Reflex Seizures in Patients with Malformations of Cortical Development and Refractory Epilepsy

André Palmini, †Peter Halasz, ‡Ingrid E. Scheffer, §Yukitoshi Takahashi, ||Angeles Perez Jimenez, ¶François Dubé, ¶Frederick Andermann, *Eliseu Paglioli-Neto, *Jaderson Costa da Costa, **Felix Rosenow, and **Brita Fritsch

Porto Alegre Epilepsy Surgery Program, Hospital São Lucas, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; †National Institute of Psychiatry and Neurology, Epilepsy Centre, Budapest, Hungary; ‡Austin Hospital, University of Melbourne, and Monash Medical Centre, Melbourne, Australia; §Department of Pediatrics, Gifu Prefectural Hospital, Gifu, Japan; ||Department of Pediatrics, Hospital del Niño Jesus, Madrid, Spain; and ¶Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and **The Interdisciplinary Epilepsy Center, Department of Neurology, Philipps-University, Marburg, Germany

INTRODUCTION

Reflex seizures most commonly occur in patients with genetically related epilepsy syndromes (1–6), in which triggering stimuli are related to photosensitivity or higher-order cognitive processing (7, 8). Seizure provocation through other stimuli and in patients with symptomatic epilepsies is less common, although periorbital lesions are known to induce reflex seizures.

A common assumption regarding reflex seizures is that hyperexcitable intracortical or corticosubcortical sensory circuits lead to fast and uninhibited recruiting and synchronization of neuronal pools (9–11). Converging clinical and experimental evidence suggests that malformations of cortical development (MCDs) are among the most hyperexcitable epileptogenic lesions (12, 13). In addition, these malformations are often intrinsically epileptogenic (14–16) and may establish abnormal connections with other cortical and subcortical structures (17, 18). Thus, patients with MCDs are prone to respond with abnormally increased electrical volleys to modality-specificafferent stimuli, which would facilitate reflex provocation of seizures. Nonetheless, series of patients with MCDs and reflex seizures are not found in the literature. We report eight patients with reflex seizures associated with MCDs confirmed by imaging, histopathology, or both.

METHODS

Eight patients (four men) with spontaneous and reproducible reflex seizures and a MCD were studied. We defined specific reflex seizure precipitants as any sensory stimulus that precipitated the seizures in daily life and could be confirmed during presurgical evaluation. Self-precipitation was defined as recurrent intentional self-provocation of seizures through a specific type of sensory stimulation. Patients reported herein were recruited from a pool of 30 to 100 patients with MCDs evaluated in each of the
seven participating centers. Several other patients with MCDs and putative reflex seizures were excluded because the latter were not reproduced during video-EEG evaluation. Seizure onset ranged from 4 months to 11 years (mean, 4.6 years), and age at evaluation from 5 to 51 years (mean, 20.1 years). Chart review complemented by recent clinical assessment allowed collection of data regarding pregnancy and perinatal period, developmental milestones, history of status epilepticus, reflex and spontaneous seizure types, specific precipitants of reflex seizures, occurrence of self-precipitation, seizure frequency, and response to antiepileptic drugs (AEDs). Delayed development was rated as severe when acquisition of either walking independently or comprehensive language occurred after age 3 years, and moderate when after age 2 years. Mild developmental delay included any less significant delay in acquisition of motor or cognitive milestones. Because of the ascertainment of patients from six countries, their highly variable age range, and ability to cooperate with formal neuropsychological testing, we determined the presence and severity of intellectual disability according to schooling and independence in activities of daily living. Thus patients who were able to attend normal schools but could not complete elementary education were considered mildly impaired. Those who were not able to attend regular school but were independent in activities of daily living were considered moderately impaired, and those who could not function independently were regarded as severely impaired.

Multiple sessions of 16- to 32-channel video-EEG monitoring were performed for each patient, during which reflex seizures were documented. Scalp/sphenoidal electrodes were used for these recordings, except for one patient, who was studied with subdural grids and strips in the left frontocentroparietal regions. All patients underwent complete physical and neurologic examinations. High-resolution 1.5-Tesla magnetic resonance imaging (MRI) studies were available for all. Four patients underwent surgery: two had callosotomies, and two others localized cortical resections. Routine histopathology staining was done in excised surgical specimens. Postoperative follow-up ranged from 2.5 to 12 years.

