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Canonical decomposition of ictal scalp EEG reliably detects the
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Long-term electroencephalographic (EEG) recordings are important
in the presurgical evaluation of refractory partial epilepsy for the
delineation of the irritative and ictal onset zones. In this paper we
introduce a new algorithm for an automatic, fast and objective
localizing of the ictal onset zone in ictal EEG recordings. We extracted
the potential distribution of the ictal activity from EEG using the
higher order canonical decomposition method, also referred to as the
CP model. The CP model decomposes in a unique way a higher order
tensor in a minimal sum of rank-1 ‘atoms’. We showed that only one
atom is related to the seizure activity. Simulation experiments
demonstrated that the method correctly extracted the potential
distribution of the ictal activity even with low signal-to-noise ratios.
In 37 ictal EEGs, the CP method correctly localized the seizure onset
zone in 34 (92%) and visual assessment in 21 cases (57%)
(p=0.00024). The CP method is a fast method to delineate the ictal
onset zone in ictal EEGs and is more sensitive than visual interpreta-
tion of the ictal EEGs.
© 2007 Elsevier Inc. All rights reserved.

Introduction

The objective of epilepsy surgery is the complete resection of
the epileptogenic area, i.e., the region of the cortex that has to be
removed in order to make the patient seizure-free. In order to
pinpoint the epileptogenic area during a presurgical evaluation, a
variety of diagnostic methods is available. Most often, this
localization is based on the combination of clinical ictal symptoms
and signs on video recordings of seizures, MRI-visible epileptic
lesions, regions of hyperperfusion on ictal SPECT and interictal
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and ictal epileptic activity on EEG recordings (Rosenow and
Lüders, 2001).

The ictal EEG gives time information about the voltage
distribution over the electrodes on the scalp during a seizure and is
the most commonly used method to localize the ictal onset zone
(Foldvary et al., 2001). Interrater variability in the visual
interpretation of ictal scalp EEG recordings is considerable, and
seizure activity is often obscured by muscle and other artifacts
(Spencer et al., 1985). The sensitivity of ictal EEG to localize the
seizure onset zone is only 40–70% (Foldvary et al., 2001), which
can be improved by removal of artifacts with different techniques
(Urrestarazu et al., 2004; Delorme et al., 2007; and references
herein). Nowadays, muscle artifacts can be removed using the BSS-
CCAmethod (De Clercq et al., 2006; Vergult et al., 2007). However,
BSS-CCA is only a semi-automatic preprocessing method to
remove muscle artifacts, and subjective visual assessment is still
required for a correct interpretation and localization of the ictal onset
zone.

A more objective way than visual analysis to estimate the
epileptogenic focus is EEG dipole source localization (Scherg and
von Cramon, 1985). Dipole modeling is a well-established
technique for localizing interictal spikes and the irritative zone
(Kobayashi et al., 2005). Dipole modeling of ictal EEG activity has
been more difficult mainly due to EEG artifacts often seen during
seizures (Gotman, 2003).

Our aim was to establish a robust and automatic localization
method for ictal EEG activity, using the canonical decomposition
(CANDECOMP), also known as parallel factor analysis (PARAF-
AC), often referred to as the CP (CANDECOMP/PARAFAC)
decomposition. With this decomposition, multichannel time-
varying EEG is decomposed into a series of distinct ‘atoms’,
which represent in an ideal situation distinct brain sources. The CP
decomposition can be considered as the higher order variant of
factor analysis. The aim of factor analysis is to relate the different
‘atoms’ to the different ‘physical mechanisms’. However, it is
never a priori known whether an atom obtained with factor analysis
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Fig. 1. The singular value decomposition restricted to R atoms.
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truly reveals the underlying phenomenon. Factor analysis of
matrices is underdetermined, and assumptions like orthogonality or
independence, which may be irrelevant, have to be imposed in
order to obtain a ‘unique’ solution. Factor analysis of higher order
data sets is unique under mild conditions. We will show that the CP
decomposition reliably identifies one epileptical seizure onset
atom.

