
Deleting Secret Data with Public Verifiability
Feng Hao,Member, IEEE, Dylan Clarke, and Avelino Francisco Zorzo

Abstract—Existing software-based data erasure programs can be summarized as following the same one-bit-return protocol: the

deletion program performs data erasure and returns either success or failure. However, such a one-bit-return protocol turns the data

deletion system into a black box—the user has to trust the outcome but cannot easily verify it. This is especially problematic when the

deletion program is encapsulated within a Trusted Platform Module (TPM), and the user has no access to the code inside. In this paper,

we present a cryptographic solution that aims to make the data deletion process more transparent and verifiable. In contrast to the

conventional black/white assumptions about TPM (i.e., either completely trust or distrust), we introduce a third assumption that sits in

between: namely, “trust-but-verify”. Our solution enables a user to verify the correct implementation of two important operations inside a

TPM without accessing its source code: i.e., the correct encryption of data and the faithful deletion of the key. Finally, we present a

proof-of-concept implementation of the SSE system on a resource-constrained Java card to demonstrate its practical feasibility. To our

knowledge, this is the first systematic solution to the secure data deletion problem based on a “trust-but-verify” paradigm, together with

a concrete prototype implementation.

Index Terms—Secure data erasure, secure data storage, verifiable deletion, verifiable decryption

Ç

1 INTRODUCTION

SECURE data erasure requires permanently deleting digi-
tal data from a physical medium such that the data is

irrecoverable [13]. This requirement plays a critical role in
all practical data management systems, and in satisfying
several government regulations on data protection [25]. For
the past two decades, this subject has been extensively stud-
ied by researchers in both academia and industry, resulting
in a rich body of literature [5], [7], [8], [13], [14], [17], [23],
[25], [26], [28], [33], [35]. A recent survey on this topic is
published in [27] .

1.1 One-Bit Return

To delete data securely is a non-trivial problem. It has been
generally agreed that no existing software-based solutions
can guarantee the complete removal of data from the stor-
age medium [27]. To explain the context of this field, we
will abstract away implementation details of existing solu-
tions, and focus at a higher and more intuitive protocol
level. Existing deletion methods can be described using
essentially the same protocol, which we call the “one-bit-
return” protocol. In this protocol, the user sends a com-
mand—usually through a host computer—to delete data
from a storage system, and receives a one-bit reply indicat-
ing the status of the operation. The process can be summa-
rized as follows:

User ! Storage : Delete data
Storage ! User : Success=Failure ð1 bit Þ:

Deletion by unlinking. Take the deletion in the Windows
operating system as an example. When the user wishes to
delete a file (say by hitting the “delete” button), the operat-
ing system removes the link of the file from the underlying
file system, and returns one bit to the user: Success. How-
ever, the return of the “Success” bit can be misleading.
Although the link of the file has been removed, the content
of the file remains on the disk. An attacker with a forensic
tool can easily recover the deleted file by scanning the disk
[12]. The same problem also applies to the default deletion
program bundled in other operating systems (e.g., Apple
and Linux).

Deletion by overwriting. Obviously, merely unlinking the
file is not sufficient. In addition, the content of the file
should be overwritten with random data. This has been pro-
posed in several papers [5], [13], [14] and specified in vari-
ous standards (e.g., [18]). However, one inherent limitation
with the overwriting methods is that they cannot guarantee
the complete removal of data. As concluded in [13]: “it is
effectively impossible to sanitize storage locations by simply
overwriting them, no matter how many overwrite passes
are made or what data patterns are written.” The conclusion
holds for not only magnetic drives [13], but also tapes [7],
optical disks [14] and flash-based solid state drives (SSDs)
[33]. In all these cases, an attacker, equipped with advanced
microsoping tools, may recover overwritten data based on
the physical remanence of the deleted data left on the stor-
age medium. Therefore, although overwriting data makes
the recovery harder, it does not change the basic one-bit-
return protocol. Same as before, the return of “Success” can-
not guarantee the actual deletion of data.

Deletion by cryptography. Boneh and Lipton [7] were
among the first in proposing the use of cryptography to
address the secure data erasure problem, with a number
of follow-up works [17], [20], [21], [24], [25], [26], [35]. In
general, a cryptography-based solution works by encrypt-
ing all data before saving it to the disk, and later deleting
the data by discarding the decryption key. This approach

� F. Hao and D. Clarke are with the School of Computing Science, Newcastle
University, United Kingdom.
E-mail: {Feng.Hao, Dylan.Clarke}@ncl.ac.uk.

� A. F. Zorzo is with the Pontifical Catholic University of RS, Brazil.
E-mail: avelino.zorzo@pucrs.br.

Manuscript received 25 May 2014; revised 16 Feb. 2015; accepted 5 Apr. 2015.
Date of publication 16 Apr. 2015; date of current version 16 Nov. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2423684

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016 617

1545-5971� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

is especially desirable when duplicate copies of data are
backed up in distributed locations so it becomes impossi-
ble to overwrite every copy [7]. The use of cryptography
essentially changes the problem of deleting a large
amount of data to that of deleting a short key (say a 128-
bit AES key). Still, the fundamental question remains:
how to securely delete the key?

1.2 Key Management

When cryptography is used to address the data erasure
problem, the key management becomes critically important.
There are several approaches proposed in the past literature
to manage cryptographic keys.

The first method is to simply save the key on the disk,
alongside the encrypted data (typically as part of the meta
data in the file header) [17], [20], [25], [26]. Deleting the data
involves overwriting the disk location where the key is
stored. Once the key is erased, the ciphertext immediately
becomes useless [7]. This has the advantage of quickly eras-
ing data since only a small block of data (16 bytes for AES-
128) needs to be overwritten. However, if the key is saved
on the disk, cryptography may not add much security in
ensuring data deletion [16]. On the contrary, it may even
degrade security if not handled properly—instead of recov-
ering a large amount of overwritten data, the attacker now
just needs to recover a short 128-bit key. This may signifi-
cantly increase the chance of a total recovery. Once the key
is restored, the deleted data will be fully recovered. (We
assume the ciphertext is available to the attacker, which is
usually the case.)

The second method is to use a user-defined password as
the encryption key [35]. The key is derived on the fly in RAM
upon the user’s entry of the password so it is never saved on
the disk. However, passwords are naturally bounded by low
entropy (typically 20-30 bits) [3]. Hence, cryptographic keys
derived from passwords are subject to brute-force attacks.
As soon as the attacker has access to ciphertext data, the
ciphertext becomes an oracle, against which the attacker can
recover the key through the exhaustive search. Instead of
directly using a password-derived encryption key, Lee et al.
proposed to first generate a random AES key for encrypting
data and then use the password to wrap the AES key and
store the wrapped key on the disk [21]. This is essentially
equivalent to deriving the key from the password. The
wrapped key now becomes an oracle, against which the
attacker can run the exhaustive search.

The third method is to store the key in a dencentralized
network. Along this line, Geambasu et. al. propose a solu-
tion called Vanish, which generates a random key to
encrypt the user’s data locally and then distributes shares of
the key using Shamir’s secret sharing scheme to a global-
sale, peer-to-peer, distributed hash tables (DHTs). The
shares of the key naturally disappear (vanish), due to the
fact that the DHT is constantly changing. However, Wochok
et. al. [32] subsequently show two Sybil attacks that work
by continuously crawling the DHT and recovering the
stored key shared before they vanish. They conclude that
the original Vanish scheme cannot guarantee the secure
deletion of the key.

The fourth method is to store the key in a tamper resis-
tant hardware module (e.g., TPM) and define the

Application Programming Interface (API) to manage the
stored keys. This is in line with the standard practice
employed in financial industry for key management [3].
In this paper, we will adopt the same TPM-based
approach. However, the main difficulty with the TPM lies
in how the API should be defined. In 2005, Perlman first
proposed to use a TPM for assured data deletion [24]. In
her solution, data is always encrypted before being saved
onto the disk. All decryption keys are stored in a tamper
resistant module and do not live outside the module.
Erasing the keys will effectively delete the data. To delete
a key, the user simply sends a delete command to the
module with a reference to that key and receives a one-bit
confirmation if the operation is successful. Clearly, this
design still follows the one-bit return protocol, which
assumes complete trust on the correct implementation of
the software inside the module.

1.3 Motivation for Public Verifiability

There are similar examples of black-box systems in security.
For instance, as explained in [19], the Direct Recording Elec-
tronic (DRE) e-voting machines, widely used in the US
between 2000 and 2004, worked like a black box. The system
returns a tally at the end of the election, which the voters
have to trust but cannot easily verify. The lack of verifiabil-
ity had raised wide-spread suspicion about the integrity of
the software inside the voting machine and hence the integ-
rity of the election, eventually forcing several states in the
US to abandon DRE machines. Today, the importance of
having public verifiability in any e-voting system has been
commonly acknowledged and progress is being made in
deploying verifiable e-voting in real-world elections [2], [6].

