
Towards Improving Experimentation in Software Engineering
Edson OliveiraJr, Viviane

Furtado, Henrique Vignando,
Carlos Luz, André Cordeiro
State University of Maringá (UEM)

Maringá, PR, Brazil
edson@din.uem.br

{viviane.rfurtado,rickuev}@gmail.com
carlos.danilo.luz@gmail.com

cordeiroandrefelipe@gmail.com

Igor Steinmacher
Federal University of Technology -

Paraná (UTFPR)
Campo Mourão, PR, Brazil

igorfs@utfpr.edu.br

Avelino Zorzo
Pontifical Catholic University of Rio

Grande do Sul (PUCRS)
Porto Alegre, RS, Brazil
avelino.zorzo@pucrs.br

ABSTRACT
[Background:] Experimentation in Software Engineering plays
a central role on sharing and verifying scientific findings. As ex-
periments have increased significantly in Software Engineering
area, we observe that most of them fail to provide a way to be
repeated, replicated or reproduced, thus jeopardizing or delaying
the evolution of the Software Engineering area. [Aims:] In this
vision paper, we present and discuss techniques and infrastructure
to continuously improve experiments towards repeatability, replica-
bility, and reproducibility. [Method:]We define these techniques
and infrastructure based on experiences of our research groups and
existing literature. Furthermore, we follow Open Science princi-
ples. [Results:] We provide incipient results and foresee a central
infrastructure composed of two repositories and two recommen-
dation systems to support techniques for: reporting experiments;
developing ontologies for experiments and open educational re-
sources; mining and recommending experiments; specifying data
management plans, identifying families of experiments; and teach-
ing and learning experimentation. [Conclusions:] Our techniques
and infrastructure will prospectively motivate and benefit Software
Engineering evolution by improving the conduction and further
reproducibility of experiments.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion;

KEYWORDS
Experimentation Improvement; Ontology, Repositories; Recom-
mender Systems; Data Management Plans; Teaching/Learning; Con-
tinuous Experimentation
ACM Reference Format:
Edson OliveiraJr, Viviane Furtado, Henrique Vignando, Carlos Luz, André
Cordeiro, Igor Steinmacher, and Avelino Zorzo. 2021. Towards Improving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9061-3/21/09. . . $15.00
https://doi.org/10.1145/3474624.3477073

Experimentation in Software Engineering. In Brazilian Symposium on Soft-
ware Engineering (SBES ’21), September 27-October 1, 2021, Joinville, Brazil.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3474624.3477073

1 INTRODUCTION
Software Engineering (SE) experimentation research and practice
have significantly grown in the last years. This is due to important
movements from academia and industry toward well-reported ex-
periments1, practical evaluation of theories and technologies, and
building reliable body of knowledge, which might lead to technol-
ogy transfer [14, 15]. For instance, continuous experimentation has
been adopted by a prominent portion of the software industry to
improve quality and aggregate value to their products [15, 19].

Several initiatives for promoting SE experiments are reported in
the literature [2, 4, 14]. However, none of them provides techniques
and infrastructure toward Repeat/Replicate/Reproduce (Rep*) ac-
tivities on experiments, as we envision in this paper.

Our concept of improving SE experiments encompasses: guide-
lines for reporting experiments appropriately; development of on-
tologies to support teaching and learning of SE experiments and
Open Educational Resources (OER) for experimentation in SE; min-
ing of SE experiments; recommendation of SE experiments; data
management plans; continuous experimentation; and repositories
for SE experiments. Therefore, in this vision paper, we present a
roadmap for improving experimentation in SE (ESE), which includes
techniques and an infrastructure to support prospective research
and practice in this area.

Novelty in this paper relies on architecting different well-known
and successful techniques to work in the benefit of ESE improve-
ment in the perspective of Dissemination, Education, and Practice.
Although the techniques used in our proposal already exist in the
literature, they are straightforward used for other research topics,
but are not in for ESE.

2 EXPERIMENTAL-BASED SOFTWARE
ENGINEERING EVOLUTION

Publishing research findings is essential for disseminating knowl-
edge and to provide opportunity of evolution to research communi-
ties. However, it is fundamental that these findings are validated by
researchers. Therefore, published findings should provide means to
be evaluated. One practical way is to conduct formal experiments
based on research questions and assumptions, stating hypotheses
1In this paper we are focused on controlled experiments and quasi-experiments.