Atomic decompositions of the EEG in matrix form have been
shown to be useful as an exploratory tool. With principal com-
ponent analysis (PCA) and independent component analysis
(ICA), space–time decompositions of multichannel EEG can be
used for artifact removal (e.g. Urrestarazu et al., 2004; LeVan et
al., 2006) or for extracting interesting activities (e.g. Tang et al.,
2004). The CP model was used for the simultaneous space–
time–frequency decomposition of the power of wavelet trans-
formed EEG with dimensions channels× time×scales (Miwakei-
chi et al., 2004). It was shown that the CP allowed identifying
frontal theta atoms during a cognitive task and occipital alfa
atoms during resting conditions. In Morup et al. (2006), CP was
used as an exploratory tool in the analysis of inter-trial phase
coherence of event-related EEG. Another tensor decomposition,
the Tucker model, does not give an atomic decomposition, but it
is recently used for seizure analysis (Acar et al., 2006).
Separation of the ictal source into one component has not been
reported.

Ictal seizure activity is known to consist of rhythmical waves
often with a frequency between 3 and 29 Hz (Gotman, 1982). As
the CP decomposition of wavelet transformed EEG is especially
useful in the description of oscillatory phenomena, the goal of this
study was to investigate the localizing value of the epileptical
atom, identified after CP decomposition. In contrast to previous
studies, where the CP decomposition was computed on the power
of wavelet transformed EEG, we computed the decomposition on
the ‘pure’ wavelet transform of the ongoing EEG recording, which
made the decomposition more robust with respect to artifacts. We
assessed the accuracy of this method with a realistic simulation
study. Finally, we validated our method clinically on a set of ictal
EEG recordings and showed that the CP method was more
sensitive than visual interpretation of the ictal EEGs in localizing
the ictal onset zone.

Methods and materials

We define the three-way data array as the wavelet transform of
the ongoing EEG recording, introduce the CP decomposition as a
multilinear generalization of the matrix singular value decomposi-
tion (SVD) and describe how the CP decomposition can be used
for seizure onset localization.

Wavelet transform

Fourier transform (FT) of EEG data can estimate the frequency
content of the signal (Dietsch, 1932) but does not reveal time-
varying frequency changes in the signal. Even the short-time
Fourier analysis (STFA) is an inaccurate and inefficient method of
time–frequency localization because the interval in which the
frequency content is computed is fixed. Since the time and
frequency resolutions are reciprocal, good time resolution means
poor frequency resolution and vice versa. Optimal time–frequency
analysis is given by the wavelet transform. Wavelets resolve high-
frequency components within small time windows and low
frequencies in larger time windows. The continuous wavelet C at
scale a and time t of a signal x(t) is defined by

Cða; timeÞ ¼
Z ~

�~
xðtÞϕða; time; tÞdt

with ϕ the chosen wavelet. We used in this study a biorthogonal
wavelet with decomposition order 3. The exact choice of the
wavelet does not really affect the result in our study as long as a
real wavelet is chosen. From the scale a of the wavelet, the
frequency f of the signal can be estimated as:

f ¼ fc
aDt

with fc the center frequency of the wavelet and Δt the sampling
period.
CP decomposition as a higher -order generalization of the matrix
SVD

A two-way array can be decomposed by means of an SVD.
There are several ways to generalize the SVD to higher orders: the
Tucker models (Tucker, 1964, 1966), the higher order SVD (De
Lathauwer et al., 2000) and the CP decomposition (Hitchcock,
1927; Harshman, 1970; Carroll and Chang, 1970; De Lathauwer,
2006). The main success of the CP model is due to its uniqueness
and related interpretability of the components. We will introduce
this concept as a generalization of the SVD.

Given a matrix X(I×J). Based on its SVD, X=AΣBT truncated
to R components, the elements xij can be written as:

xij ¼
XR
r¼1

srrsirbjr þ eij

where the matrices A(I ×R) (with elements aij) and B(J×R) (with
elements bij) are both orthonormal matrices. Σ=diag(s11,…, srr) is
a diagonal matrix containing the R largest singular values of X, and
eij is the residual. The values of srr can also be absorbed in one
mode, leading to the model

xij ¼
XR
r¼1

airbjr þ eij

The SVD restricted to R atoms is visualized in Fig. 1.
The generalization of the SVD to the trilinear CP model for a

three-way array X(I×J×K) given by:

xijk ¼
XR
r¼1

airbjrckr þ eijk

where R is the number of components used in the CP model and
eijk is the residual containing the unexplained variation. A pictorial



Fig. 2. The CP decomposition with R atoms.
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representation of the CP decomposition with R atoms is given in
Fig. 2.

