
Canopus: A Domain-Specific Language for
Modeling Performance Testing

Maicon Bernardino∗†, Avelino F. Zorzo∗, Elder M. Rodrigues∗‡
∗Postgraduate Program in Computer Science – Faculty of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS) – Porto Alegre, RS, Brazil
†FEEVALE University – Novo Hamburgo, RS, Brazil

‡Federal University of Health Sciences of Porto Alegre (UFCSPA) – Porto Alegre, RS, Brazil

bernardino@acm.org, avelino.zorzo@pucrs.br, elderr@ufcspa.edu.br

Abstract—Despite all the efforts to reduce the cost of the testing
phase in software development, it is still one of the most expensive
phases. In order to continue to minimize those costs, in this paper,
we propose a Domain-Specific Language (DSL), built on top of
MetaEdit+ language workbench, to model performance testing
for web applications. Our DSL, called Canopus, was developed
in the context of a collaboration1 between our university and a
Technology Development Laboratory (TDL) from an Information
Technology (IT) company. We present, in this paper, the Cano-
pus metamodels, its domain analysis, a process that integrates
Canopus to Model-Based Performance Testing, and applied it to
an industrial case study.

Index Terms—performance testing; domain-specific language;
domain-specific modeling; model-based testing.

I. INTRODUCTION AND MOTIVATION

It is well-known that the testing phase is one of the most

time-consuming and laborious phases of a software develop-

ment process [1]. Depending on the desired level of quality

for the target application, and also its complexity, the testing

phase can have a high cost. Normally defining, designing,

writing and executing tests require a large amount of resources,

e.g. skilled human resources and supporting tools. In order to

mitigate these issues, it would be relevant to define and design

the test activity using a well-defined model or language and

to allow the representation of the domain at a high level of

abstraction. Furthermore, it would be relevant to adopt some

technique or strategy to automate the writing and execution of

the tests from this test model or language. One of the most

promising techniques to automate the testing process from the

system models is Model-Based Testing (MBT) [2].

MBT provides support to automate several activities of

a testing process, e.g. test cases and scripts generation. In

addition, the adoption of an MBT approach provides other

benefits, such as a better understanding on the application, its

behavior and test environment, since it provides a graphical

representation about the System Under Test (SUT). Although

MBT is a well-defined and applied technique to automate some

testing levels, it is not fully explored to test non-functional

requirements of an application, e.g. performance testing. There

are some works proposing models or languages to support

1Study developed by the Research Group of the PDTI 001/2016, financed
by Dell Computers with resources of Law 8.248/91.

the design of performance models. For instance, the SPT

UML profile [3] relies on the use of textual annotations on

models, e.g. stereotypes and tags to support the modeling of

performance aspects of an application. Another example is the

Gatling [4] Domain-Specific Language (DSL), which provides

an environment to write textual representation of an internal

DSL based on industrial needs and tied to a testing tool.

Although these models and languages are useful to support

the design of performance models and also to support testing

automation, there are a few limitations that restrict their

integration in a testing process using an MBT approach.

Despite the benefits of using an UML profile to model specific

needs of the performance testing domain, its use can lead to

some limitations. For instance, most of the available UML

design tools do not provide support to work with a well-

defined set of UML elements, which is needed to work with

a restricted and specialized language. Thus, the presence of

several unnecessary modeling elements may result in an error-

prone and complex activity.

Most of these issues could be mitigated by the definition

and implementation of a graphical and textual DSL to the

performance testing domain. However, to the best of our

knowledge, there is little investigation on applying DSL to

the performance testing domain. For instance, the Gatling

DSL provides only a textual representation, based on the

Scala language [4], which is tied to a specific load generator

technology - it is a script-oriented DSL. The absence of a

graphical representation could be an obstacle to its adoption

by those performance analysts that already use some type

of graphical notation to represent the testing infrastructure

or the SUT. Furthermore, as already stated, the use of a

graphical notation provides a better understanding about the

testing activities and SUT to the testing team as well as to

developers, business analysts and non-technical stakeholders.

Another limitation is that the Gatling DSL is bound to a

specific workload solution.