335

https://doi.org/10.1145/3474624.3477073
https://doi.org/10.1145/3474624.3477073

SBES ’21, September 27-October 1, 2021, Joinville, Brazil OliveiraJr et al.

and variables, and verifying the established cause-effect of a certain
phenomenon considering well-reported results [18].

Unfortunately, this is not enough to evolve Science. It is neces-
sary to verify the results from the original experiments. To do so,
one might repeat, replicate, or reproduce the original experiment.
This is key to enable new ideas, assumptions, and hypotheses, as
well as to perform meta-analyses and confirm results [3, 4, 16]. In
Figure 1, we foresee how research, especially in SE, evolves based
on experiments.

In SE, research usually starts by defining a research question
and the methods to answer it. Results of the research are discov-
ered, then should be empirically evaluated, in this case, based on
one or more experiments. Each experiment has a set of hypotheses
and variables that are stated based on ideas and/or assumptions
previously gathered. Findings of an experiment are verified based
on Repeat/Replicate/Reproduce (Rep*) activities. In such ac-
tivities, new ideas, assumptions, or even hypothesismight arise.
Meta-analysis also aids to verify the findings of a set of experi-
ments, thus improving experiments.

Rep* activities aim to discuss the outcomes of an original experi-
ment and whether it is valid for target populations. Feitelson [3]
discusses on the differences among Rep* activities as summarized
in Table 1.

Table 1: Repeat, Replicate and Reproduce an Original Exper-
iment (based on [3])

Original Experiment’s Repeat Replicate Reproduce
Main idea original original original
Artifacts original recreated recreated
Procedures original original similar to original
Results original close same as original result*

What is tested? design issues protocol scoping and limitations
*result meaning the outcome, not the scientific fact.

The main principle for supporting Rep* is to verify whether a sci-
entific fact is valid, it does not matter who performs an experiment
and how. Generally, some authors use replicability for situations in
which a past experiment is rerun in the exactly same way, whereas
reproducibility is used focusing on the result being verified [3].

We have observed that the majority of analyzed Software Engi-
neering experiments provide no Rep* capability, mainly because of
missing experimental elements, which are not properly reported
(see Section 3.1.1). Thus, this jeopardizes continuous improvement
and scientific evolution based on experiments. As stated by Peng [12],
we evolved in computational science, but we do not properly evalu-
ate published findings as they are in general for publication purpose
only.

In this paper, we follow Feitelson’s [3] repeat/replicate/reproduce
terminologies. Therefore, we understand that performing specific
activities to improve Software Engineering experiments, such as,
properly sharing data, recommending experiments, and teaching
ESE, might provide a means to promote verification of results,
as well as searching for problems, auditability/accountability and,
consequently, Software Engineering evolution.

3 CONTINUOUSLY IMPROVEMENT OF
EXPERIMENTS

We advocate that prospective techniques and infrastructure might
promote improvement, reproduce/replicate/repeat activities, and
evolution of Software Engineering experiments. These techniques
and infrastructure are based on the main principles for Open Sci-
ence, such as: open access, open methodology, open data, open
source, and open educational resources [11]. As open (meta)data,
we follow the four FAIR2 principles: Findable, Accessible, Interop-
erable, and Reusable. To do so, we strongly deal with open data as
much as possible.

Open access is guaranteed to techniques, infrastructure, and
produced data by adopting licenses like Creative Commons Licenses
CC-BY,3, as well as using/creating open source tools and providing
open experimental produced educational resources.

We organize our vision on improving SE experiments based
on three main pillars: Practice, Education, and Dissemination.
Figure 2 depicts such pillars.

The foundation of these three pillars is the well-know Software
Engineering Experimentation Process, which is composed of
elements (e.g., hypotheses and variables) and findings, as in the
Wohlin et al.’s process [18], for example. Note, in Figure 2, that all
pillars are interrelated (big arrows), however they do not represent
a workflow with ordered activities. Actors from one pillar might
act in another pillar as, for instance, SE Researchers and Students
in Education might perform Rep* activities in Practice. Therefore,
in Figure 2, we represent the prominent actors of each pillar.