The CP model is a trilinear model: fixing the parameters in two
modes, xijk is expressed as a linear function of the remaining
parameters. A difference with the SVD is that the components of a
CP model do not have to be orthogonal with respect to each other.
Another equivalent and useful expression of the same CP model is
given in terms of the Khatri–Rao product ⊙ (Smilde et al., 2004).

Stack the elements of the tensor X(I×J×K) in a matrix X(I×J×K) as
follows:

Xði�1ÞJþj;k ¼ xijk

A matrix E is formed in a similar way. Collect the elements air
in A, bjr in B and ckr in C. Then

X IJ�K ¼ ðX I�ROB J�RÞðCK�RÞT þ E IJ�K

Comparing the number of free parameters of a generic tensor
and a CP model, it can be seen that this model is very restricted.
For example, a random third order tensor of dimensions (I×J×K)
has I ·J ·K elements, whereas a third-order rank-R CP decomposi-
tion has only R · (I+J+K) elements. The advantage of this model is
its uniqueness under mild conditions (Sidiropoulos and Bro, 2000;
Kruskal, 1977; Stegeman and Sidiropoulos, 2007):

kA þ kB þ kCz2Rþ 2

with kM the k-rank of matrix M. Another, less restrictive
uniqueness condition was recently derived in (De Lathauwer,
2006).

The CP decomposition is usually computed by means of an
alternating least squares (ALS) algorithm (Smilde et al., 2004).
This means that the least squares cost function

f ðA;B;CÞ ¼ tX�
XR
r¼1

Ard Brd Crt
2

is minimized by means of alternating updates of one of its matrix
arguments, keeping the other two matrices fixed. Because the CP
decomposition is a multi-linear decomposition, each update just
amounts to solving a classical linear least squares problem. The
convergence may be local. To increase the probability that the
global minimum is found, the algorithm may be reinitialized a
couple of times. Afterwards, other computational schemes are
proposed (De Lathauwer et al., 2004; De Lathauwer, 2006).
Standardization

Before computing the CP decomposition, the data have to be
carefully preprocessed. Standardization of the EEG was done by
centering (i.e. subtracting the mean) the original EEG and dividing
each channel by its standard deviation. After the decomposition,
the spatial distribution of the scalp potential was again multiplied
with this standard deviation in order to conserve the amplitude
information.

CP decomposition for seizure localization

After wavelet transformation of every channel of the original
EEG at the seizure onset with dimensions (channels× time), a three-
way array with dimensions (channels× time×scales) was obtained.
We chose 2 s as length of the time window as an optimal trade-off.
A smaller time window will give a less stable decomposition. A
larger time window would enlarge the risk that the seizure activity is
already propagating in a realistic setting or to include eye blink
artifacts (see for example Fig. 7). The seizure onset was defined as
the time point when an ictal EEG discharge was observed without
going back in time. It should be stressed that it is sufficient that a
neurophysiologist is able to observe an ictal EEG change, even if
the neurophysiologist is not able to localize the ictal onset zone at
that point in time (e.g. generalized attenuation of EEG signal, ictal
EEG changes obscured by muscle artifact, etc.). This three-way
array was decomposed with a CP model. There are several ways of
determining the correct number of atoms (Smilde et al., 2004). By
checking the core consistency diagnostic, we found that the optimal
number of atoms was two (R=2).

When the goal is to localize the seizure onset region, the seizure
atom has to be identified after the decomposition. We identified the
epileptic atom by ordering of the atoms. The atoms in a CP
decomposition are not ordered by the decomposition as it is the
case with the SVD. We put all the variance of an atom into the
spatial mode and ordered the components according to their
contribution. The atom with the highest contribution contained the
ictal activity provided that no eye blinks were present and the EEG
was first standardized, as described. The spatial component of the
identified atom gave the spatial distribution of the epileptical
activity. The electrodes with a resulting potential above a
predefined threshold (we used 75% of the maximal value of
amplitudes across all channels for fixed atom) defined the epileptic
focus. In addition, it was verified that the maximal frequency of the
frequency distribution corresponded to the frequency of the
rhythmical seizure activity.