Unfortunately, the need for public verifiability has been
almost entirely neglected in the secure data erasure field.
This is an important omission that we aim to address in this
research work.

When a TPM is used for key management, the trust
assumption about the TPM becomes a critical question. In
the past literature [3], there exist two disparate assumptions
about TPM: either completely trust or totally distrust. How-
ever, we find neither of such black/white assumptions is
adequate in capturing the reality. On one hand, the fact that
a TPM stores cryptographic keys implies an inherent trust.
But on the other hand, the encapsulated nature of a TPM
prevents users from verifying the internal software, which
inevitably adds distrust. These seemingly contradictory
dual-facets are echoes of similar problems in e-voting,
where a DRE machine is used as a trusted device to record
votes, but the public have no access to its internal code. The
established solution to address this dilemma is “trust-but-
verify” [2], [6], [15]: i.e., demanding the voting machine to
produce additional cryptographic proofs such that by veri-
fying the correctness of those proofs a voter can gain confi-
dence about the integrity of the internal software (this is
also succinctly summarized by Ron Rivest and John Wack
as the “software independence” principle).

Summary of main idea. The main idea of this work follows
the same design principle based on “trust-but-verify”. By
applying cryptographic techniques, we allow an end user to
verify the correct implementation of two important opera-
tions inside a TPM: encryption and deletion.

618 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

First, the user is able to explicitly verify that the
encryption follows the correct procedure (i.e., the cipher-
text is free from containing any trap-door block). By con-
trast, previous cryptography-based data deletion
solutions only provide implicit assurance: by checking if
the decryption produces the same original plaintext, one
gains implicit assurance about the correctness of the
encryption. However, we argue that such an implicit
assurance is inadequate (in light of Snowden revelations
[40]): a TPM manufacturer might be coerced by a state-
funded adversary to compress a trap-door block into the
ciphertext so to keep the output length the same. The
user will not be able to notice any difference and the
decryption can still produce the original plaintext (we
will explain more details in Section 6.2.2). This issue will
be addressed in our solution through the Audit function.

Second, the user is able to verify the outcome of a dele-
tion process. Obviously, because using software means can
never guarantee the complete deletion of data, verifying the
successful erasure of data appears intuitively impossible.
However, “you normally change the problem if you can’t
solve it.” (David Wheeler [31]) Here, we slightly change the
problem by shifting verifying the successful deletion of data
to verifying the failure of that operation. The deletion pro-
cess returns a digital signature, which cryptographically
binds the deletion program’s commitment of deleting a
secret key to the outcome of that operation. In case the sup-
posedly deleted key is recovered later, the signature
can serve as publicly verifiable evidence to prove the
vendor’s liability. More technical details will be explained
in Section 4 after we cover the related work in Section 2 and
the relevant cryptographic primitives in Section 3. Section 5
explains the proof-of-concept implementation with detailed
performance measurements, followed by security analysis
in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

In this section, we review related works that discuss the
importance of verifiability for secure data deletion.

In 2010, Paul and Saxena [22] aim to give users the ability
to verify the outcome of secure data deletion. They propose
a scheme called the “Proof of Erasability” (PoE), in which a
host program deletes data by overwriting the disk with ran-
dom patterns and the disk must return the same patterns as
the proof of erasability. Clearly, this so-called proof is not
cryptographically binding, nor publicly verifiable, since the
data storage system may cheat by echoing the received pat-
terns without actually overwriting the disk.

In ESORICS’10, Perito and Tsudik [23] study how to
securely erase memory in an embedded device, as a prepa-
ratory step for updating the firmware in the device. They
propose a protocol called Proofs of Secure Erasure (PoSE-s).
In this protocol, the host program sends a string of random
patterns to the embedded device. To prove that the memory
has been securely erased, the embedded device should
return the same string of patterns. It is assumed that the
embedded device has limited memory-just enough to hold
the received random patterns. This protocol works essen-
tially the same way as the PoE in [22], but with an additional
assumption of bounded storage.

Finally, in 2012, Wanson and Wei [34] investigate the
effectiveness of the built-in data erasure mechanisms in sev-
eral commercial Solid State Drives. They discovered that the
built-in “sanitize” methods in several SSD were completely
ineffective due to software bugs. Based on this discovery,
they stress the importance of being able to independently
verify the data deletion outcome. They propose a verifica-
tion method that works as follows. First of all, a series of rec-
ognizable patterns are written to the entire drive. Then, the
drive is erased by calling the built-in “sanitize” command.
Next, the drive is manually dismantled and a custom-built
probing tool (made by the authors) is used to read raw bits
from the memory in search for any unerased data. This
approach can be useful for factory testing. However, it may
prove difficult for ordinary users to perform.

In summary, several researchers have recognized the
importance of verifiability in the secure data deletion process
and proposed some solutions. But none of those solutions
have used any cryptography. Our work differs from theirs
in that we aim to provide public verifiability for a secure data
deletion system by adopting public key cryptography.

3 CRYPTOGRAPHIC PRIMITIVES

In this section, we explain two relevant cryptographic primi-
tives: the Diffie-Hellman Integrated Encryption Scheme
(DHIES) andChaum-Pedersen ZeroKnowledge Proof (ZKP).

3.1 DHIES

The DHIES is a public key encryption system adapted from
the Diffie-Hellman key exchange protocol and has been
included into the draft standards of ANSI X9.63 and IEEE
P1363a [1]. The scheme is designed to provide security against
chosen ciphertext attacks. It makes use of a finite cyclic group,
which for example can be the same cyclic group used in DSA
or ECDSA [29]. Here, we use the ECDSA-like group for illus-
tration. Let E be an underlying elliptic curve for ECDSA and
G be a base point on the curvewith the prime order n.

Assume the user’s private key is v, which is chosen at
random from ½1; n� 1�. The corresponding public key is
Qv ¼ v �G. The encryption in DHIES works as follows. The
program first generates an ephemeral public key Qu ¼ u �G
where u 2R ½1; n� 1�. It then derives a shared secret follow-
ing the Diffie-Hellman protocol: S ¼ u �Qv. The shared
secret is then hashed through a cryptographic hash function
H, and the output is split into two keys: encKey and
macKey. First, the encKey key is used to encrypt a message
to obtain encM . Then, the macKey key is used to compute a
MAC tag from the encrypted message encM. The final
ciphertext consists of the ephemeral key Qu, the MAC tag
and the encrypted message encM. This encryption process
is summarized in Fig. 1.

The decryption procedure starts with checking if the
ephemeral public keyQu is a valid element in the designated
group—a step commonly known as “public key validation”.1

1. The original DHIES paper [1] does not explicitly mandate public
key validation on the ephemeral public key, but as explained by Antipa
et al. in [4], the security proofs in DHIES [1] implicitly assume the
received points must be on the valid elliptic curve; otherwise, the
scheme may be subject to invalid-curve attacks. In our specification, we
regard such public key validation as a mandatory step.

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 619

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

Next, it derives the same shared secret value following the
Diffie-Hellman protocol. Based on the shared secret, a hash
function is applied to derive encKey andmacKey, according
to Fig. 1. Upon the successful validation of the MAC tag by
using themacKey, the encrypted message will be decrypted
accordingly by using the encKey. More details about DHIES
can be found in [1].

It is worth noting that DHIES is essentially built on the
Diffie-Hellman key exchange protocol, but with adaptations
to make it suitable for a secure data storage application. For
example, Alice can encrypt a message under her own public
key using DHIES, so that only she can decrypt the message
at a later time. In some sense, it is like Alice securely com-
municating with herself in the future.

For any key exchange protocol, there is always a key confir-
mation step, which is either implicit or explicit [29]. The origi-
nal DHIES scheme is designed to provide only implicit key
confirmation—the key is implicitly confirmed by checking
the MAC tag. However, there are two drawbacks with this
approach. First, it does not distinguish two different failure
modes in case the MAC verification is unsuccessful. In the
first mode, wrong session keys may have been derived from
the key exchange process. For example, the message had been
encrypted by a different key v0 �G, v0 6¼ v. In the secondmode,
the encrypted message encM may have been corrupted (due
to storage errors ormalicious tampering). It is sometimes use-
ful for an application to be able to distinguish the two modes
and handle the failure accordingly, but this is not possible in
the original DHIES. The second drawback is performance. In
DHIES, the latency for performing implicit key confirmation
(through checking MAC) is always linear to the size of the
ciphertext. However, this linear time complexity OðnÞ can
prove unnecessarily inefficient if the MAC failure was due to
the derivation of wrong session keys. (We will explain more
on this after we describe theAudit function in Section 4.)