A central infrastructure supports the pillars. This infrastruc-
ture is composed of two repositories: Experiments Repository
with data and metadata for Practice and Dissemination of SE
experiments; and the Experiments OER Repository with data
and metadata of Open Educational Resources (OER) for Teach-
ing/LearningExperimentation. These repositoriesmight be built,
for instance, using a NoSQL database, and synchronized to a data-
driven platform (e.g. GitHub) or a content-based environment (e.g.
Moodle). We are currently working on how to mine and exchange
different experimental elements and data from different sources of
SE experiments by an API.

We foresee an architecture based on microservices or even one
based on distributed components with a middleware broker. There-
fore, our technologies and approaches will not depend on a specific
technology.

3.1 Dissemination
One of our foci is to investigate how to formalize the reported
concepts and their relationships involved in the Experimentation
Process. By doing this, we provide means to make them persistent,
public, citable, and accessible. To do so, we detail how techniques
and the infrastructure might assist this pillar.

3.1.1 Reporting Guidelines. Reporting Software Engineering
experiments plays a straightforward role, for example, in: reporting
material and methods and decision making during scoping, plan-
ning, conducting, and analyzing results; facilitating Rep* activities

2https://www.go-fair.org/fair-principles
3https://creativecommons.org/licenses/by/2.0

336

https://www.go-fair.org/fair-principles
https://creativecommons.org/licenses/by/2.0

Towards Improving Experimentation in Software Engineering SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Discovery

Research Questions
Method
Results

RESEARCH

SOFTWARE
PROJECT

Evaluation

EXPERIMENT:
Hypotheses

Variables
Participants/Objects

Cause-Effect Verification

Verificaton

EXPERIMENT:
Verification of Results

Meta-Analysis
New Ideas / Assumptions / Hypotheses

FINDINGS

REPEAT

REPLICATE

REPRODUCE

Improvement of Experiments

IDEAS

ASSUMPTIONS

OPENNESS

Figure 1: Science evolution based on experimental evaluation of findings

Software Engineering
Experimentation

Process
(elements + findings)

performs

Rep*

Continuous
Experimentation

feeds

Teaching/Learning
Experimentation

structures Ontology for
ExperimentsExperiments

Repository

Practitioner

performs

performs

feeds

Researcher

drives
Reporting
Guidelines

performs

SE Student

structures

produces

Experiments
OER

Repository

OER
Ontology

uses

Experiments
Recommender System

feeds

uses

uses

OER
Recommender System

Education

Practice
Dissemination

complies with
Data

Management
Plan

Figure 2: Techniques and infrastructure for improving SE experiments

guaranteeing consistent results; reducing general threats to validity;
and, increasing reliability and audition on laboratory packages.

Specifically in Software Engineering, experiments usually take
several pages to be reported. Therefore, an objective and self-content
experiment report is expected.

In the literature, several authors propose guidelines for docu-
menting Software Engineering experiments. Although each of these
proposals have their merits, none of them have been accepted as
a de facto standard. The closest to tool support are the Empirical
Standards of SIGSOFT4.

4https://web.cs.dal.ca/SIGSOFT-Empirical-Standards

337

https://web.cs.dal.ca/SIGSOFT-Empirical-Standards

SBES ’21, September 27-October 1, 2021, Joinville, Brazil OliveiraJr et al.

In a Systematic Mapping Study on Software Product Line ex-
periments [omitted] we recently concluded that the authors of 211
analyzed primary studies generally present their tools, approaches,
techniques, and algorithms, but only a brief section is dedicated for
the experiments, i.e., few studies barely report their experiments.
Only 23% (48 out of 211) of the experiments followed some re-
porting template. Besides, none of the 211 experiments evaluated
their quality, despite the existence of several experiment quality
evaluation approaches [1, 6, 8, 9].

Based on this mapping study, we defined a preliminary a set of
guidelines 5 and a conceptual model 6 to objectively report Software
Engineering experiments.

The main difference of our guidelines from existing ones is that
ours are supported by an ontology (Section 3.1.3) with the for-
malization of experiment concepts and their relationships. These
guidelines are implemented in an experiment repository (Section
3.1.2) with metadata from the ontology. Data Management Plans
(DMP) (Section 3.1.4) might support data provenance, curation, and
preservation. Also, recommender systems (Section 3.1.5) can act
in the structured repository to recommend experiments based on
different parameters once the repository is structured according to
an ontology and a DMP.