The CP decomposition of a pure wavelet transformed ictal EEG
is illustrated in Fig. 3.

Simulation study

Consider a matrix X of dimension 500×21 representing a 21-
channel EEG section of 2.0 s long. Each vector xs, s=1,…,21 of X
contains the time course of an EEG channel:

X ¼ ½x1; x2; N ; x21�T

In this simulation study, X includes both seizure activity and
superimposed noise. Both signals are described below.

The EEG of the ictal activity (Fig. 4A) was generated using a
fixed dipole in a three-shell spherical head model with a moment
having a 5.7-Hz sinusoidal waveform (for example, typical in
patients with mesial temporal lobe epilepsy (MTLE); Niedermeyer,
1987) (Fig. 4A). The amplification factors at each electrode were
computed by solving the forward problem for a dipole in a three-
shell spherical head model consisting of a brain, a skull and a scalp
compartment (Salu et al., 1990). Each compartment had a specific
conductivity with a ratio equal to 1:1/16:1 for the brain, skull and



Fig. 3. CP decomposition of a pure wavelet transformed ictal EEG. A 21-channel average reference montage EEG showed 10 s of the beginning of a right temporal lobe complex partial seizure, characterized by a
recruiting theta rhythm of around 5 Hz over the right temporal derivations (T2 (sphenoidal electrode), F8, T4, and also T6) (A). There were muscle (e.g. first 3 s in T3 and C3, and last 5 s in C4) and eye blink artifacts
(FP1 and FP2, asterisks). The EEG data matrix was wavelet transformed to obtain a 3D tensor without any artifact removal. The three modes of the CP decomposition of the 10 s of ictal EEG are shown: temporal
mode (B and C), frequency mode (D and E) and spatial mode (F and G). The blue atom (C, E, G) was related to the eye blink artifacts. The temporal mode (C) showed high peaks at the same time of the eye blinks in
the original EEG (asterisks in A). The frequency mode (E) showed a peak at low frequencies, consistent with low-frequency eye blinks. The spatial component (G) showed the typical distribution of eye blinks at FP1
and FP2. The red atom (B, D, F) contained all the information related to the ictal activity. The temporal mode (B) reflected the rhythmicity of the ictal wave. The frequency mode (D) displayed a peak at around 5.7 Hz,
which corresponded to the frequency of the recruiting theta waves in the ictal EEG (A). The spatial mode (F) showed that the potential distribution of the ictal activity had maximal values (red area) in the antero- and
midtemporal and sphenoidal electrodes of the right temporal lobe, which was also readily apparent on visual inspection of the ictal EEG (A). Notice that the spatial mode (F and G) is a two-dimensional display, with
the right side corresponding to the right side of the patient, and the black dots representing the electrode positions according to the 10–20 system. Red regions indicated highly positive potentials, dark blue regions
indicate highly negative potentials.
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Fig. 4. Simulated data. Noise-free simulated ictal activity (A). The 2-s time course of the scalp potentials showed 5.7-Hz rhythmic activity in all electrodes with highest amplitude at T3 and T1. A simulated data
matrix was obtained by mixing the noise-free simulated ictal activity (A) with noise resembling muscle artifact. In the example of (B), the SNR was equal to 0.42. The correlation between the simulated distribution
and the spatial distribution, extracted with the CP method, is shown in panel C. The 5.7-Hz seizure activity was largely embedded in noise. The correlation for wavelet transformed EEG remained high up to an SNR
of around 0.3. At an SNR of 0.42 in panel B, the correlation was 0.98, which means that the correct spatial distribution of the seizure activity was obtained with the CP decomposition, i.e. the method appeared
insensitive to noise resembling muscle artifact. Also notice that the performance of the CP method for power of wavelet transformed EEG data was worse, compared with wavelet transformed EEG signals. Panel C
also shows the correlation between the simulated distribution and the spatial distribution, extracted with the CP method and with the SVD on the same simulated data. Introducing the third, frequency dimension
clearly improves the localization.
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Fig. 5. (A) 10-s EEG recording of a left frontal lobe seizure, the red line indicates the start of the 2-s used in the CP analysis. (B) The spatial distribution of the
epileptical atom (red area) and (C) SISCOM. The ictal EEG (last 2-s) was severely contaminated by muscle artifacts, and localization by visual assessment was
impossible. The CP method, however, showed a potential distribution concordant with SISCOM. (D) The first singular vector did not give clear localizing
information. (E1–2) Spatial distributions of the 2 atoms of the decomposition of the power of wavelet transformed EEG did not reveal the epileptic focus.
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scalp compartment, respectively (Oostendorp et al., 2000). The
brain and scalp conductivity was 3.3 10− 4/Ω/mm (Cuffin et al.,
1991). Radii of the outer boundary of the brain, skull and scalp
region equal to 8 cm, 8.5 cm and 9.2 cm, respectively, were used.
The dipole coordinates x (left ear to right ear), y (posterior to
anterior) and z (up, through the Cz electrode) were (−0.5,0,0.1)
relative to the outer radius and the dipole orientations dx, dy and dz
were equal to (1, 0, 0). The amplification factors at each electrode
were then multiplied with a 5.7-Hz sine wave. Twenty-one
electrodes were used according to the 10–20 system for electrode
placement (Nuwer et al., 1998) and additional electrodes T1 and
T2 on the temporal region. The time course of the scalp potentials
was stored in a 500×21 dimensional matrix A, representing 2 s of
EEG with sample frequency of 250 Hz.