RESULTS

Illustrative case reports

Patient 1

This 15-year-old Australian adolescent was the firstborn twin at 34 weeks’ gestation. He was born in good condition after emergency cesarean section for breech presentation and premature labor. He had an episode of afebrile status epilepticus at age 3 years. One year later, self-induced drop attacks developed: staring at a white paper or a shiny surface would induce a tonic seizure with stiffening of the upper limbs and loss of awareness for ~10 s, occasionally associated with jerking, and followed by postictal confusion and drowsiness. These attacks increased in frequency as he grew older, with >10 per day. He succeeded persistently in evoking a seizure because of a sensation of well-being, “warm and fuzzy,” as he stares. He has been instructed to sit down before provoking the episodes to prevent injuries, but unfortunately he has still sustained severe injuries because of drop attacks and prolonged generalized tonic–clonic seizures. He also has described episodes of shooting pain in the forehead with, sometimes, eye flickering for 10–15 s recurring every 5 min. Interestingly, he never had spontaneous myoclonic jerks, atomic drop attacks, or partial motor seizures.

Developmental milestones were significantly delayed. He has a moderate to severe intellectual handicap, no cutaneous or dysmorphic stigmata, but a mild generalized spasticity, with a right-sided predominance. In addition, he has cerebellar features characterized by intention tremor, dysdiadochokinesia, and ataxia. He also has tongue dyspraxia. Neurogenetic evaluation for fragile X syndrome was negative, karyotype was normal, and EEGs showed persistent focal epileptiform discharges in the right centroparietal region. MRI revealed subependymal heterotopia extending onto both temporal and occipital horns of the lateral ventricle, a right mesial occipital dysplasia, and a cerebellar hypoplasia (Fig. 1). An interictal fluorodeoxyglucose–positron emission tomography (FDG-PET) study showed a relatively decreased glucose metabolism in the left centroparietal region.
metabolism in right temporal, parietal, and occipital regions.

Patient 8

This 34-year-old woman had refractory seizures with onset at 8 years, which began with paresthesia and tonic extension of the right leg, and then dystonic posturing of all limbs and a high-pitched vocalization resembling a bird singing or loud laughter. Awareness was retained throughout the attacks. Seizures were spontaneous or consistently provoked by either rubbing the sole of the right foot or excessive bladder distention. Video-EEG evaluation showed interictal runs of pseudorhythmic sharp waves in the left parasagittal frontocentral region (Fig. 2A), and decremental fast activity in the same area during ictal events (Fig. 2B). MRI was normal. Intracranial evaluation with subdural strips covering the left dorsolateral superior and mesial frontocentral regions showed seizure onset in the mesial aspect of the postcentral gyrus (Fig. 2C). Extra-operative electrical cortical stimulation reproduced the seizures and confirmed that this region contained the sensory cortical representation of the right leg and foot. Resection of this region and the ipsilateral supplementary motor area, complemented by subpial transection of the mesial aspect of the motor cortex, has completely controlled seizures in the 3 years since surgery. A postoperative transient contralateral hemiparesis and expressive aphasia lasted for 1 week. A more prolonged weakness of the right foot resolved after some months with vigorous physical therapy. Postoperative MRI confirmed the extent of resection (Fig. 2D), and histopathology showed dysplastic neurons and balloon cells (Fig. 2E), indicative of a Taylor’s type focal cortical dysplasia (19,20).

Clinical series of eight patients

Two patients had histories suggestive of pre- or perinatal distress, and one had status epilepticus. Five had developmental delay, and six were intellectually handicapped. Patient 2, with a deletion of the long arm of chromosome 11, had low-set ears. The other had normal physical examination. Only two patients, however, had a normal neurologic examination, with the others sharing diffuse hypotonia or spasticity, mild hemiparesis, and pseudobulbar signs. Further details can be obtained from Table 1.