We address both limitations by adding an explicit key con-
firmation step to DHIES. This change provides explicit assur-
ance on the correct derivation of the session keys. It is
consistent with the common understanding that in key
exchange protocols, explicit key confirmation is generally con-
sidered more desirable than implicit key confirmation [29].
Wewill explain themodifiedDHIES in detail in Section 4.

3.2 Chaum-Pedersen Protocol

Assume the same Elliptic Curve setting (E, G, n) as above.
Given a tuple ðG;X;R;ZÞ ¼ ðG; x �G; r �G; x � r �GÞ where

x; r 2R ½1; n� 1�, the Chaum-Pedersen protocol is an honest
verifier Zero-Knowledge Proof technique for proving that
the tuple ðG;X;R;ZÞ is a Decisional Diffie-Hellman (DDH)
tuple [9]. This is equivalent to proving that logG X ¼ logR Z,
or alternatively, logG R ¼ logX Z. For the Chaum-Pedersen
protocol to work, the prover must know either the r or x
value. Without loss of generality, we assume the prover
knows r. The Chaum-Pedersen protocol works interactively
between a prover and a verifier in three message flows, as
shown in Fig. 2. In our solution, we use a non-interactive
variant of the Chaum-Pedersen protocol, which is realized
by applying the standard Fiat-Shamir heuristics [10].

4 SYSTEM DESIGN

In this section, we will propose a Secure Storage and Era-
sure (SSE) system. As shown in Fig. 3, in an architectural
view, the system comprises three components: 1) a tamper
resistant hardware module handles key management; 2) a
disk drive that stores digital data; 3) a host program that
controls the disk drive and communicates with the module,
through a SSE protocol. In the paper, we will use TPM to
refer to the tamper resistant hardware module.

One core functionality of a TPM is to be “tamper
resistant”, so that secrets can be safely kept inside. However,
many past research works have demonstrated that it might
be possible to extract secrets from a TPM in various ways,
e.g., semi-invasive attacks, API attacks and side-channel
attacks [3]. Hence, it is prudent not to assume the “tamper
resistance” in its absolute term. Instead, we acknowledge
the possibility that a TPM might be reverse-engineered and
its secrets extracted. However, we assume such attacks will
incur a high cost. Under this assumption, a TPM is still use-
ful as long as the cost of reverse-engineering is significantly
higher than the value of the data that the TPM protects.

4.1 Threat Model

In our threat model, we will consider threats from three dif-
ferent angles: the data thief, the TPM provider and the user.

First, the obvious threat concerns a data thief who has
captured the entire system (TPM, host and disk) and whose
goal is to recover the deleted data. We assume the attacker
is able to not only read all unerased data from the disk but

Fig. 2. Chaum-Pedersen protocol [9]: a zero-knowledge proof technique
to prove the statement that ðG;X;R;ZÞ ¼ ðG; x �G; r �G; x � r �GÞ is a
DDH tuple.

Fig. 1. Encrypting with DHIES [1]. The symmetric encryption algorithm is
denoted as E, the MAC algorithm as T and the hash function as H. The
shaded rectangles constitute the ciphertext.

Fig. 3. System overview.

620 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

also recover overwritten bits on the disk. However, since the
data is all encrypted, the attacker must have access to the
decryption keys, which are stored in the secure memory of
the TPM. We assume the cost of reverse-engineering a TPM
is higher than the value of the data that it protects.

The second type of threat comes from the TPM provider.
In general, the TPM provider should have no business
incentives to install malicious firmware in the TPM. How-
ever, two possible scenarios need to be considered. First, the
firmware may contain software bugs. Second, the TPM pro-
vider might be coerced by a state-funded security agency to
add trapdoors in its product.2 In our threat model, we
assume that the TPM is sold in a mass commercial market,
hence any bugs or trapdoors (if any) will exist in not just
one TPM, but all products in the market. In other words, we
do not consider targeted attacks against a particular user.

Third, we consider the threat from a user. A user differs
from a data thief in that she is the legitimate possessor of
the TPM and holds the Service Level Agreement. It is
expected that the user only saves the encrypted data onto
the disk, so that later the data can be deleted by just erasing
the key. However, a mishaving user may deviate from this
expectation as follows. In parallel to saving the encrypted
data onto the disk, she also backs up the plaintext data in
some secret location. In that case, simply erasing the key is
useless to delete the data. In our model, we do not consider
this threat as it trivially breaks all cryptography-based data
deletion methods. Second, a user might try to reverse-engi-
neer the TPM and claim compensation based on the SLA.
We will further analyze this scenario in Section 6 after we
explain the full protocol in the next section.

4.2 SSE Protocol

The TPM communicates with the host, following a Secure
Storage and Erasure protocol. This protocol is the central

element in the entire system design. It operates in the
same group setting as ECDSA (or DSA). Here, we choose
the ECDSA setting, so it is consistent with the actual
implementation of the protocol in a Java Card, as we will
explain in Section 5. As before, let E be the underlying
elliptic curve of ECDSA and G be a base point on the
curve with the prime order n.

Each TPM contains a unique ECDSA signature key pair:
Prvt and Pubt, which are generated on-board during the
factory initialization stage. The ECDSA public key for every
TPM is published on the TPM provider’s website so that
anyone can access it, while the private key is securely kept
inside the TPM. As an overview, the SSE protocol specifies
the following API functions:

� KeyGen. To generate a random public/private key
pair;

� Encrypt. To encrypt data with a specified public key;
� Decrypt. To decrypt data with a specified private key;
� Audit. To audit if encryption was done correctly;
� Delete. To delete a specified private key with a digital

signature returned as a proof of deletion.
To call the above functions, the user must be authenti-

cated first. This can be realized in several ways: for example,
passwords, biometrics, etc. For simplicity, we assume the
user has passed the authentication and can call the func-
tions. Details of each API function are explained below (the
notations are summarized in Table 1).

4.2.1 Key Generation

KeyGenð1k; CÞ creates an instance of the client user C. It

takes as input a security parameter 1k and the identity of
the user C, generates a private key on-board PrvCi

:¼
dCi

2R ½1; n� 1�, and returns the corresponding public key

PubCi
:¼ dCi

�G and an index reference Ci to the created key

pair. The user C is free to create as many instances as she
wishes, subject to the constraint of the maximum persistent
memory in the TPM. As an example, with 160-bit n, 32-bit
index Ci and a TPM of 16 MB EEPROM memory (see [38]),
up to 666,667 user instances can be created. The user may

TABLE 1
Notations and Meaning

Notations Meaning

Prvt, Pubt A pair of unique ECDSA keys for each TPM
C The client user
Ci One instance of the client user
PrvCi

The private key of the client instance, PrvCi
:¼ dCi

PubCi
The public key of the client instance, PubCi

:¼ dCi
�G

m An input message
Qh The ephemeral public key during DHIES Qh ¼ dh �G
kench ; kmac

h The session keys derived from DHIES for authenticated encryption

kc The key-confirmation key derived from DHIES for explicit key confirmation
EAuth

kh
ðmÞ Authenticated encryption ofm using the session keys {kench ; kmac

h }

EðPubCi
;mÞ Encryption ofm under PubCi

using DHIES, EðPubCi
;mÞ :¼ fQh; HðkcÞ; EAuth

kh
ðmÞg

h The reference to the ciphertext EðPubCi
;mÞ

ZKPh A Zero Knowledge Proof to prove the well-formedness of ciphertext h

SLAdel
Ci

A Service Level Agreement for the deletion of client instance Ci

Sigð. . .Þ A signed message using the TPM’s ECDSA private key Prvt

2. This seemingly remote threat becomes realistic in the light of the
recent revelations by Edward Snowden [40]. We believe in the post-
Snowden world people will take an even more critical view on TPM,
and our “trust-but-verify” paradigm is one step towards addressing
that concern.