A 500×21 noise matrix B contained 2 s of awake background
EEG activity, recorded with the same electrode configuration,
from a normal subject. On this matrix B, muscle artifacts were
superimposed. These muscle artifacts were separated from
contaminated background activity using BSS-CCA (De Clercq
et al., 2006). In the simulation study, the noise matrix B was
superimposed on the signal matrix A containing the epileptical
activity:

XðkÞ ¼ Aþ kd B
with λ ∈ R (Fig. 4B). The data were digitally filtered by a band-
pass filter (0.3–35 Hz). The root mean squared (RMS) value of
the signal with N data points and S channels is then equal to

RMS Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Sd N

XS
s¼1

XN�1

n¼0

A n; sð ÞÞ2
�vuut

and the RMS value of the noise is equal to

RMS kd Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Sd N

XS
s¼1

XN�1

n¼0

kd B n; sð ÞÞ2
�vuut

An important measure was the signal-to-noise ratio (SNR)
which is defined as follows,

SNR¼ RMSðAÞ
RMSðkd BÞ :

Changing the parameter λ alters the noise level of the
simulated signal. We performed several simulations with different
noise levels. The aim of this simulation study was to evaluate the



Fig. 6. (A) 10-s of EEG during a seizure without clear ictal EEG changes, the red line indicates the start of the 2-s used in the CP analysis. (B) The spatial
distribution of the epileptic atom (red area) and (C) SISCOM. The spatial distribution of the identified atom was concordant with SISCOM. (D) The first singular
vector was not informative.
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performance of the proposed method in extracting the potential
distribution of the 4-Hz epileptiform activity, for different noise
levels. The performance was evaluated by the correlation co-
efficient between the true potential distribution and the extracted
potential distribution of the seizure activity (Fig. 4C). We
compared this performance with results obtained with the CP
method on the power of wavelet transformed EEG, as is des-
cribed in previous publications. We also compare our method
with the localizing information that can be obtained from the
SVD. We compare our results with the first left singular vector
(Fig. 4C).

Clinical validation on ictal EEGs

EEG acquisition
Video-EEGs were recorded on 21-channel OSG EEG recorders

(Rumst, Belgium). Electrodes were placed according to the
International 10–20 System with additional sphenoidal electrodes.
Sampling frequency was 250 Hz and an average reference montage
was used. The EEG was digitally filtered by a band-pass filter
(0.3–35 Hz). A notch filter was applied to suppress the 50-Hz
power line interference.