Seizure characteristics

The findings are detailed in Table 2. All patients had reflex and spontaneous seizures, the latter always predominating. Seizure frequency varied from one per week to several per day. Two patients, both with severe mental retardation, had self-induced attacks. In two patients, the semiology was identical whether seizures and occasional secondary generalization (Tables 1 and 2). In the other six patients, the repertoire of reflex and spontaneous seizures differed in at least one seizure type. Four had spontaneous partial motor seizures and occasional secondary generalization, and recurrent drop attacks only upon specific stimulation: two with startle-induced drop attacks and two with seizures induced by visual stimulation or eye movement. A fifth patient with a centrotemporal focal dysplastic lesion had spontaneous and reflex partial motor and complex partial seizures, but perioral myoclonias only upon interoceptive stimulation of a full meal, and the last patient, with bilateral asymmetrical perisylvian polymicrogyria, had spontaneous and reflex partial motor seizures secondarily generalized, but myoclonus of the head and both arms on eating or eating-related cognitive activation.

Two patients had a single seizure-precipitating stimulus (patients 1 and 7). The others had reflex seizures induced by different types of stimuli, which nevertheless produced the same seizure manifestations. One had seizures precipitated by oculomotor and proprioceptive stimulation, two by eating or talking, two others by startled produced by sudden occurrence of a loud sound or a tactile stimulus (e.g., an unexpected stroke on the back), and one through sensory stimulation of the foot and by bladder fullness.

From clinical, interictal and ictal EEG, and imaging findings, it was possible to suggest a putative epileptogenic zone responsible for the reflex seizures in each patient. These data are detailed in Table 2. Four patients with diffuse or bilateral malformations had generalized, multifocal, or bilateral epileptiform interictal EEG spikes. All had bilateral or generalized reflex seizure patterns. Patient 2, however, with bilateral malformations in the posterior quadrants and a history of infantile spasms in the first year of life, had seizures starting in the right anterior quadrant. Three other patients had focal or unilateral spikes and localized epileptogenic zones. Patient 1 had focal EEG features associated with a gross malformation in the right posterior quadrant, although he also had bilateral periventricular nodular heterotopia. Finally, patient 7 had no interictal or unequivocal ictal epileptiform abnormalities on scalp EEGs. The autonomic features of his reflex attacks, coupled with a perinsular lesion, suggested a centroinsular epileptogenic zone.