Therefore, it would be relevant to develop a graphical

modeling language for the performance testing domain to

mitigate some of the limitations mentioned earlier. In this

paper, we propose Canopus, a DSL that aims to provide a

graphical and textual way to support the design of performance

models, and that can be applied in a model-based performance

2016 IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-1827-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICST.2016.13

157

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

testing approach. Hence, our DSL scope is to support the per-

formance testing modeling activity, aggregating information

about the problem domain to provide better knowledge sharing

among testing teams and stakeholders, and centralizing the

performance testing documentation. Moreover, our DSL will

be used within an MBT context to generate performance test

scripts and scenarios for third-party tools/load generators. It is

important to mention that during the design and development

of our DSL, we also considered some requirements from a

Technology Development Lab (hereafter referred to as TDL)

of an industrial partner, in the context of a collaboration

project to investigate performance testing automation. These

requirements were: a) the DSL had to allow for representing

the performance testing features; b) the technique for devel-

oping our DSL had to be based on Language Workbenches;

c) the DSL had to support a graphical representation of the

performance testing features; d) the DSL had to support a

textual representation; e) the DSL had to include features that

illustrate performance counters (metrics, e.g. CPU, memory);

f) the DSL had to allow the modeling of the behavior of

different user profiles; g) traceability links between graphical

and textual representations should require minimal human

intervention; h) the DSL had to be able to export models to

specific technologies, e.g. HP LoadRunner, MS Visual Studio;

i) the DSL had to generate model information in an eXtensible

Markup Language (XML) file; j) the DSL had to represent

different performance test elements in test scripts; and, k) the

DSL had to allow the modeling of multiple performance test

scenarios. The rational and design decisions for our DSL are

described in [5].

In this paper, we discuss the performance testing domain

and describe how the metamodels were structured to compose

our DSL. Besides, we also present how Canopus was designed

to be applied with an MBT approach to automatically generate

performance test scenarios and scripts. To demonstrate how

our DSL can be used in practice, we applied it throughout an

actual case study from the industry.

This paper is organized as follows. Section II introduces

related background on performance testing and DSL, and

discusses related work. Section III presents an analysis about

the performance domain and describes the Canopus metamod-

els. Section IV describes a model-based performance testing

process that integrates Canopus. Section V presents how

we applied Canopus in an industrial case study. Section VI

concludes the paper with some future directions and points

out lessons learned.

II. BACKGROUND

This section introduces Model-Based Performance Testing

and Domain-Specific Languages, and discusses the related

work.

A. Model-Based Performance Testing

Performance engineering is an essential activity to im-

prove scalability and performance, revealing bottlenecks of the

SUT [6], and can be applied in accordance with two distinct

approaches: a predictive-based approach and a measurement-

based approach. The predictive-based approach describes how

the system operations use the computational resources, and

how the limitation and concurrence of these resources af-

fect such operations, usually, the design is supported by

formal model, e.g. Finite State Machine (FSM). As for the

measurement-based approach supports the performance testing

activity, which can be classified as load testing, stress testing

and soak (or stability) testing [7]. Each one of these differ

from each other based on their workload and the time that

is available to perform the test. They can also be applied to

different application domains such as desktop, mobile, web

service, and web application.

Based on that, a variety of testing tools have been devel-

oped to support and automate performance testing activities.

The majority of these tools take advantage of one of two

techniques: Capture and Replay (CR) or Model-Based Testing

(MBT). In a CR-based approach, a performance engineer must

run the tests manually one time on the web application to be

tested, using a tool on a “capture” mode, and then run the load

generator to perform “replay” mode. In an MBT [2] approach,

a performance engineer designs the test models, annotates

them with performance information and then uses a tool to

automatically generate a set of test scripts and scenarios.

There are some notations, languages and models that can

be applied to design performance testing, e.g. Unified Mod-

eling Language (UML), User Community Modeling Lan-

guage (UCML) [8] and Customer Behavior Modeling Graph

(CBMG) [9]. Some of these notations are only applicable

during the designing of the performance testing, to support its

documentation. For instance, UCML is a graphical notation

to model performance testing, but it does not provide any

metamodels able to instantiate models to support testing

automation. Nevertheless, other notations can be applied later

to automate the generation and execution of performance test

scripts and scenarios during the design and execution phases.

Another way to design testing for a specific domain is using

a DSL.

B. Domain-Specific Languages

Domain-Specific Languages (DSL), also called application-

oriented, special purpose or specialized languages, are lan-

guages that provide concepts and notations tailored for a

particular domain [10]. Nevertheless, to develop a DSL, a

Domain-Specific Modeling (DSM) is required to lead to a

solid body of knowledge about the domain. DSM is a method-

ology to design and develop systems based on Model-Driven

Development (MDD). One important activity from a DSM is

the domain analysis phase, which deals with domain’s rules,

features, concepts and properties that must be identified and

defined.