Data selection
Patients, who underwent a full presurgical evaluation for

refractory partial epilepsy, were included when seizure semeiology,
structural MRI, interictal EEG, subtraction ictal SPECT co-
registered with MRI (SISCOM) and neuropsychological assess-
ment were concordant and reliably defined the epileptogenic zone.
Ictal EEG findings were not an inclusion criterion. SISCOM that
was concordant with other data was a selection criterion. SISCOM
was considered the gold standard with which we compared the
localization of ictal EEG as determined by visual assessment and
the CP decomposition method. SISCOM images were displayed on
a standard MRI in MNI (Montreal Neurological Institute) space
using a minimum threshold of z=2 (for details on this procedure,
see Nelissen et al., 2006). An epileptologist, who was aware of all
the data of the presurgical evaluation, selected the ictal EEG
recordings. The selected EEG was of the seizure during which the
ictal SPECT injection was given. One ictal EEG per patient was
used in this study. Thirty-seven EEGs were included in the study.
The ictal EEGs were also presented to a clinical neurophysiologist/
epileptologist, who was blinded to all other clinical and localizing
data, for visual assessment of the ictal EEGs and determination of
the localization and lateralization of the ictal onset. The validation
study is performed on the same data set as described in Vergult et
al. (2007). In this paper, all details concerning the optimal
conditions under which visual reading was performed are
described (e.g. band-pass filtering as well as the amplitude could
be freely adjusted by the human reader). Localization of ictal EEG
(both visual assessment and CP method) was considered correct
when lobe of onset was concordant with SISCOM findings.
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Thirty-seven patients fulfilled the inclusion criteria. Twenty-
four were women. Median age was 33 years (range: 14–62).
Median age at seizure onset was 14 years (0–62). The median
seizure frequency per month was 6 (1–600). MRI showed
unilateral hippocampal sclerosis (n=10), focal cortical dysplasia
(n=5), scar tissue (n=5), a tumor (n=3), dual pathology (n=2), a
cavernous angioma (n=1) or no abnormality (n=10). Seventeen
patients underwent an operation. With a follow-up of more than
2 years, 12 have remained seizure free and 5 almost seizure free.
Five patients refused surgery, and 15 were not offered surgery,
because the epileptogenic zone involved eloquent cortex (n=6) or
the MRI did not reveal an abnormality (n=9).

The ictal SPECT injection was given during a complex partial
seizure (n=32), simple partial seizure (n=2) or secondarily
generalized seizure (n=3). The median duration of the injected
seizure was 70 s (range: 11–389) and the median time of injection
was 26 s after seizure onset (range: 3–109).

Statistics
In order to estimate the statistical significance of the

improvement of this automatic localization compared with blinded
human reading, a non-parametric signed rank test was performed.

Results

Simulation study

The correlation between the simulated distribution and the
spatial distribution in the simulation study, extracted with the CP
method, is shown in Fig. 4C. The figure shows that the CP method
correctly localized epileptic activity despite severe contamination
with noise. One can expect that a real seizure EEG has an SNR
much larger than 0.42. But even at this low noise level (Fig. 4B),
the correct potential distribution is extracted.

The figure also shows that pure wavelet-transformed EEG,
which we used, was better than the decomposition on the power of
the wavelet-transformed EEG as it was described in previous
publications.

A comparison of the localizing value of the CP method and the
SVD on the same simulated data is also given in Fig. 4C. Adding
frequency information and decomposing the array in a unique,
unconstrained way clearly improves localization.

Clinical validation

The CPmethod correctly localized the seizure onset zone in 34 of
37 cases (92%) while a human reader, blinded to all other
information, was able to localize 21 of 37 cases (57%). This
improvement is significant (p=0.00024). From 3 EEGs no
automatic localization could be obtained. In one seizure, there was
an electrode artifact during the whole seizure, which impeded a
reliable decomposition. Two spatial distributions did not clearly
reveal the epileptical focus because there were high potentials at
both sides of the brain, which indicates that no perfect separation of
ictal activity from background EEG was obtained with the CP
decomposition. Localization can only be derived when all the active
electrodes are adjacent. Otherwise the decomposition is not
meaningful. The human reader did not recognize ictal activity in 3
cases, was not able to localize the seizure onset in 7 cases and
wrongly localized the seizure onset in 6 cases. Figs. 5–7 illustrate
our results with 3 cases. Fig. 5A shows a 10-s epoch of EEGwith the
beginning of a frontal lobe seizure in the last 2 s, that could not be
localized by visual inspection of the EEG. However, the CP method
localization (Fig. 5B), obtained with 2 s of EEG starting from the red
line, was concordant with the SISCOM findings (Fig. 5C). Fig. 5D
shows the first left singular vector, which does not provide a clear
localization. Fig. 5E1–2 show the atoms of the decomposition of the
same EEG when the power of the wavelet-transformed EEG was
used in the decomposition. None of the images revealed the epileptic
focus. The figure illustrates that the pure wavelet transformed EEG
is much less influenced by the muscle artifacts than the power of the
wavelet transformed EEG. When computing the power, the
underlying structure is not trilinear anymore.