Anatomic and histopathologic findings

MRI showed variable types of MCDs. Two patients had bilateral perisylvian polymicrogyria (Fig. 3), which was symmetrical in one and asymmetrical in the other. Both had reflex seizures provoked by eating, and one had recurrent reflex drop attacks, which were only partially responsive to anterior callosotomy. Two had extensive dysplastic features in the posterior quadrants, one with bilateral subependymal nodular heterotopia and a right occipital dysplastic cortex, and the other with grossly
FIG. 2. EEG, magnetic resonance imaging (MRI), and histopathologic pictures of the evaluation and treatment findings of patient 8. A: Rhythmic interictal epileptiform discharges involving the left frontocentral (parasagittal) region. B: Reflex-induced seizure on scalp EEG, with onset in the same regions displaying rhythmic interictal discharges (arrows). C: Intracranial EEG with subdural electrodes (MRI insert) show a spontaneous seizure arising from the mesial primary sensory cortex, which was resected, in conjunction with the left supplementary motor area (D). E: The dysplastic histopathologic features of the resected tissue.
abnormal gyration in both parietooccipital regions. These patients had seizures precipitated by visual, oculomotor, or proprioceptive stimuli. A localized dysplastic abnormality was seen in two patients, in the centroinsular area in one (Fig. 4), with seizures triggered by a full stomach, and in the right frontal lobe in the other, who had startle-induced seizures. At operation, electrocorticography (ECoG) showed continuous spiking in the right frontal lobe, and histopathology confirmed a Taylor-type focal cortical dysplasia (19,20). Postoperatively, seizures were fully controlled for 5 years, and he now has occasional simple partial seizures. One male patient had diffuse band heterotopia, or "double cortex," with startle seizures and frequent drop attacks, not helped by complete callosotomy. Finally, one patient with a normal MRI, but an EEG pattern suggestive of focal cortical dysplasia (patient 8;
<table>
<thead>
<tr>
<th>Patients</th>
<th>Age evaluation*</th>
<th>Age sz onset*</th>
<th>Perinatal injury</th>
<th>Mental retardation</th>
<th>Abn physical exam</th>
<th>Abn neuro exam</th>
<th>MRI</th>
<th>Other evaluations</th>
<th>Surgery/ pathology</th>
<th>Surgical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Male</td>
<td>15</td>
<td>3</td>
<td>First twin 34 wks mild jaundice</td>
<td>Severe delayed</td>
<td>Severe</td>
<td>No</td>
<td>Gen spasticity bilat cerebellar signs</td>
<td>Cerebellar hypoplasia; bilat subepend heterotopia; rt occ dysp</td>
<td>PET: hypometab rt T-P-occ fragile-X excluded;</td>
<td>N/A</td>
</tr>
<tr>
<td>#2 Female</td>
<td>5</td>
<td>4 months</td>
<td>No</td>
<td>Severe delayed</td>
<td>Severe</td>
<td>Low implant both ears</td>
<td>Diffuse hypotonia</td>
<td>Abn gyration, both parieto-occ, rt pred</td>
<td>46,XX,del(11) (q22.2 q23.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>#3 Male</td>
<td>7</td>
<td>3</td>
<td>No</td>
<td>Moderately delayed</td>
<td>Moderate</td>
<td>No</td>
<td>Mild lt hemiparesis</td>
<td>Diffuse bilat band heterotopia</td>
<td>N/A</td>
<td>Complete callosotomy</td>
</tr>
<tr>
<td>#4 Male</td>
<td>7</td>
<td>3</td>
<td>No</td>
<td>Moderately delayed</td>
<td>Moderate</td>
<td>No</td>
<td>Diffuse hypotonia</td>
<td>Rt frontal blurring gray/white</td>
<td>N/A</td>
<td>Rt F lobectomy TTFCD</td>
</tr>
<tr>
<td>#5 Female</td>
<td>27</td>
<td>11</td>
<td>No</td>
<td>Mildly delayed</td>
<td>Mild</td>
<td>No</td>
<td>Severe pseudobulbar palsy</td>
<td>Bilat symm perisylvian polymicrogyria</td>
<td>N/A</td>
<td>Anterior callosotomy</td>
</tr>
<tr>
<td>#6 Female</td>
<td>15</td>
<td>6</td>
<td>Bleeding first trim. gestation</td>
<td>Normal</td>
<td>No</td>
<td>No</td>
<td>Mild pseudobulbar palsy, oro-lingual dyspraxia</td>
<td>Bilateral perisylvian polymicrogyria, lt pred</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>#7 Male</td>
<td>51</td>
<td>3</td>
<td>No</td>
<td>Normal</td>
<td>Mild</td>
<td>No</td>
<td>Cortical thickening, increased signal inferior centro-insular</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>#8 Female</td>
<td>34</td>
<td>8</td>
<td>No</td>
<td>Normal</td>
<td>No</td>
<td>No</td>
<td>Normal</td>
<td>Subdural grid recordings lt mesial central sz onset</td>
<td>Lt mesial F-C resection TTFCD</td>
<td>Sz free 30 mo f-up</td>
</tr>
</tbody>
</table>

*In years.

Abn, abnormal; bilat, bilateral; C, central; dysp, dysplasia; F, frontal; gen, generalized; hypometab, hypometabolism; hypsarr, hypersrhythmia; implant, implantation; lt, left; occ, occipital; P, parietal; PET, positron emission tomography; pred, predominant; rt, right; SBS, secondary bilateral synchrony; sz, seizure; symm, symmetrical; T, temporal.
TABLE 2. Semiological and neurophysiological features