3.1.2 Repositories. With the rising of digital preservation and
curation, and data science, repositories of Software Engineering
experiments became essential infrastructures to enable the defini-
tion and application of our techniques. In fact, we consider Trusted
Digital Repositories (TDR), which are reliable, long-term access to
managed digital resources to its designated community, now and
into the future.

We have also investigated how to provide TDR characteristics
following guidelines from the Digital Preservation Capability Ma-
turity Model7 and the Open Archival Information System (OAIS)
Reference Model (ISO 14721)8 to our repositories or even extend an
existing one, such as 3TU. Datacentrum, CSIRO Data Access Portal,
Dryad, figshare, Dataverse, and Zenodo.

3.1.3 Ontologies. Software Engineering experiments include sev-
eral formal concepts and properties, such as: independent and de-
pendent variables, hypothesis, instrumentation, data, hypothesis
tests, pilot projects, and training. Thus, they can be highly formal-
ized as an ontology, which is an explicit specification of a concep-
tualization. An ontology provides a formal definition of objects,
concepts, properties, and their interrelationships. It also supports
logical operations to infer relationships between concepts [5]. In the
case of SE experiments, we understand all experimental concepts
and their relations must be explicitly defined.

Ontologies for Software Engineering experiments might con-
tribute to improve experiments for Rep* activities. Our guidelines
for documenting of Software Engineering experiments and our
conceptual model, are important sources of information for an
ontology.

5https://doi.org/10.5281/zenodo.3957649
6https://doi.org/10.5281/zenodo.3948161
7http://www.securelyrooted.com/dpcmm
8http://www.oais.info

We understand that ontologies have a central role in formalizing
Software Engineering experiments. Therefore, they might facili-
tate the data organization in the repository of Figure 2, as well as
provide means to new tools to support automation of ESE. We un-
derstand that all experimental elements might not be as important
for industry as for academia, however, formalization of repositories
and tools are relevant for both environments.

3.1.4 Data Management Plans. DMPs are formal documents in
which data are described both during and after a research project
has finished. It usually includes several elements, such as: metadata,
storage and backup, responsibility, access and sharing procedures,
and licensing [11].

DMPs are becoming mandatory by several research project fund-
ing agencies, thus its importance has increased over the last years.
Guidance for DMP content varies for different specific research
areas, such as, those for Computers & Information Sciences & En-
gineering (https://www.nsf.gov). DMPTool and DMPOnline, for
instance, provide several DMP models for hundreds of different
research areas.

We understand that DMPs are essential for improving Software
Engineering experiments and for enabling Rep* activities bymaking
data available, organized and ready for curation and preservation.
Therefore, we have investigated a DMP model for Software Engi-
neering experiments by revisiting existing literature on how data
is acquired and shared in experiments of several topics in Software
Engineering. We understand that it must support: data types and
sources, content and format, sharing and preservation procedures,
protection and licensing, period of data retention, data dissemina-
tion and policies, and rationale. Therefore, our reporting guidelines
and ontology are of great source of information for such DMP.

3.1.5 Recommending Experiments. Another technique that
contributes to improve Software Engineering experiments and Rep*
activities is the recommendation of experiments. A recommenda-
tion system [13] for Software Engineering experiments is useful for
recommending methods, processes, guidelines, among others, to
perform an experiment, thus facilitating its development, and en-
couraging the culture of continuous experimentation in academia
and industry. In our perspective, recommendation of experiments
with defined parameters or filters, for both experts and newcom-
ers, might be performed based on how data is organized in the
experiment repository.

Conducting a quality Software Engineering experiment requires
statistics foundations and considerable experience in experimental
design and Software Engineering. Thus, the learning curve becomes
long to appropriately plan, conduct, and analyze the quality of the
results of this kind of experiment. Besides, the industry has increas-
ingly adopted Software Engineering solutions, thus demanding an
experimental body of knowledge in the area. Therefore, we believe
it is important to provide a content-based filtering recommendation
system of Software Engineering experiments based on ontologies
containing hundreds of experiments instances and the support of
an appropriate infrastructure, for example, as the ones presented
in this paper. Therefore, recommender systems might be used to
enable the dissemination of good practices on planning, conduct-
ing, and analyzing experiments, thus providing a basis for Rep*
activities and SE evolution.