Fig. 6 illustrates the sensitivity of the CP method: the ictal
activity was not visible on visual assessment of the EEG, while the
decomposition findings were concordant with SISCOM.

Fig. 7 shows the data of a patient with a right posterior focus,
which was not detected with the CP method using a time window
of 2 s due to the rhythmic eye artifacts. When removing the eye
artifacts, or computing the decomposition between 2 eye blinks,
the correct focus was obtained (Fig. 7B). The SVD detected
remaining eye artifacts (Fig. 7D1) and did not reveal the focus in
other singular vectors (Fig. 7D2).

Discussion

In this paper, we introduced a new method for extracting the
potential distribution of ictal EEG activity, which is a novel, fast
and sensitive method to visualize the ictal onset zone. The method
is based on the multi-way CP decomposition of wavelet-
transformed EEG in distinct ‘atoms’. After the decomposition,
one atom can be identified as the epileptical atom, and the spatial
component of this atom reveals the focus. To the best of our
knowledge, we are the first to propose a decomposition method
that separates ictal activity from background EEG into one
component. We claim that the CP method exploits the fact that
seizure activity remains more localized in space and frequency
during a short time interval than background EEG signals. The
components in the CP decomposition should model most of the
variation of the array, i.e. model the dominant activity. This
modeled activity will be a signal with high amplitudes or a signal
with stable components in frequency and spatial distribution. The
background EEG and random noise (e.g. muscle artifacts) cannot
be modeled with this simple CP structure and the CP decomposi-
tion will be insensitive to such random artifacts. This is an
advantage, as there is no need to first remove these artifacts. All
EEG signals that cannot be modeled contribute to the residuals eijk.

Seizure activity is often obscured by artifacts, which compli-
cates visual analysis. These artifacts can be removed with different
techniques (see e.g. Urrestarazu et al., 2004; Delorme et al., 2007,
and references herein). Our BSS-CCA method for muscle artifact
removal made visual analysis of ictal EEG more sensitive (Vergult
et al., 2007). Our current CP method is also more sensitive than
visual assessment, with the additional advantage that the technique
is automatic and more objective, i.e. not dependent on a subjective
visual interpretation. By means of simulations, we showed that the
method is able to extract the correct potential distribution, even at
very low SNRs. The validation study demonstrated that the method
may be a valuable and objective localizing tool for the epilep-
tologist in clinical practice.

As opposed to, e.g., Miwakeichi et al. (2004), who used the
complex wavelet to obtain a 3D tensor, we used a real wavelet. In



Fig. 7. (A) 10-s EEG recording of a right occipital seizure showed frequent eye blinks (Fp1 and Fp2), but no clear ictal activity, the red line indicates the start of
the 2-s used in the CP analysis. (B) The spatial distribution of the epileptical atom and (C) SISCOM showed a concordant focus in the right occipital lobe. (D1–2)
Two singular vectors did not give clear localizing information.

852 M. De Vos et al. / NeuroImage 37 (2007) 844–854
addition, we did not decompose the power of the wavelet-
transformed EEG. We demonstrated that by decomposing ‘pure’
wavelet-transformed EEG, the method became very robust for
muscle artifacts and low SNRs because random ‘noise’ cannot be
modeled with this restricted CP model.