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 621

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

choose to use different instances for encrypting different
types of files. The KeyGen function can be formalized as
below (for simplicity, we will omit the return of error in all
functions):

Host ! TPM : 1k; C
TPM : Generate PrvCi

:¼ dCi

TPM ! Host : PubCi
:¼ dCi

�G; Ci

:

4.2.2 Encryption

EncryptðCi;mÞ takes as input the reference to the created
user instance Ci, a message m and returns the encrypted
message under the public key PubCi

. For the encryption, we

adopt the Diffie-Hellman Integrated Encryption Scheme [1].
First, the TPM generates an ephemeral public key
Qh ¼ dh �Gwhere dh 2R ½1; n� 1�. It then calculates two ses-
sion keys, which include an encryption key kench ¼ HðdCi

�
Qh jj 0x01Þ and a MAC key kmac

h ¼ HðdCi
�Qh jj 0x10Þ. Both

keys are used to encrypt the message in an authenticated

manner to obtain EAuth
kh

ðmÞ. In addition, the TPM generates

a key-confirmation key kc ¼ HðdCi
�Qh jj 0x11Þ and outputs

a one-way hash of kc. This is to allow explicit key confirma-
tion during the latter decryption and audit steps. The
returned ciphertext will be stored in the mass storage
device. The encryption is performed inside the TPM as it
involves securely generating a random factor (i.e., dh),
whose secrecy also needs to be protected. It is possible to
perform public key encryption in a host computer, but the
standard industry solution is to do that in a tamper resistant
device so that all security-sensitive key materials are pro-
tected by the tamper resistance [3]. The Encrypt function
can be formalized as:

Host ! TPM : Ci; m
TPM ! Host : Qh :¼ dh �G; HðkcÞ; EAuth

kh
ðmÞ:

4.2.3 Decryption

DecryptðCi;Qh; HðkcÞ; EAuth
kh

ðmÞÞ takes as input the reference
to an existing user instance Ci, the ciphertext obtained from
the earlier encryption step, and returns the decrypted mes-
sage if the verifications on the key confirmation string and
MAC are successful. The TPM first validates that Qh is a
valid public key on the curve. It then computes
k0c ¼ HðdCi

�Qh jj 0x11Þ and proceeds to decryption only if

Hðk0cÞ ¼ HðkcÞ. The decryption procedure follows subse-
quently as described in DHIES [1]. Upon the successful veri-
fication of the MAC tag, the encrypted message will be
decrypted and the original plaintextmwill be returned. The
Decrypt function can be formalized as:

Host ! TPM : Ci; Qh; HðkcÞ; EAuth
kh

ðmÞ
TPM ! Host : m:

4.2.4 Audit

AuditðCi;Qh; HðkcÞÞ takes as input the reference to an exist-
ing user instance Ci, the ephemeral public key Qh and the
key confirmation string HðkcÞ, and allows the user to verify
whether the earlier encryption operation was done cor-
rectly. The TPM first checks that Qh is a valid public key on
the curve, and verifies if HðHðdCi

�Qh jj 0x11ÞÞ ¼ HðkcÞ. It

then outputs dCi
�Qh and a Zero Knowledge Proof, which

proves that logGdCi
�G ¼ logQh

dCi
�Qh without leaking any-

thing about the private key dCi
. The ZKP is based on the

Chaum-Pedersen protocol [9], which is made non-interac-
tive by applying the Fiat-Shamir heuristics [10]. Because of
the use of a key-confirmation string, it is unnecessary to

feed in the entire encrypted message (i.e., EAuth
kh

ðmÞ) into the

audit function input. This improves the efficiency as the
size of the encrypted message may potentially be large.
With the output from the audit function, the host is able to
compute the encryption and MAC keys based on
kench ¼ HðdCi

�Qh jj 0x01Þ and kmac
h ¼ HðdCi

�Qh jj 0x10Þ. With

these symmetric keys, the host is able to fully verify if the
message was encrypted correctly using these keys. Note
that this auditing only reveals the symmetric encryption
and MAC keys within one DHIES session; the secrecy of the
keys derived in other sessions is not affected. The Audit
function can be formalized as:

Host ! TPM : Ci; Qh; HðkcÞ
TPM ! Host : dCi

�Qh; . . .
ZKPh ½logGdCi

�G ¼ logQh
dCi

�Qh�:

4.2.5 Delete

DeleteðCiÞ deletes a user instance Ci by overwriting its pri-
vate key dCi

in the TPM’s protected memory and returns

SLAdel
Ci
, which is a Service Level Agreement {“Delete”,

PubCi
} signed by the TPM’s ECDSA signing key. After the

erasure of the private key, all messages encrypted under
PubCi

can no longer be decrypted. Assume the TPM had

failed to erase the private key dCi
properly and that the key

is later discovered by the user. The user can present dCi

together with SLAdel
Ci
, as publicly verifiable evidence, that

the TPM had failed to provide the secure data deletion ser-
vice as promised. Based on the evidence and the terms in
the Service Level Agreement, the user should be entitled to
compensation (or money back). The Delete function can be
formalized as:

Host ! TPM : Ci

TPM ! Host : SLAdel
Ci

:¼ Sigð“Delete”;PubCi
Þ:

5 IMPLEMENTATION

In this section, we will describe a full prototype implemen-
tation of the proposed SSE system, based on using a stan-
dard Java card [39] as a TPM for key management, a
MacBook laptop (1.7 GHz with 4 GB memory) for the host
and a standard disk drive for mass data storage. As we will
show, this is a non-trivial development effort. To our knowl-
edge, what we provide is the first public implementation of
DHIES and Chaum-Pedersen ZKP on a resource con-
strained Java card. (The full source code for the prototype
can be found at the end of the paper.)

The Java card we use has a dual interface, supporting
both contact and contactless communication. We use the
contactless interface for all experiments. The chip on the
card has an 80 KB EEPROM for persistent storage and an 8
KB RAM for holding volatile data in memory. The card is
compliant with Java Card Standard 2.2.2, but also supports

622 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

some additional APIs from Java Card Standard 3.0.1. In par-
ticular, it supports ALG_EC_SVDP_DHC_PLAIN under the
javacard.security.KeyAgreement interface, which allows
obtaining the plain shared secret (instead of a SHA-1 hash
of the secret) from the Elliptic Curve Diffie-Hellman
(ECDH) key exchange protocol. This API is essential for the
prototype implementation of our system.

One obstacle we encountered is that the existing Java
card API standards does not support modular multiplica-
tion of big numbers (see [30], [39]). To the best of our knowl-
edge, no Java Cards currently available in the market
provide the API support to perform this basic modular
operation. Therefore, we had to implement the big number
modular multiplication from scratch by ourselves using the
primitive arithmetic operators and byte arrays (without
involving any hardware support from the low-level native
C library on the card). It takes about 150 lines of Java code
to execute one modular multiplication.

Regarding the elliptic curve setting, we chose the stan-
dard P-256 curve as defined in the Digital Signature Stand-
ards specification [37]. When the Java card applet is first
loaded into the chip, upon initialization it generates a ran-
dom ECDSA key pair over the P-256 curve. The same curve
is used for the generation of all further public/private key
pairs required.

In the following, we will explain the implementation
details and performance measurements of all the functions
specified in the SSE protocol. For each function, the latency
is measured in terms of the delay in the card processing and
in the card communication (via the contactless interface).
We repeated the experiments thirty times and summarize
the average results in Fig. 4 and Table 2.

KeyGen. This function involves generating a random pub-
lic/private key pair over the P-256 curve for a new user
instance. The public key, along with a 16-bit unique identi-
fier, is returned to the user. The private key (32 bytes) is
stored in the TPM’s EEPROM. To facilitate the encryption
operation later, we also keep the public key in EEPROM.
The card only supports the EC public key in the uncom-
pressed form, so the size of the public key is 64 bytes. Given
that the Java card that we use has 80 KB EEPROM in total

and that the SSE program takes up 16 KB storage in
EEPROM, we can create about 650 random EC public/pri-
vate pairs. As shown in Table 2, this operation takes a con-
stant 835 ms in total.

Encrypt. The function receives a plaintext file, encrypts it
using DHIES and returns the ciphertext. In one DHIES ses-
sion, two symmetric session keys are derived to encrypt the
file in an authenticated manner (see Fig. 1). In theory, there
should be no limit in how long is the input file that can be
encrypted under one DHIES session. However, in practice,
there is an upper limit due to the constrained memory size
in the Java card. (The reason shall become more evident
later when we explain how the Decrypt operation works.) In
our implementation, up to 2 KB data can be encrypted in
one DHIES session. For a plaintext file bigger than 2 KB, the
host program needs to divide the file into block with each
less than 2 KB and encrypt each block in one DHIES session.