338

https://doi.org/10.5281/zenodo.3957649
https://doi.org/10.5281/zenodo.3948161
http://www.securelyrooted.com/dpcmm
http://www.oais.info
https://www.nsf.gov

Towards Improving Experimentation in Software Engineering SBES ’21, September 27-October 1, 2021, Joinville, Brazil

3.2 Education
Education is the pillar responsible for understanding real-world
problems, thus investigating and producing scientific knowledge to
mitigate such problems before transferring solutions to the indus-
try. Therefore, in our vision, Researchers and SE Students play
a central role in contributing to the improvement of the Experi-
mentation Process and in widely providing an experimentation
culture to both academic and industry.

Researchers have one of the most challenging missions in the
world: identify research gaps, investigate them, then provide science
evolution throughout the scientific process, in which the Experi-
mentation Process is crucial.

To support researchers to play their roles, we envision that Open
Educational Resources (OER) can assist them to teach ESE. OER is
a well-known and accepted resource type as they can be dissemi-
nated in standard formats and open licenses, such as the Creative
Commons.

In a recent survey9 with ESE lecturers we identified that: (i)
72% of experiment concepts are taught in a separate (specific ESE)
course; (ii) 64% of produced materials for teaching ESE neither fol-
low any type of open license nor are publicly available; and (iii) the
most used method to verify learning outcomes is practical (actual)
projects and seminars on the findings of the experiments. These
findings suggest a structured manner of developing and sharing
OER for SE experiments in a way researchers and students might
contribute to improve and evolve such materials. Therefore, an
Experiments OER Repository for ESE educational materials is
more than welcome. This repository might also be used by Practi-
tioners.

To structure such repository, an OER Ontology is fundamental,
because of the diversity of OER types and their elements, such as,
storage and visualization formats, type of content, relation to other
OER, links to external materials, rationale, course level, and audi-
ence. We are currently investigating an ontology as an extension
of the existing ONTOER+, in an incipient stage of design based on
the conducted survey with researchers who teach ESE.

Researchers and SE students will take advantage of such an
ontology as they will be aware of how to use, modify, evolve, and
distribute such materials for future use.

With respect to recommendingOERs for ESE, we envision provid-
ing assistance to instructors, students, and practitioners. For instruc-
tors, the idea is to recommend high-quality experiments or available
OER such as, Massive Open Online Courses (MOOC), slides, videos
so they can use or produce OER for ESE using such well-reported
and organized experiments as examples for ESE classes and activ-
ities. For students and practitioners, we expect them to use the
system as a way to search for experiments or OER, thus they can
learn ESE with different domains and alternative OERs.

We understand that teaching and learning experimentation in
SE is crucial for evolving SE based on experimentation, thus con-
tributing to establish continuous experimentation in the software
industry.

9Preparing to submit to a journal.

3.3 Practice
In this pillar the main focus is how to assist and motivate prac-
titioners, researchers, and students to perform Rep* activities to
evolve SE. Particular attention is given to Practitioners conduct-
ing continuous experimentation in industry as a way to improve
the software process, mitigate common threats, create datasets and
baselines, statically guide new developments, and aggregate value
to their products.

Continuous Experimentation or Systematic Experimentation in
Software Engineering follows the principle that product or ser-
vice ideas can be developed by constantly conducting systematic
experiments and collecting user feedback [19]. Continuous experi-
mentation has been largely and successfully applied in the industry
for software development [2, 15, 19].

Continuous experimentation models and implementation tech-
niques have been proposed in the literature and used by the industry,
as reported by Schermann et al. [15]. Regression-driven, used to
identify whether changes have a negative impact on system prop-
erties, and business-driven experiments, which are requirement-
engineering techniques and are used to validate business hypothe-
ses, have been largely conducted in industry [15].

An example of implementation technique of experiments is traf-
fic routing [15], in which multiple versions of an application or
service run in parallel, thus technical debt is avoided due to consid-
ered experimentation logic and source code . Another experimental
setup technique is Feature Toggles [15], which has conditional
statements deciding about which code block to execute next.