<table>
<thead>
<tr>
<th>Patients</th>
<th>Specific precipitant</th>
<th>Precipitant seizure types</th>
<th>Interictal reflex types</th>
<th>Ictal EEG</th>
<th>Reflex seizure putative epileptogenic zone</th>
<th>Seizure frequency</th>
<th>Self-precipitation</th>
<th>Spontaneous seizures</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Male</td>
<td>Staring at Tonic Rt C-P</td>
<td>Diffuse attenuation C-P-O pred</td>
<td>Rt posterior quadrant</td>
<td>> 10/day refractory</td>
<td>Yes</td>
<td>Eye flickering</td>
<td>Cerebellar hypoplasia; bilat subependymal heterotopia; rt mesial occ dysplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 Female</td>
<td>Forced eye dev to lt plus forced blinking</td>
<td>Tonic drop attacks</td>
<td>Gen hyspsrht; later, rt F</td>
<td>Rt anterior quadrant</td>
<td>Daily refractory to AED; some response to steroids</td>
<td>Yes</td>
<td>Partial motor</td>
<td>Abn gyration, both parieto-occ; rt pred</td>
<td></td>
</tr>
<tr>
<td>#3 Male</td>
<td>Startle touch and sound</td>
<td>Drop attacks</td>
<td>Multifocal SBS</td>
<td>Generalized irregular spike and attenuation</td>
<td>Generalized</td>
<td>Daily, refractory</td>
<td>No</td>
<td>Partial motor sec gen</td>
<td>Diffuse bilat band heterotopia</td>
</tr>
<tr>
<td>#4 Male</td>
<td>Startle touch and sound</td>
<td>Drop attacks</td>
<td>Rt F-C SBS</td>
<td>Rt F-C</td>
<td>Rt F</td>
<td>Daily to weekly, refractory</td>
<td>No</td>
<td>Partial motor sec gen</td>
<td>Rt frontal blurring gray/white</td>
</tr>
<tr>
<td>#5 Female</td>
<td>Eating talking over the phone</td>
<td>Peri-oral myoclonia drop attacks</td>
<td>Bilat C-T SBS</td>
<td>Generalized rhythmic alpha-like activity</td>
<td>Bilat perisylvian</td>
<td>Daily refractory</td>
<td>No</td>
<td>Peri-oral myoclonus, drop attacks</td>
<td>Bilat symm perisylvian polymicrogyria</td>
</tr>
<tr>
<td>#6 Female</td>
<td>Eating talking about eating</td>
<td>Myoclonus, head and arms; partial motor sec gen</td>
<td>Bilat C-T lt T pred SBS</td>
<td>Generalized irregular spike and attenuation</td>
<td>Bilat perisylvian</td>
<td>Weekly, refractory</td>
<td>No</td>
<td>Partial motor sec gen</td>
<td>Bilateral perisylvian polymicrogyria, lt pred</td>
</tr>
<tr>
<td>#7 Male</td>
<td>Gastric dilation after meals</td>
<td>Peri-oral myoclonia partial motor, sec gen</td>
<td>None</td>
<td>None</td>
<td>Lt centro-insular</td>
<td>Daily to weekly, refractory</td>
<td>No</td>
<td>Partial motor complex partial, sec gen</td>
<td>Cortical thickening, increased signal lt centro-insular</td>
</tr>
<tr>
<td>#8 Female</td>
<td>Rubbing sole rt foot bladder distension</td>
<td>Partial motor sec gen</td>
<td>Continuous lt F-C</td>
<td>Lt medial post-central gyrus</td>
<td>Lt medial post-central gyrus</td>
<td>Daily to weekly, refractory</td>
<td>No</td>
<td>Partial motor sec gen</td>
<td>normal</td>
</tr>
</tbody>
</table>

Bilat, bilateral; dev, deviation; lt, left; occ, occipital; pred, predominant; rt, right; sec gen, secondarily generalized; symm, symmetrical.
Fig. 3. Axial T1-weighted magnetic resonance imaging section of patient 6 shows grossly malformed perisylvian regions bilaterally. Close analysis of the malformation suggests a polymicrogyric pattern.

Fig. 4. Coronal fluid-attenuated inversion recovery magnetic resonance imaging acquisition of patient 7. Note focal area of increased corticosubcortical signal in the left anterior frontoinsular region, compatible with a dysplastic lesion.

DISCUSSION

Reflex seizures result from neuronal circuits that are hyperexcitable to specific afferent stimuli (2,10,11). Genetic and lesional mechanisms facilitating the recruitment and synchronization of larger neuronal pools by incoming sensory volleys are likely to be involved in this process (11,14,16).

We retained for inclusion in this report only those patients with MCDs who had reflex seizures reproduced during video-EEG evaluation. Other patients whose putative reflex attacks could not be verified were not included. Some of these reported attacks that were suggestive of a reflex mechanism, such as patients with rolandic MCD reporting clonic perioral movements associated with toothbrushing. Thus the very low prevalence of reflex seizures in patients with MCD, as inferred by the limited number of patients included in this report, may represent an underestimation.