Another constraint in the implementation is the size of the
APDU buffer. The card receives and sends messages through
an APDU buffer, which can hold data up to 255 bytes at one
time. Therefore, for a long message, the encryption cannot be
done in one operation, and needs to be done in four steps.
First, the card receives an instance ID that identifies the public
key. Accordingly, it creates an ephemeral public key, and
computes the DHIES session keys. The session keys comprise
a 128-bit AES key for encrypting data and another 128-bit
AES key for computingMAC. The encryption is performed in
the CBC mode. A random IV for AES-CBC is generated and
returned to the host in this step (this to optimize the band-
width usage so that in the subsequent step, the plaintext data
can fill up the entire APDUbuffer and the returned ciphertext
will occupy the whole buffer as well). Second, the message is

Fig. 4. Performance evaluation based on a proof-of-concept implementation using a resource-constrained Java card (5 MHz processor). The same
implementation should work several hundred times faster on a high-performance Tamper Resistant Module such as IBM Storage Manager HSM
(2 GHz processor) [43].

TABLE 2
Latency Measurements (ms)

Operations Card processing Communication Total latency

KeyGen 782 53 835
Audit 10;594 165 10;759
Deletion 674 56 730

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 623

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

divided into segments with each segment not more than
255 bytes. The card receives each segment in turn, performs
encryption and saves the intermediate results in RAM. This
step is repeated until the penultimate segment of themessage.
Third, it receives the last segment of themessage and finalizes
the encryption. Fourth, a MAC is returned, which is com-
puted over the entire ciphertext using CBC-MAC. Full imple-
mentation details about the DHIES encryption are
summarized inAlgorithm 1

Algorithm 1. Encryption in one DHIES session

Input: User instance reference Ci, message m, elliptic curve E
with generator G of order n, secure hash functionH;

Output: Ephemeral public key Qh, hashed key confirmation

key HðkcÞ, encrypted message EAuth
kh

ðmÞ; initialisation
vector IV ;

1: Client sends Ci to card;
2: Card retrieves instance private key dCi

corresponding to
user instance Ci;

3: Card randomly chooses dh 2 ½1; . . .n�;
4: Card sets Qh ¼ dh:G;
5: Card sets kench ¼ HðdCi

:Qh k 0x01Þ;
6: Card sets kmac

h ¼ HðdCi
:Qh k 0x10Þ;

7: Card generates random IV and returns this to the client;
8: Client divides m into segments mi with each segment not

more than 255 bytes;
9: for segmentsmi do
10: Client sendsmi to card;
11: Card generates EkhðmiÞ using AES-CBC with key kench ;
12: Card generates MACi for EkhðmiÞ using AES-CBC with

key kmac
h and with initialisation vector set to ZERO

when i ¼ 0 andMACi�1 when i > 0;
13: Card obtains the final MAC with the entire encrypted mes-

sage to give EAuth
kh

ðmÞ;
14: Card sets kc ¼ HðdCi

:Qh k 0x11Þ;
15: Card returns to the client Qh,HðkcÞ, EAuth

kh
ðmÞ;

The latency measurements for the encryption operation
are shown in Fig. 4a. For each input file of different sizes,
the Encrypt operation is invoked to encrypt the file and
return the ciphertext. The measured total latency includes
both the card processing and card communication delays.
In order to obtain the communication delay, we conduct a
separate experiment. We add a dummy API to the card,
which works superficially similar to Encrypt in that it
accepts an input file and returns an output file that has the
same size as what the Encrypt API would return. However,
the dummy API does not perform any processing on the
input data and it immediately outputs a fixed data string
that is stored in the card memory back to the host. We mea-
sure the latency of calling the dummy API and take that
measurement as the communication delay. The card proc-
essing delay is obtained by subtracting the communication
delay from the total latency.

As shown in Fig. 4a, the card processing delay in the
Encrypt operation increases with the size of the input in a
step-wise manner. This is because we limit the maximum
allowed plaintext data that can be encrypted within one
DHIES session to be 2 KB. Hence, for the input size of
less than 2 KB, the card processing cost is predominantly
determined by the public key operations in DHIES to

derive the session keys. The cost of the subsequent sym-
metric operations using the session keys is almost negligi-
ble in comparison to asymmetric operations. For the
input size of between 2 and 4 KB, the card processing
cost is almost doubled because the encryption involves
two DHIES sessions.

Decrypt. As previously, due to the limited size of the
APDU buffer, the ciphertext has to be divided into seg-
ments, with each segment not more than 255 bytes. In the
implementation, this operation has five steps. First, the card
receives the instance ID, the ephemeral public key, the key
confirmation string and the IV (for AES-CBC decryption).
After it successfully verifies the key confirmation string, the
card computes a 128-bit AES encryption key and another
128-bit AES MAC key. Second, it receives each ciphertext
segment in sequence, decrypts each segment using the AES
encryption key derived in step one and stores the decrypted
result in RAM. Meanwhile, it computes a MAC for the
received ciphertext using AES-CBC. This step is repeated
until receiving the penultimate segment of the ciphertext.
(The computed MAC becomes the IV input for computing
the next MAC using AES-CBC.) Third, it receives the last
segment of the ciphertext. It decrypts the segment accord-
ingly, saves the decrypted data to an array in RAM, and
also computes the final MAC. Fourth, it receives a MAC. It
checks it against the MAC that was derived in the previous
step. Fifth, it returns the decrypted plaintext if the MAC
was verified successfully in the previous step. The last step
is called repeatedly until all plaintext data is returned. All
the intermediate results during the cryptographic opera-
tions are stored in the volatile RAM. (Writing data into
EEPROM is much slower, and is subject to a limited number
of writing cycles, while writing data in RAM is fast and
incurs no limit in the number of overwriting operations.)
The decryption process is summarized in Algorithm 2.

Since the card only returns the plaintext upon successful
verification of the MAC value, the maximum allowed size
of the ciphertext is determined by the available RAM in the
card. In the Java card that we use, the chip has 8 KB RAM,
more than half of which is used to run the instance of the
program. Through experiment, we found that the maxi-
mum data that the card can accommodate in RAM is 2 KB.

As shown in Fig. 4b, the latency of the decryption
increases with the size of the ciphertext file in a similar step-
wise manner as in the encryption. As compared with the
encryption that involves two scalar multiplications over the
elliptic curve, the decryption only requires one. Hence, the
latency of card processing in decryption (Fig. 4b) is about
half of that in encryption (Fig. 4a). The latency of card com-
munication remains the roughly same in both cases. For an
input ciphertext file of 1 KB, the decryption takes about 2
seconds in total (0.5 seconds on the card processing).

Audit. This function requires the card to prove that the
two session keys in an earlier Encrypt operation had been
derived correctly following the DHIES specification. The
main part in the implementation is in computing a Zero
Knowledge Proof to prove the equality of two discrete loga-
rithms. The implementation needs two primitive functions.
The first is to compute the scalar multiplication over the
Elliptic Curve and the second is to compute amodularmulti-
plication of two big numbers (32-byte modulus). Although

624 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

the Java Card Standard 2.2.2 [39] does not provide any direct
API to allow computing the scalar multiplication over the
EC, it is possible to (ab)use the ECDH API as follows. First,
the ECDH API is initialized with a pair of public/private
keys, where the private key is the scalar. Upon receiving an
ephemeral public key, the ECDH API does a scalar multipli-
cation over the elliptic curve and returns the ECDH shared
secret in the plain form. However, instead of returning a
point, the API only returns the x coordinate (more specifi-
cally, the x coordinate of B ¼ s �X in the first flow of the
Chaum-Pedersen protocol; see Fig. 2.) Hence, the host has to
reconstruct the point by calculating the y coordinate from
one of the two possible values. Once thewhole point is recon-
structed, the Zero Knowledge Proof can be verified accord-
ingly. The limitation in the card API reduces the security
level of the ZKP by exactly one bit, because it halves the
search space of an exhaustive search attack.