Conducting systematic experiments benefits the promotion of
improvements on SE experiments and provides a way to facilitate
Rep* activities, mainly based on the experiences and domains from
the industry stakeholders. Therefore, we believe that, by providing
a way to continuous experimentation of SE artifacts and proce-
dures based on pilot projects, we might successfully guide ESE in
industry. A systematic approach for experimentation in Software
Engineering contributes directly to retrieve and to identify families
of experiments and/or artifacts that might be reused/shared among
different experiments, such as, experimental knowledge and ele-
ments, such as, datasets, instruments, and data analysis techniques.

Furthermore, having continuous experimentation procedures
incorporated in software projects is a great opportunity of itera-
tive/incrementally evolve software processes and product artifacts.
Still, it may increase reliability of a company from the perspective
of customers.

3.4 General Techniques
In addition to our vision of the three pillars, we understand a couple
of other techniques might also support them.

3.4.1 Mining Experiments. Once Software Engineering exper-
iment concepts are well organized and formalized, we might use
open repositories mostly based on conceptual modeling and ontolo-
gies. Such repositories can be mined, thus providing prospective
experiment solutions.

Several mining software repositories techniques are available in
the literature [10, 17, 20]. We have investigated such techniques to
provide a way of proper experiments data analysis and exchang-
ing. For instance, EvoOnt [7] might be adopted as a data format

339

SBES ’21, September 27-October 1, 2021, Joinville, Brazil OliveiraJr et al.

language, based on Web Ontology Language (OWL). Therefore,
users might analyze experiments data for any reasons, including:
obtaining a list of evidence by extracting experiments data; coupled
change analysis of original and replicated experiments; perform
meta-analysis of related experiments; evolution of an experiment
by repository commits; and, to apply experimental-driven metrics
to available data.

González-Barahona and Robles [4] provide mining repository so-
lutions for promoting reproducibility of data-based on ESE studies.
Such solutions might, for example, indicate the level of reproducibil-
ity a certain dataset has. The authors also provide a technique for
assessing the reproducibility of studies supported by a tool.

We believe that Software Engineering experiment mining tech-
niques are important to provide capability of identifying related
experiments, their data provenance and curation, and the variant
aspects of such experiments. These techniques might reveal families
of experiments [14]. Furthermore, selecting unsuitable techniques
to propose experiment families may undermine their potential to
provide in-depth insights from the results and threaten Rep*. Thus,
mining experiment techniques seems appropriate to mitigate such
issue and to improve SE experiments.

3.4.2 Families of Experiments. Experiments with similar goals
and results that might be combined to evolve certain SE research
topic are defined as a “family of experiments.” Such family basi-
cally provides capabilities to increase the reliability of findings and
statistical power [14].

We focus our techniques and infrastructure on providing means
for identifying and establishing families of experiments from the
repositories. As we understand, aggregation techniques (e.g., Indi-
vidual Participant Data - IPD, Aggregated Data meta-analysis - AD,
and Aggregation of p-values) [14] might be used to aid gathering
up such families from our repositories, thus users benefit from first-
hand knowledge of all the experiments settings and access to raw
data.

As an exemplary first case, we are currently specifying a fam-
ily of experiments for the evaluation of variability modeling ap-
proaches for UML-based software product lines from more than 15
experiments of our research group.

4 OUR ROADMAP
We established the following steps for our roadmap to improve SE
experimentation based on the pillars we described:

(1) revisit existing and specify new guidelines for reporting
experiments;

(2) specify an ontology for experiments;
(3) structure a TDR repository for experiments driven by the

ontology;
(4) specify a DMP complying with the experiment repository;
(5) design and implement an experiment recommender system;
(6) specify an ontology for OER;
(7) structure a TDR repository driven by the OER ontology with

integration to other repositories;
(8) design and implement an OER recommender system.

5 FINAL REMARKS
Although Software Engineering experiments are still not mature,
the community has significantly advanced the discussion about this
topic in the last years.

We strongly believe openness and reproducibility are keys to
achieve considerable improvements on ESE. Therefore, we under-
stand our vision will aid to improve SE experiments by: (i) motivat-
ing wide sharing of experimental elements and data (except those
that require privacy); (ii) providing a common, open science-based
infrastructure to experiment conduction; (iii) motivating teaching
and learning of SE experimentation, increasing knowledge and
promoting a culture of experimentation in academia and industry;
(iv) streamlining the experimentation process in industry; (v) pro-
viding formal guidelines about how to disseminate work; and, (vi)
facilitating sharing and retrieving well-conducted experiments.

