, the clinical application of genomic biomarkers has yet
to be established in mRCC, in this study, we demonstrate that a
genomic signature, ClearCode34, can stratify patients into sub-
groups in mRCC. A joint model of molecular subtypes and

clinical factors improved the accuracy of prognostic prediction
beyond the clinical factors (IMDC or MSKC). This is a significant
finding, as it suggests that genomics may augment clinical data
to guide better treatment strategies for patients in the meta-
static setting.

We examined the 34 genes in the ClearCode34 signature to
discover a possible biological basis for its prognostics potential
in mRCC. The ClearCode34 genes include one gene that is asso-
ciated with mTOR signaling (PRKAA2) and two genes (EPAS1,
ARNT) that are involved in the “Regulation of gene expression
by Hypoxia-inducible Factor” [17]. We tested all 18,502 genes
in the TCGA to discover genes prognostic in mRCC, but neither
EPAS1 nor ARNT were significant predictors of prognosis in
mRCC. ClearCode34 also included the genes SLC4A4 and
SLC4A3, which are significantly enriched in genes in the path-
ways “Bicarbonate transporters.” Gene expression of SLC4A3

was significantly associated with worse outcome (HR: 3.39,

Table 1. Patient baseline characteristics of the mRCC
cohort

Characteristic No. %

Sex

Male 37 66.6

Female 17 33.6

Age

Median 62

Range 39–84

MSKCC Criteria

Good 8 14.8

Intermediate 38 70.3

Poor 8 14.8

IMDC Criteria

Good 8 14.8

Intermediate 35 64.8

Poor 11 20.3

No. Metastases

1 20 37

2 14 26

>2 20 37

Location Metastases

Lung 42 77.7

Lymph node 24 44.4

Liver 3 5.5

Bone 20 37.0

Brain 12 22.2

VEGF-targeted first- line therapy 52 92.8

Sunitinib 26 52.0

Pazopanib 7 12.9

Axitininb 1 1.8

Sorafenib 8 14.8

Bevacizumab 8 14.8

mTOR inhibitor 4 7.4

Temsirolimus 4 7.4

Abbreviations: IMDC, International Metastatic Renal Cell Carcinoma
Database Consortium; MSKCC, Memorial Sloan Kettering Cancer Cen-
ter; mTOR, mammalian target of rapamycin; VEGF, vascular endothe-
lial growth factor.
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Figure 3. mRCC tumors stratified by the ClearCode34 signature
were associated with overall survival. (A): Kaplan–Meier plot of
overall survival of metastatic renal cell carcinoma Cancer Genome
Atlas tumors, which were stratified into two molecular subtypes
using ClearCode34 gene signature. (B): Forest plot shows the C-
Index of the ClearCode34 subtype, MSKCC or IMDC risk models,
alone or joint model of ClearCode34 subtype and MSKCC or
IMDCC. The C-Index is conceptually similar to receiver operating
characteristic curve analysis and ranges from 0 to1 where 0.5 is
null (random, no discrimination). To be statistically significant, the
C-Index should have a 95% confidence interval not including 0.5.
The C-Index is indicated by a square, and the whiskers represent
the 5% and 95% quartiles.
Abbreviations: CI, confidence interval; C-Index, concordance

index; HR, hazard ratio; IMDC, International Metastatic Renal Cell
Carcinoma Database Consortium; MSKCC, Memorial Sloan Ketter-
ing Cancer Center.
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95% CI 1.63–7.04, unadjusted p< .001) in our cohort of 54
mRCC tumors and was the only gene in the ClearCode34 signa-
ture that was significantly associated with worse outcome
(unadjusted p values <.05). The genes MAOB, CDH5, PDGFD,
GIPC2, and RGS5 were marginally associated with better out-
come (p< .05). Bicarbonate transporters play central roles in
pH regulation and thus have been implicated in cancer patho-
genesis pathways, including the metabolic shift in most cancer
cells toward more acid-producing pathways and pH changes
which are associated with hypoxia development in poorly per-
fused regions of the tumors [18].

Our data should be interpreted cautiously, as this study has
a number of limitations. First, only 54 tumors were studied.
This is a small sample size with limited prognostic power. Sec-
ond, we report that the subtypes predicted by the ClearCode34
were sensitive to data preprocessing. The published Clear-
Code34 algorithm expects that gene expression values are
median centered, and we observed variability in the gene
median values depending on the subset of patients studied.

This is to be anticipated, as it has been previously reported that
gene signatures based on normalizing test data may be irrepro-
ducible if the cohort changes composition or size [19]. Third,
we generated a constant reference scaling; however, we have
not tested if this can be applied in independent datasets. Heter-
ogeneity is now understood to be one of the central hallmarks
of cancer [20], so one concern for any TCGA study is that only a
single sample for each tumor was included [3]. Also, there is
always a concern if a batch effect or a sampling artifact can
direct to misleading results in high throughput genomic analy-
ses. Most importantly, due to the small sample size, study of
larger metastatic cohorts is required to validate the model in
advanced RCC, appreciate the genomic differences between
subgroups, and confirm the utility of genomic signature in
mRCC.

Our hypothesis arises from the concept that prognosis of
metastatic disease is at least partially driven by the biology of
the primary tumor. But can models derived from primary renal
tumors be applied in the metastatic setting? The interactions
between the primary tumor and metastasis have been exten-
sively studied in RCC [21]. The evidence suggests that multiple
and complex interactions occur between the primary tumor
and metastatic sites. However, several arguments such as spon-
taneous regression of metastasis after nephrectomy support
that, in RCC, prognosis is determined by the original tumor
[22]. Studies have also shown that although metastatic signa-
tures are developed gradually during tumor progression; the
main fraction of the signatures was already present in the pri-
mary tumor with not much difference of expression levels
between primary and metastatic tumors [23]. Moreover, other
studies have identified metastasis-related genes in primary
ccRCC tumors as potential biomarkers to differentiate the
tumor prognosis [24]. mRCC is entering an era of expanding
therapeutic approaches, and patients will have a considerable
number of options, including vascular endothelial growth fac-
tor-targeted therapy, mTOR inhibitors, and immunotherapy,
such as PD-1/PD-L1 inhibitors. The differential characteristics
between subgroups linked to each of the expression signatures
eventually may help guide patient management.This study sug-
gests that genomic signatures have value in the metastatic set-
ting, and further investigation is warranted.

CONCLUSION
These data suggest that genomic signatures from primary
tumors can have a prognostic role in the metastatic setting.We
validated the ClearCode34 but not the 8-gene molecular signa-
ture model, as prognostic for survival in patients with mRCC
treated with targeted therapy.
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Figure 4. Subtypes stratified by the 8-gene signature were not sig-
nificantly associated with overall survival. (A): Kaplan–Meier plot
of overall survival of mRCC TCGA tumors, which were stratified
into two molecular subtypes using 8-gene model. (B): Forest plot
shows the C-Index of the 8-gene, MSKCC or IMDC risk models,
alone or joint model of ClearCode34 and MSKCC or IMDCC. The C-
Index is conceptually similar to receiver operating characteristic
curve analysis and ranges from 0 to1 where 0.5 is null (random,
no discrimination). To be statistically significant, the C-Index should
have a 95% confidence interval not including 0.5. The C-Index is
indicated by a square and the whiskers represent the 5% and 95%
quartiles.

Abbreviations: CI, confidence interval; C-Index, concordance
index; HR, hazard ratio; IMDC, International Metastatic Renal Cell
Carcinoma Database Consortium; MSKCC, Memorial Sloan Ketter-
ing Cancer Center.
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