Algorithm 2. Decryption in one DHIES session

Input: User instance reference Ci, ephemeral public key Qh,
hashed key confirmation key HðkcÞ, encrypted message

EAuth
kh

ðmÞ, elliptic curve E with generator G of order n, secure

hash function H, initialisation vector IV ;
Output:Messagem or failure notification;
1: Client sends Ci, Qh,HðkcÞ, IV to card;
2: Card retrieves the instance private key dCi

corresponding to
user instance Ci;

3: Card validates Qh is a point on E of correct order;
4: Card sets k0c ¼ HðdCi

:Qh k 0x11Þ;
5: ifHðk0cÞ ¼ HðkcÞ then
6: Card Sets kench ¼ HðdCi

:Qh k 0x01Þ;
7: Card sets kmac

h ¼ HðdCi
:Qh k 0x10Þ;

8: Client divides EAuth
kh

ðmÞ into segmentsMi

9: for segmentsMi do
10: Client sendsMi to card;
11: Card setsmi to be the decryption ofMi using AES-CBC

and key kench and IV ;

12: Card generates a MACi for Mi using key kmac
h with ini-

tialisation vector set to ZERO when i ¼ 0 and MACi�1

when i > 0;
13: Card verifies that the final MAC generated equals the

MAC included with EAuth
kh

ðmÞ;
14: ifMAC verification succeeds then
15: Card returns allmi to client;
16: else
17: Card returns failure notification to client;
18: else
19: Card returns failure notification to client;

As shown in Table 2, the audit function causes 10;594 ms
delay in the card processing. The most significant cost factor
is in doing the modular multiplication (i.e., computing
t ¼ sþ c � r mod n in the last step of the Chaum-Pedersen
protocol; see Fig. 2). It takes 9;094 ms. This seemingly trivial
calculation incurs a long delay because there is no available
API in the Java card to do this operation efficiently and we
had to implement it from scratch in pure software without
any hardware support. We have tried our best to optimize
the code and also compared with alternative methods (e.g.,
do a modular multiplication by abusing the RSA encryption
API as described in [30]). It seems that the 9:094 seconds

delay is probably best we could achieve without getting
any hardware support from the card cryptographic co-
processor.3 It is worth noting that the latency in audit is a
constant value. This is attributed to the use of explicit key
confirmation; otherwise, with the original DHIES, we will
have to feed in the entire encrypted message and the latency
for auditing will have a linear time complexity OðnÞ.

Delete. Upon receiving an index to the user instance, this
function erases the private key for the specified user
instance, by calling the clearKey method of the javacard.
security.key interface. This follows the recommendation from
the Java Card API Standard (2.2.2) that a key should be cryp-
tographically destroyed through the clearKey method [39].
After the private key is erased, the function returns an
ECDSA signature as specified in the SSE protocol. This delete
operation takes about 730ms delay in total (see Table 2).

6 ANALYSIS

In this section, we analyze the security of the proposed sys-
tem, including the API security and the threat analysis.

6.1 API Security

In the SSE protocol, we have defined five API functions. The
KeyGen function simply generates keys on-board. The
Encrypt and Decrypt functions follow the widely standard-
ized DHIES, which has been proven secure against chosen-
ciphertext attacks [1]. We propose to add a key-confirmation
string to DHIES in order to provide explicit key confirma-
tion, while the original DHIES only provides implicit key
confirmation. The key-confirmation key is derived sepa-
rately from the encryption and MAC keys. This is to ensure
that the encryption and MAC keys remain indistinguishable
from random after the key confirmation step. Thus, the
security proofs in DHIES [1] are not affected. The use of
explicit key confirmation allows a more efficient implemen-
tation of the audit function. In the Delete function, we use
the well-established ECDSA to cryptographically bind the
TPM’s commitment to delete a secret key with the outcome
of the deletion operation. We refer the reader to [1] and [37]
for the security of DHIES and ECDSA respectively. Here,
we will focus on the Audit function.

The Audit function serves as an enhancement to DHIES.
The aim is to allow users to verify if the encryption had
been correctly implemented following the DHIES specifi-
cation. To analyze the security of this function, we will
consider two types of attackers: a passive attacker and an
active attacker. We define a passive attacker as one who
obtains the ciphertext only by calling the Encrypt function
and subsequently feeds the obtained ciphertext into the
Audit function. This is analogous to passively monitoring
all inputs and outputs while the user performs the Encrypt
and Audit operations. We define an active attacker as one
who constructs his own ciphertext and then feeds it into
the Audit function.

Passive attack. First, we consider a passive attacker and
make the following claim with a sketch of its proof.

3. We contacted several Java card vendors and were glad to learn
from one vendor that adding native support for modular multiplication
was in their development plan for future products.

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 625

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

Claim 1. Under the assumption that the underlying Chaum-
Pedersen ZKP is secure, the output of the audit function
does not reveal any information about the private key dCi

to a passive attacker.

Proof. In the case of a passive attack, the input ciphertext
will be successfully verified by the TPM since it was
generated by the same TPM earlier. Given the input
{dh �G;HðkcÞ}, the audit function returns {dCi

� dh �G;
ZKPh}. The ZKPh reveals nothing more than one bit
information about the truth of the statement: the tuple
fG; dCi

�G ; dh �G; dCi
� dh �Gg is a DDH tuple4 (see [9]).

We assume that the audit function is called of an
unlimited number of times. The passive attacker
records every input and output, and eventually builds
up a transcript of all possible tuples, each comprising
{dh �G; dCi

� dh �G} (recall that dh is dynamic and dCi
is

static.). However, he can simulate the same transcript
by generating the random values dh by himself and
computing dh � dCi

�G accordingly. In conclusion, he

learns nothing about dCi
from the transcript that he

can simulate all by himself . tu
Active attack. Second, we consider an active attacker and

make the following claim with a sketch of its proof.

Claim 2. Under the assumption that the Computational
Diffie-Hellman (CDH) problem in the designated group
is intractable, and given that the ciphertext input, sup-
plied by an active attacker, has passed the internal veri-
fication in the TPM, the input must have been
generated with the knowledge of the ephemeral private
key dh.

Proof. Assume the attacker has calculated the input to
the audit function on his own, which includes
{dh �G;HðkcÞ}. To obtain a contradiction, we assume the
attacker does not know dh. Given the successful public
key validation on dh �G, it shows that dh �G is a valid
public key in the designated group over the elliptic
curve, so the discrete logarithm (i.e., the private key)
with respect to the base point G must exist. In other
words, the value dh actually exists. Given the successful
verification on the key confirmation, this gives the TPM
explicit assurance that the supplier of the input must
have obtained the same key-confirmation key kc, which
is derived from the ECDH shared plain secret through a
one-way hash function: kc ¼ HðdCi

� dh �Gjj0x11Þ.
Hence, the attacker must have obtained the same ECDH
shared plain secret. In summary, without knowing dCi

or dh, the attacker has computed dCi
� dh �G from

{dCi
�G; dh �G}. This contradicts the CDH assumption as

stated in the claim. In conclusion, the active attacker
must have known dh when computing his own input to
the audit function. tu
Obviously, if the attacker knows dh, he will learn nothing

from the Audit function as he is able to compute the DDH
tuple fG; dh �G; dCi

�G; dCi
� dh �Gg all by himself.

6.2 Threat Analysis

In the threat model defined in Section 4, we have
highlighted threats from three different angles. We now
analyze those threats in detail.

6.2.1 Data Thief

We assume the attacker has physically captured the TPM
and the disk. Clearly, the attacker cannot make use of the
TPM without passing the authentication mechanism. We
further assume that the attacker has had the user’s authenti-
cation credential, so he can invoke all API functions of the
TPM. Obviously, if the keys have not been deleted, the
attacker will be able to trivially decrypt the ciphertext stored
on the disk. This is unstoppable as the attacker is essentially
no different from a legitimate user from the system’s
perspective. The basic design goal of the SSE system is to pre-
vent the attacker from recovering deleted data. Hence, before
the system falls into the enemy hands, we assume that the
user erases keys by calling the Delete function, or in the
extreme case, physically destroying the TPM chip. The latter
guarantees the complete erasure of the keys, but in our analy-
sis wewill focus on non-destructivemeans to delete data.

If the Delete function has been implemented correctly,
the key should have been erased and its location in memory
be overwritten with random data. This can prove extremely
costly for the attacker to recover the deleted key; without
the key, the attacker will have to do a ciphertext-only attack
against DHIES, which has been proved infeasible [1].

In order to recover the deleted key, the attacker has to
penetrate two layers of defence. First, he needs to bypass
the physical tamper resistance, so he can gain access to the
protected memory in the TPM. Second, he needs to recover
the overwritten bits in the memory cells where the key was
stored before the deletion. Compromising both layers is not
impossible, but will incur a high cost to the attacker. This
will be an arms race between defenders and attackers, but if
the cost to attack is significantly higher than the value of the
target data, the thief may be deterred.

6.2.2 TPM Provider

As explained above, if the TPM has i) encrypted data cor-
rectly based on the DHIES algorithm, and ii) also erased
keys properly from the protected memory, it can prove pro-
hibitively expensive for a data thief to recover the deleted
data. However, we shall not take it for granted that the TPM
provider must have implemented both operations correctly.
Software bugs are one concern. We should also be wary of
the possibility that the TPM provider might be coerced by a
powerful state-funded adversary to insert a trapdoor into
the products.

Instead of completely trusting the TPM, we adopt a
“trust-but-verify” approach. More specifically, this “trust-
but-verify” is reflected in the design of the SSE protocol in
two aspects: verifiable encryption and verifiable deletion.