REFERENCES
[1] O. Dieste, A. Grim, N. Juristo, and H. Saxena. 2011. Quantitative determination

of the relationship between internal validity and bias in software engineering
experiments: Consequences for systematic literature reviews. In ESEM. 285–294.

[2] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch. 2017. The Evolution of
Continuous Experimentation in Software Product Development: From Data to a
Data-Driven Organization at Scale. In ICSE. 770–780.

[3] Dror G. Feitelson. 2015. From Repeatability to Reproducibility and Corroboration.
SIGOPS Oper. Syst. Rev. 49, 1 (2015), 3–11.

[4] Jesús M. González-Barahona and Gregorio Robles. 2012. On the reproducibility of
empirical software engineering studies based on data retrieved from development
repositories. Empirical Software Engineering 17, 1 (2012), 75–89.

[5] J. Guo. 2016. Ontology Learning and Its Application in Software-Intensive
Projects. In ICSE. 843–846.

[6] V. Kampenes. 2007. Quality of design, analysis and reporting of software engineering
experiments: A systematic review. Ph.D. Dissertation. Faculty of Mathematics and
Natural Sciences - University of Oslo, Oslo, Norway.

[7] C. Kiefer, A. Bernstein, and J. Tappolet. 2007. Mining Software Repositories with
iSPAROL and a Software Evolution Ontology. In MSR. 10–10.

[8] B. Kitchenham, D.I.K. Sjøberg, O.P. Brereton, D. Budgen, T. Dybå, M. Höst, D.
Pfahl, and P. Runeson. 2010. CanWe Evaluate the Quality of Software Engineering
Experiments?. In ESEM. 1–8.

[9] B. A. Kitchenham, D. I. K. Sjøberg, T. Dyba, D. Pfahl, P. Brereton, D. Budgen,
M. Høst, and P. Runeson. 2012. Three empirical studies on the agreement of
reviewers about the quality of software engineering experiments. Information
and Software Technology 54, 8 (2012), 804–819.

[10] Matias Martinez and Martin Monperrus. 2019. Coming: A tool for mining change
pattern instances from git commits. In ICSE. IEEE, 79–82.

[11] National Academies of Sciences. 2018. Open Science by Design: Realizing a Vision
for 21st Century Research. The National Academies Press, Washington, DC.

[12] Roger D. Peng. 2011. Reproducible Research in Computational Science. Science
334, 6060 (2011), 1226–1227.

[13] Martin Robillard, Robert Walker, and Thomas Zimmermann. 2010. Recommen-
dation Systems for Software Engineering. IEEE Softw. 27, 4 (2010), 80–86.

[14] A. Santos, O. Gómez, and N. Juristo. 2020. Analyzing Families of Experiments in
SE: A Systematic Mapping Study. IEEE Transactions on Software Engineering 46,
5 (2020), 566–583.

[15] G. Schermann, J. Cito, and P. Leitner. 2018. Continuous Experimentation: Chal-
lenges, Implementation Techniques, and Current Research. IEEE Software 35, 02
(2018), 26–31.

[16] Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo. 2008. The role of
replications in Empirical Software Engineering. Empirical Software Engineering
13, 2 (2008), 211–218.

[17] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In ESEC/FSE. 908–911.

[18] C. Wohlin, P. Runeson, M. Höst, C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in software engineering (2nd. ed.). Springer Publishing Company,
New York, NY.

[19] Sezin Gizem Yaman, Myriam Munezero, Jürgen Münch, Fabian Fagerholm, Ossi
Syd, Mika Aaltola, Christina Palmu, and Tomi Männistö. 2017. Introducing
continuous experimentation in large software-intensive product and service
organisations. J. Syst. Soft. 133 (2017), 195–211.

[20] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. 2008.
Mining software repositories to study co-evolution of production & test code. In
ICST. IEEE, 220–229.

340

	Abstract
	1 Introduction
	2 Experimental-based Software Engineering Evolution
	3 Continuously Improvement of Experiments
	3.1 Dissemination
	3.2 Education
	3.3 Practice
	3.4 General Techniques

	4 Our Roadmap
	5 Final Remarks
	References