All eight patients had both spontaneous and reflex seizures. This has been the case with many of the patients previously reported, irrespective of the underlying etiology (9,21). In contrast with most other reports, however, our patients had refractory seizures, and most had at least one type of seizure that was provoked only by specific stimulation and did not occur spontaneously.

Reflex seizures are often readily controlled with medication. This favorable response is to be expected in patients with idiopathic epilepsies, such as primary generalized epilepsies and reflex seizures related to photic stimuli, and also is seen in patients with partial cryptogenic epilepsies (1,3,5,6,8,22–24). Conversely, a few series and single-case reports of patients with symptomatic partial epilepsies and refractory reflex seizures have been published (9,25–28), and the present series would support the view that reflex seizures in the context of symptomatic epilepsies tend to be medically refractory.

Six of our eight patients had some types of seizures that occurred only upon specific stimulation, but not spontaneously. These were drop attacks or axial myoclonic seizures and were seen in patients with localized or more extensive MCDs. These seizure types usually result from rapid synchronization of ictal activity over both cerebral hemispheres, or from the activation of corticosubcortical circuits involved in the maintenance of axial tonus (29,30). It is possible that the enhanced epileptogenicity associated with MCDs may facilitate fast bilateral or subcortical propagation of ictal activity, leading to drop attacks or axial myoclonus upon sensory stimulation. With the exception of startle-induced seizures (26), severe seizures exclusively induced by sensory stimulation are rare, and it is thus possible that the dysplastic nature of the lesion in our patients facilitated their occurrence. [Indeed, a detailed report found that a significant number of patients with startle-induced drop attacks had variable forms of MCDs on evaluation with high-resolution imaging (26)].

A number of clinical and EEG findings suggest that MCDs are highly and intrinsically epileptogenic. These lesions often lead to medically refractory seizures (12,13), give rise to epilepsy partialis continua and other types of
status epilepticus (31–36), and produce continuous epileptogenic discharges recorded on the scalp EEG or directly over the lesion, on short- or long-term ECoG (15,16,37,38) (see Fig. 2A). Furthermore, these lesions are often localized around the rolandic regions (12,31,39), thus having the potential to lead to hyperexcitable sensorimotor synaptic loops.

The mechanisms associated with the intrinsic and enhanced epileptogenicity in MCDs are an active field of research. Morphologic studies point to persistent “epileptogenic” plasticity and abnormal connectivity, and it has been suggested that dysplastic neurons and balloon cells may escape programmed cell death through continuous expression of neurotrophins and trk receptor proteins (40). This would allow these cells to augment their synaptic network through retained active neurite plasticity. Neurophysiologic evidence for increased and intrinsic epileptogenicity of dysplastic tissue was recently obtained from in vitro studies of slices of tissue resected from patients with focal cortical dysplasia. In the presence of 4-aminopyridine, a K+ channel blocker that increases transmitter release, spontaneous and prolonged prolonged epileptiform discharges resembling EEG seizures were recorded (41). These were blocked by the application of NMDA (N-methyl-D-aspartate) and AMPA (D-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor antagonists, suggesting the participation of excitatory amino acid receptors in the process. Furthermore, immunocytochemical studies of malformed tissue have shown a reduced density of inhibitory γ-aminobutyric acid (GABA)ergic interneurons and an increase in the number of abnormally oriented pyramidal cells with immunostaining for excitatory amino acid receptors (42–44).

The basic mechanisms of epileptogenicity associated with other types of MCD—notably the heterotopias and polymicrogyria—have received less attention. Notably, however, it has been demonstrated that immature neurons in heterotopic positions can make reciprocal connections with the neocortex and other heterotopic aggregates (17,18), which could lead to networks of sustained hyperexcitability. In addition, basic research on animal models of polymicrogyria (45–48) has attested to the formation of hyperexcitable intracortical networks. Further studies on the neurochemical changes underlying both polymicrogyric and heterotopic malformations may clarify the epileptogenic tendency in these lesions.