Verifiable encryption. First, the encryption should be verifi-
able. The SSE protocol allows the user to verify if the
encryption has been implemented correctly following the
DHIES specification. This verification is critical, because if
the encryption had not been done correctly in the first place,
then deleting the key will not logically lead to the deletion

4. Since the non-interactive ZKP is obtained by applying the Fiat-
Shamir heuristics, a random oracle model is assumed.

626 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

of data. In past work, such verification is usually done
implicitly—the fact that the software program can reverse
the encryption process and recover the same original plain-
text gives implicit assurance that the encryption was done
correctly. This kind of implicit verification is widely used in
software testing to ensure the encryption and decryption
are implemented correctly.

In a security-critical application, this kind of implicit
assurance is insufficient, especially when the software pro-
gram is encapsulated within a tamper resistant device and
its source code is totally inaccessible. We provide one possi-
ble attack in Fig. 5. Since the plaintext data normally contain
redundancies, the TPM can compress the data first before
doing encryption. The compression will create spare space
to insert a trapdoor block, which is the decryption key
wrapped by a trapdoor key (known to a state-funded secu-
rity agency). Given that the ciphertext length remains the
same and the encryption cipher is semantically secure (i.e.,
the output of the encryption is indistinguishable from ran-
dom), users cannot distinguish the two ciphertexts in Fig. 5.
During the decryption, the TPM can simply ignore the trap-
door block and decrypt data as normal. This attack may be
mitigated by always requiring the data compression first
before encryption. However, a powerful state-funded
adversary may know a compression algorithm that is more
efficient than the publicly known ones. A slight advantage
in the compression ratio would prove sufficient to insert a
few extra bytes as the trapdoor. We assume the attacker’s
goal to enable mass surveillance over the Internet—once the
ciphertext is sent over the Internet (say to a remote storage
server), the attacker is able to trivially decrypt data without
anyone being aware of it.

Our solution to the above problem is through the audit
function. One trivial way to allow auditing the encryption is
to reveal the user instance’s private key dCi

. But the private
key dCi

may have been used in many DHIES sessions (each

session is an invocation of the Audit function). The auditing
should be limited to one specific session, but the revelation
of dCi

will affect the secrecy of all other sessions. This

reveals too much information.
Another solution is to reveal the random factor dh used in

one DHIES session. With dh, the two session keys can be
derived and every byte in the ciphertext can be fully verified
accordingly. This does not affect the secrecy of other ses-
sions (since the random factors are all different). However,
the random factor dh is only transient in memory during the
encryption process and is immediately erased once the
encryption is finished.

The technique we propose has the same effect as reveal-
ing the random factor dh, but without having to know dh.
First of all, the TPM reveals the plain ECDH shared secret:

S ¼ dCi
� dh �G, which can be easily computed since the

TPM knows the user private key dCi
. With this revealed

secret S, the two session keys can be derived and every byte
in the ciphertext can be verified accordingly. However, in
addition to revealing S, the TPMmust demonstrate that S is
well-formed. In other words, if we define the tuple
fG;C;N; Sg ¼ fG; dCi

�G; dh �G; dCi
� dh �Gg, the revealed S

will make the tuple form a valid DDH tuple. This is equiva-
lent to proving either of the following two statements: 1)
logG C ¼ logN S; or 2) logG N ¼ logC S. The choice of the
statement depends on whether the prover knows either dCi

or dh. In our case, the TPM does not have dh, but it knows
dCi

, hence is able to compute the ZKP based on the Chaum-

Pedersen protocol.
Verifiable deletion. Second, the deletion operation should

return a proof (ECDSA signature) that cryptographically
binds the commitment in deleting a secret key with the out-
come of that operation. If the TPM has failed to erase the
key correctly, the digital signature will serve as publicly ver-
ifiable evidence to indicate the security failure. Based on the
evidence and the terms in the Service Level Agreement, the
user should be entitled for compensation.

Traditionally, when one (say a researcher) wants to dem-
onstrate a security failure (or vulnerability) of a TPM, he
would need to write a technical article, post a video or do a
live demo. Our protocol makes this exposure process easier
and more directly: just publishing a short string of data (an
ECDSA signature and the recovered key) on the internet.
Anyone will be able to verify the digital signature and con-
firm the evidence of security failure.

6.3 User

We consider a user who is a legitimate owner of a SSE sys-
tem. Depending on how the Service Level Agreement is
specified, the user should be entitled to compensation (or
money back) if she is able to prove that the product is faulty.
However, it is possible that a user might want to profit from
claiming for compensation. To prove that the system is liable
for the security failure and hence claim compensation, the
user needs to present an ECDSA signature together with the
private key dCi (which is supposed to have been deleted)5.

In one attack, the user can do as a data thief would do: 1)
compromising the tamper resistance to gain access to the
TPM’s protected memory; 2) recovering the overwritten key
value in the protected memory in the TPM.

However, instead of penetrating two layers of defence,
the user actually just needs to compromise one layer. Once
she is able to gain access to the protected memory, she can
extract an existing private key dCi

in memory and call the
delete function to erase this key in order to obtain an
ECDSA signature. Equivalently, she can extract the ECDSA
private key and generate her own ECDSA signature. The
evidence itself does not tell if the security failure is due to
the compromise of the ECDSA signing key or due to the
recovery of the allegedly deleted private key. But both keys

Fig. 5. Ciphertext 1 is produced by an honest TPM while ciphertext 2 is
by a dishonest TPM. k is an encryption key and k0 is a trapdoor key
(known to a state-funded security agency). Given that the encryption
algorithm is semantically secure, users cannot distinguish the two
ciphertexts.

5. The requirement of presenting the supposedly deleted private key
as part of the evidence may look strong, but without it any user can
arbitrarily claim fault in the product, and it will be difficult for a third
party to distinguish if the product is faulty indeed or a user making a
false claim.

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 627

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

should have been kept in the secure memory of the TPM.
Hence, in any case, it should become publicly clear that the
claimed “tamper resistance” has been compromised. As
compared to a data thief, a user exploits a short-cut in the
attack as she does not need to go further to recover the over-
written bits in the memory. This needs to be considered in
the pricing strategy on determining the compensation
amount in the Service Level Agreement; we will leave this a
subject for future research.

7 CONCLUSION

While the “trust-but-verify” paradigm has been well stud-
ied and established in some fields (e.g., e-voting), it has
been almost entirely neglected in the field of secure data
deletion. In this paper, we initiate an investigation on how
to apply the “trust-but-verify” paradigm to make the data
deletion process more transparent and verifiable. We pres-
ent a concrete cryptographic solution, called Secure Storage
and Erasure, which enables a user to verify the correct
implementation of cryptographic operations inside a TPM
without having to access its internal source code. The practi-
cal feasibility of our solution is validated by a proof-of-con-
cept implementation using a resource-contained Java card
as the TPM.

Future work includes extending the “trust-but-verify”
paradigm to other crypto primitives, in particular, the
secure random number generator. The problem of permit-
ting end users to audit if a random number has been gener-
ated correctly in a TPM as part of the encryption process (or
a cryptographic protocol) is still largely unsolved and
deserves further research.

SOURCE CODE

The source code for the Java card and host programs is pub-
licly available at: https://github.com/SecurityResearcher/
SSE). Java cards can be purchased from various sources,
e.g., [41], [42].

ACKNOWLEDGMENTS

The first author would like to acknowledge the support of
EPSRC First Grant EP/J011541/1 and ERC Starting Grant
No. 306994. F. Hao is the corresponding author.

REFERENCES

[1] M. Abdalla, M. Bellare, and P. Rogaway, “The oracle diffie-
hellman assumptions and an analysis of DHIES,” in Proc. Conf.
Topics Cryptol., vol. 2020, 2001, pp. 143–158.

[2] B. Adida, “Helios: Web-based open-audit voting,” in Proc. 17th
USENIX Security Symp., 2008, pp. 335–348.

[3] R. J. Anderson, Security Engineering : A Guide to Building Depend-
able Distributed Systems, 2nd ed. New York, NY, USA: Wiley 2008.

[4] A. Antipa, D. Brown, A. Menezes, R. Struik, and S. Vanstone,
“Validation of elliptic curve public keys,” in Proc. 6th Int. Workshop
Practice Theory Public Key Cryptography Public Key Cryptography,
2003, pp. 211–223.

[5] S. Bauer and N. B. Priyantha, “Secure data deletion for linux file
systems,” in Proc. 10th USENIX Security, 2001, pp. 153–164.

[6] C, Burton, C. Culnane, J. A. Heather, P. Y. A. Ryan, S. Schneider,
T. Srinivasan, V. Teague, R. Wen, and Z. Xia, “Using pret a voter
in victorian state elections,” in Proc. Electron. Voting Technol./Work-
shop Electron. Voting, 2012, pp. 1–16.