We have used SISCOM as a gold standard for the ictal onset
zone. It is well known that the time resolution of ictal SPECT is
poor and that areas of hyperperfusion often represent a combina-
tion of ictal onset zone and propagated activity, even when ictal
SPECT injections were given early during a seizure. Selection of
patients who were rendered seizure free after surgery would have
made our sample size rather small. Since the aim of the present
study was to compare the sensitivity of two methods of analysis of
the same EEG data set (visual analysis versus CP method) to detect
the ictal onset zone, we believe that our current inclusion criteria
were sufficient to reliably indicate the lobe of seizure onset.

In our study, we have compared 2D data of the CP method with
3D data of ictal SPECT in a qualitative fashion. We are currently
working on a method to display the extracted potential distribu-
tions of the CP method in 3D, which could be co-registered with
MRI and subtracted ictal SPECT. Nowadays, dipole modeling or
other source localization techniques can rarely be applied to ictal
EEGs, because the EEGs are too much contaminated by artifacts.
The advantage of the extraction of the whole potential distribution
of the epileptical activity in one component opens perspectives for
source localization techniques of seizure onset activity in all
patients. This would be an extension of the work done by other
groups about source localization after signal decomposition (see
e.g. Kobayashi et al., 2002a,b). It would open the way for a
multimodality imaging platform in which the epileptic lesion is
displayed together with two methods to localize the ictal onset
zone, namely ictal SPECT and the ictal onset zone detected by
canonical decomposition of the ictal scalp EEG, which is routinely
and easily obtained during long-term video-EEG monitoring.

The length of the time window in which a CP decomposition
is computed is not a critical issue as long as the seizure activity
remains well localized. When analyzing a seizure, it is important
that the CP decomposition is computed in a time window at the
seizure onset in order to localize seizure onset zone. It will be
interesting to compute different decompositions with a short time
window at consecutive time points during a seizure. Each
decomposition will have localizing information for the consid-
ered time interval and may highlight seizure propagation
patterns. Our CP method could be important in the presurgical
evaluation of frontal lobe seizures that are characterized by fast
propagation and ictal EEGs that are difficult to interpret on
visual assessment. Because of potential fast propagation, we used
a time window of 2 s in our study, which is probably the
smallest window in which our algorithm will give reliable
information. We postulate that our CP method, with high
temporal resolution, may improve the interpretation of SISCOM,
which has an excellent spatial resolution but notoriously poor
temporal resolution (i.e. it shows a combination of ictal onset
zone and seizure propagation pathways).

Currently, we are working on a reliable implementation of the
inverse continuous wavelet transform in order to reconstruct the
ictal atom in the standard EEG matrix. When this is possible, the
clinician will be able to look at the seizure activity on EEG,
separated from artifacts and background signal.

The aim of epilepsy surgery is the complete resection or
complete disconnection of the epileptogenic zone, which is defined
as the area of cortex indispensable for the generation of clinical
seizures. We use a variety of diagnostic tools, such as analysis of
seizure semiology, EEG recordings, functional testing and
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neuroimaging techniques to define the location and boundaries of
the epileptogenic zone. It should be stressed that a priori
knowledge of the exact timing of the clinical seizure was essential
in the application of our algorithm, i.e. it is not a seizure detection
algorithm. We showed that our algorithm was more sensitive in the
delineation of the ictal onset zone than visual assessment of the
ictal EEG according to current standards. The exact relationship,
however, between ‘activated electrodes’ using our algorithm and
the ictal process in the brain will need further validation studies.
We plan to do this with correlation studies between a 3D version of
our algorithm and ictal SPECT, simultaneously recorded depth
EEG studies, and ictal EEGs of patients with an established
epileptogenic zone, i.e. patients who were rendered seizure free
after epilepsy surgery. The spatial resolution of our methodology
could be improved using high density array EEG studies.

In this study, we only evaluated one EEG recording from each
patient. It will be interesting to analyze all seizures recorded from
the same patient during a presurgical evaluation using our CP
method. When all epileptical potential distributions obtained with
the CP decomposition at seizure onset are very similar, it can be
expected that there is only one epileptogenic focus. However,
when different distributions are obtained, there might be different
foci and surgery may not be a good option. Although this is current
practice in the presurgical evaluation of patients with refractory
partial epilepsy, we anticipate that the higher sensitivity of our CP
method as compared with visual assessment of the ictal EEGs will
improve and streamline the non-invasive presurgical evaluation of
patients with refractory partial epilepsy.
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