The role of the different forms of MCDs in the generation of reflex seizures in our patients is additionally supported by functional anatomic correlation with the reflex seizure types (see Tables 1 and 2). Thus, patients with perisylvian lesions had seizures induced by eating or talking; those with posterior quadrant abnormalities had reflex attacks precipitated by visual, oculomotor or proprioceptive stimuli; one patient with a perinsular lesion had seizures related to interoceptive stimuli; and one of the patients with startle-induced drop attacks had a diffuse band heterotopia (the other had a diffuse frontal lobe abnormality). Finally, one patient with seizures related to somatosensory stimulation of the sole of the right foot and to bladder fullness had a dysplastic lesion in the contralateral sensorimotor cortex.

Interestingly, in many instances, these malformations retain the usual function expressed by the region where they are located or where heterotopic neurons were bound to migrate. Although much is still to be learned in terms of MCDs and cortical function, some evidence from functional MRI suggests a gradient of function-ability along the spectrum of MCDs. Thus polymicrogyric lesions are most often functional, followed by heterotopia. Focal cortical dysplasia and hemimegalencephaly, conversely, are the least functional (49,50). The potential inverse relation between functionality and degree of epileptogenicity is an attractive speculation, inasmuch as converging data show that epileptogenicity is highest in focal cortical dysplasias (51).

In patients with refractory reflex seizures associated with localized MCDs, resective surgery should be considered (27), and the favorable result achieved in patient 4 supports this approach. Likewise, if a dysplastic lesion is suspected on the basis of clinical and electrographic findings in patients with reflex seizures and normal MRI, further evaluation and surgery also should be considered, as shown by patient 8. The role of callosotomy to control reflex drop attacks in these patients is less clear.

It is intriguing that in most of our patients, different types of stimuli led to the same type of reflex seizures, suggesting that different types of stimuli can be channeled to the motor regions through the same sensory pathways. The two patients with eating seizures also had the same type of reflex seizures precipitated by talking. Seizures induced by talking can involve the same perisylvian regions responsible for eating-related attacks (9,25). Similarly, the patient with seizures independently provoked both by eye deviation to the left side and by blinking most likely has a trigger related to the cortical projection of proprioceptive afferents from the ocular muscles, which could be activated by either action. In the patient with seizures induced by rubbing the sole of the right foot and by urinary bladder distention, both stimuli would project to the medial aspect of the central region, where a focal cortical dysplasia was found at surgery. Finally, in two patients, sudden, unattended, presentation of either auditory or tactile stimuli led to startle-induced seizures (21,26,52).

The low frequency of reflex seizures reported in patients with MCDs might argue in favor of possible protective effects secondary to the malformation. Indirect evidence supporting this possibility is that in some patients operated on for an MCD, postoperative seizures originate in regions remote from the resection site or even in the contralateral hemisphere (53–55). It is possible that parts of the MCD
exerted tonic inhibitory effects on these regions, which became active only after removal of the major MCD. This hypothesis raises the issue of “distributed epileptogenesis” in MCDs (55). By this token, epileptogenicity associated with MCD would be distributed over a network interconnecting separate “foci” with variable epileptogenic thresholds. These foci could all be within the limits of the visible lesion or involve nonlesional adjacent or distant, synaptically interconnected regions. When outside the boundaries of the visible lesion, these foci could be associated with microscopic dysplastic abnormalities or simply represent low-threshold regions that developed as such through mechanisms of secondary epileptogenesis, particularly kindling (56). In such a network, ictal and interictal activity generated at a single node of a distributed network may be prevented from recruiting the whole network (and thus lead to a clinical seizure) if other nodes are displaying high-frequency, out-of-phase interictal spiking. This has been shown to occur experimentally (60) and is a theoretical model to suggest that out-of-phase hyperexcitability within a distributed network may indeed have a net inhibitory effect over the network. Such a model of distributed epileptogenesis could provide a mechanism through which a hyperexcitable response to an afferent input may not lead to reflex seizures. The fact that MCDs are highly epileptogenic and tend to generate a large number of interictal spikes may very well fit this model. As a corollary, clinical and basic science studies of MCDs may provide an opportunity for exploring both excitatory and inhibitory influences of high degrees of epileptogenicity on epileptic networks.

REFERENCES