[7] D. Boneh and R. Lipton, “A revocable backup system,” in Proc. 6th
USENIX Security Conf., 1996, pp. 91–96.

[8] C. Cachin, K. Haralambiev, H. C. Hsiao, and A. Sorniotti, “Policy-
based secure deletion,” in Proc. ACM Conf. Comput. Commun. Secu-
rity, 2013, pp. 259–270.

[9] D. Chaum and T. P. Pedersen, “Transferred cash grows in size,” in
Proc. 11th Annu. Int. Conf. Theory Appl. Cryptographic Techn., 1993,
pp. 390–407.

[10] A. Fiat and A. Shamir, “How to prove yourself: Practical solution
to identication and signature problems,” in Proc. CRYPTO, 1987,
pp. 186–189.

[11] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish:
Increasing data privacy with self-destructing data,” in Proc. 18th
Conf. USENIX Security Symp., 2009, pp. 299–316.

[12] S. Garfinkel and A. Shelat, “Remembrance of data Passed: A study
of disk sanitization practices,” IEEE Security Privacy, vol. 1, no. 1,
pp. 17–27, Jan. 2003.

[13] P. Gutmann, “Secure deletion of data from magnetic and
solid-state memory,” in Proc. 6th USENIX Security Symp., 1996,
pp. 22–25.

[14] P. Gutmann, “Data remanence in semiconductor devices,” in Proc.
10th Conf. USENIX Security Symp., 2001, pp. 39–54.

[15] F. Hao, M. Kreeger, B. Randell, D. Clarke, S. Shahandashti, and
P. Lee, “Every vote counts: Ensuring integrity in large-scale elec-
tronic voting,” USENIX J. Election Technol. Syst., vol. 2, no. 3,
pp. 1–25, 2014.

[16] N. Joukov, H. Papaxenopoulos, and E. Zadok, “Secure deletion
myths, issues, and solutions,” in Proc. 2nd ACM Workshop Storage
Security Survivability, 2006, pp. 61–66.

[17] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable secure file sharing on untrusted storage,” in
Proc. 2nd USENIX Conf. File Storage Technol., 2003, pp. 29–41.

[18] R. Kissel, M. Scholl, S. Skolochenko, and X. Li, “Guidelines for
media sanitization,”NIST Special Publication, vol. 800–88, 2006.

[19] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach,
“Analysis of an electronic voting system,” in Proc. 25th IEEE
Symp. Security Privacy, May, 2004, pp. 27–40.

[20] J. Lee, S. Yi, J. Y. Heo, H. Park, S. Y. Shin, and Y. K. Cho, “An effi-
cient secure deletion scheme for flash file systems,” J. Inf. Sci. Eng.,
vol. 26, pp. 27–38, 2010.

[21] B. Lee, K. Son. D. Won, and S. Kim, “Secure data deletion for USB
flash memory,” J. Inf. Sci. Eng., vol. 27, pp. 933–952, 2011

[22] M. Paul and A. Saxena, “Proof of erasability for ensuring compre-
hensive data deletion in cloud computing,” Commun. Comput. Inf.
Sci., vol. 89, Part 2, pp. 340–348, 2010.

[23] D. Perito and G. Tsudik, “Secure code update for embedded devi-
ces via proofs of secure erasure,” in Proc. 15th Eur. Conf. Res. Com-
put. Security, 2010, pp. 643–662.

[24] R. Perlman, “File system design with assured delete,” in Proc. 3rd
IEEE Int. Security Storage Workshop (SISW), 2005, pp. 83–88.

[25] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. D.
Rubin, “Secure deletion for a versioning file system,” in Proc. 4th
Conf. USENIX Conf. File Storage Technol., 2005, vol. 4, pp. 143–154.

[26] J. Reardon, S. Capkun, and D. Basin, “Data node encrypted file
system: Efficient secure deletion for flash memory,” in Proc. 21st
Usenix Symp. Security, 2012, pp. 333–348.

[27] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure data deletion,”
in Proc. IEEE Symp. Security Privacy, 2013, pp. 301–315.

[28] J. Reardon, H. Ritzdorf, D. Basin and S. Capkun, “Secure data
deletion from persistent media,” in Proc. ACM Conf. Comput. Com-
mun. Security, 2013, pp. 271–284.

[29] D. Stinson, Cryptography: Theory and Practice, 3rd ed. London, U.K.:
Chapman & Hall, 2006.

[30] H. Tews and B. Jacobs, “Performance issues of selective disclosure
and blinded issuing protocols on java card,” in Proc. 3rd IFIP WG
11.2 Int. Workshop Inf. Security Theory Practice, 2009, pp. 95–111.

[31] D. Wheeler, “Protocols using keys from faulty data (transcript of
discussion),” in Proc. 9th Security Protocols Workshop, 2002,
no. 2467, pp. 180–187.

[32] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J.
A. Halderman, C. J. Rossbach, B. Waters, and E. Witchel,
“Defeating vanish with low-cost sybil attacks against large
DHTs,” in Proc. 17th Netw. Distrib. Syst. Security Symp., 2010.

[33] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably eras-
ing data from flash-based solid state drives,” in Proc. 9th USENIX
Conf. File Storage Technol., 2011, pp. 105–117.

[34] M. Wei and S. Swanson, “SAFE: Fast, verifiable sanitization for
SSDs,” Technical Report CS2011-0963, University of California,
San Diego, 2011.

628 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

[35] C. P. Wright, M. C. Martino, and E. Zadok, “NCryptfs: A secure
and convenient cryptographic file system,” in Proc. 2003 USENIX
Annu. Tech. Conf., 2003, pp. 197–210.

[36] C. Wright, D. Kleiman, ND S. Sundhar, “Overwriting hard drive
data: The great wiping controversy,” in Proc. 4th Int. Conf. Inf.
Syst. Security, 2008, pp. 243–257.

[37] “Digital Signature Standard (DSS),” Federal Information Processing
Standards Publication, NIST FIPS Pub 186-4, Jul. 2013.

[38] Specification of High Capacity Smart Cards. [Online]. Available:
http://www.ecebs.com/, May 2015.

[39] Java Card Platform Specification 2.2.2. [Online]. Available: http://
www.oracle.com/technetwork/java/javacard/specs-138637.
html, May 2015.

[40] The Guardian news on the Snowden documuments. (2013, Sep.).
[Online]. Available: http://www.theguardian.com/world/2013/
sep/05/nsa-gchq-encryption-codes-security

[41] Smart Card Solution Provider. [Online]. Available: http://www.
javacardsdk.com/, May 2015.

[42] Mobile Technologies. [Online]. Available: http://www.motechno.
com/, May 2015.

[43] IBM Tivoli Storage Manager HSM. [Online]. Available: http://
www-01.ibm.com/support/docview.wss?uid=swg21319299,
May 2015.

Feng Hao received the PhD degree from the
University of Cambridge in 2007. After working in
security industry for several years, he joined the
School of Computing Science, Newcastle Univer-
sity, as a lecturer in 2010. He is currently a reader
(associate professor) in Security Engineering and
co-leads the Secure & Resilient Systems (SRS)
group at the School of Computing Science, New-
castle University. He is a member of the IEEE.

Dylan Clarke received the MMath, MSc, and
PhD degrees from Newcastle University. He has
a background in web application and CRM
system development for local government. He
is currently a research associate with Newcastle
University. His research interests include
e-voting, security, dependability, and distributed
algorithms.

Avelino Francisco Zorzo has a computer sci-
ence BSc degree from the Federal University of
Rio Grande do Sul, Brazil in 1989, computer sci-
ence MSc degree from the Federal University of
Rio Grande do Sul, Brazil in 1994, computing sci-
ence PhD degree from the University of Newcas-
tle, England in 1999, and a post doctorate at the
Cybercrime and Computer Security Centre at the
Newcastle University in 2012. He has held the fol-
lowing positions in Brazil: Liaison with Industry
(director) at the Brazilian Computing Society,

adjunct coordinator for post-graduate accreditation for the Ministry of
Education in Brazil, head of the Computing Science School at PUCRS,
member of the Ethical in Research Committee at PUCRS, director at the
IT Users Society in Rio Grande do Sul, member of the Board for the
Association of IT Companies in Rio Grande do Sul. His main research
interests include: security, fault tolerance, software testing, and operat-
ing systems. He has published more than 70 technical papers in refer-
eed conferences and journals.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HAO ETAL.: DELETING SECRET DATA WITH PUBLIC VERIFIABILITY 629

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 14:49:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