A strategy to support the creation and maintenance of a DSL

is to adopt tools called Language Workbenches (LW) [11]. LW

is an environment to develop metamodels. There are some

available LW, such as Microsoft Visual Studio Visualization

and Modeling SDK [12], Generic Modeling Environment

158

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

(GME) [13], Eclipse Modeling Framework (EMF) [14], and

MetaEdit+ Workbench [15]. Besides implementing the anal-

ysis and code generation process, an LW also provides a

better editing experience for DSL developers, being able to

create DSL editors with power similar to modern IDEs [10].

Thereby, DSL are classified with regard to their creation

techniques/design as: internal, external, or based on LW [16].

The use of DSL presents some opportunities, such as [17]:

a) better expressiveness in domain rules, allowing the user

to express the solution at a high level of abstraction. Con-

sequently, domain experts can understand, validate, modify

and/or develop their solutions; b) improving the communica-

tion and collaboration among testing and development teams,

as well as non-technical stakeholders; c) supporting artifact

and knowledge reuse. Inasmuch as DSL can retain the domain

knowledge, the adoption of DSL allows the reuse of the pre-

served domain knowledge by a mass of users, including those

inexperienced in a particular problem domain; d) enabling

better Return On Investment (ROI) in the medium- or long-

term than traditional modeling, despite the high investment to

design and deploy a DSL.

C. Related Work

There is a lack of novel models, languages and supporting

tools to improve the performance testing process, mainly in

the automation of scenarios and script generation. To the best

of our knowledge, there is little work describing performance

testing tools [18] [19]. For instance, [18] proposes the solution

called WALTy (Web Application Load-based Testing), which

is an integrated toolset with the objective of analyzing the

performance of web applications through a scalable what-
if analysis. This approach is based on a workload charac-

terization being derived with information extracted from log

files. The workload is modeled by using Customer Behavior

Model Graphs (CBMG) [9]. This approach focuses in the final

phase of the development process, since the system must be

developed to collect the log application and then generate

the CBMG. Conversely, our approach aims to support the

performance requirements identification, and it is performed

in the initial phase of the development process to facilitate the

communication among project stakeholders.

Krishnamurthy [19] presents an approach that uses appli-

cation models that capture dependencies among the requests

for the web application domain. This approach uses Extended

Finite State Machines (EFSM), in which additional elements

are introduced to address the dependencies among requests and

input test data. The approach is composed of a set of tools for

model-based performance testing. One tool that integrates this

set of tools is SWAT (Session-Based Web Application Tester),

which in turn uses the httperf tool to submit the synthetic

workload over the SUT. However, this approach presents some

disadvantages, such as being restricted to generating workload

for a specific workload tool and the absence of a model to

graphically design the performance testing.

Although these works introduce relevant contribution to

the domain, none of them proposed a specific language or

modeling notation to design performance testing. There are a

few studies investigating the development of DSL to support

performance testing [4] [20] [21]. Bui et al. [20] propose

DSLBench for benchmark generation, Spafford [21] presents

the Aspen DSL for performance modeling in a predictive-

based approach [6]. Meanwhile, Gatling DSL [4] is an internal

DSL focused in supporting a measurement-based approach.

Differently from them, our work provides a graphical and

textual DSL to design performance testing in a measurement-

based approach.

III. CANOPUS: A DOMAIN-SPECIFIC LANGUAGE FOR

MODELING PERFORMANCE TESTING

This section discusses the analysis of the performance

testing domain and the metamodels that compose our DSL. As

mentioned in Section I, the requirements and design decisions

for Canopus are described in [5].

A. Domain Analysis

The proposed DSL aims to allow a performance engi-

neer to model the behavior of web applications2 and their

environment. Through the developed models it is possible

to generate test scenarios and scripts that will be used to

execute performance testing. It is important to mention that

before we started to develop our DSL, some steps were taken

in collaboration with researchers from our group and test

engineers from the TDL to clearly define our problem domain.

The first step was related to the expertise that was acquired

during the development of a Software Product Line (SPL) to

derive MBT tools called PLeTs [22]. These SPL’s artifacts

can be split into two main parts: one that analyses models and

generates abstract test cases from those models, and one that

takes the abstract test cases and derive concrete test scripts to

be executed by performance testing tools. Several models were

studied during the first phase of the development of our SPL,

e.g. UCML, UML profiles, CBMG and FSM. Likewise, several

performance testing environments and tools were studied, such

as HP LoadRunner, MS Visual Studio and Neo Load.

Our second step was to apply some of the models and tools

identified in the previous step to test some open-source appli-

cations, such as TPC-W (Transaction Processing Performance-

Web) and Moodle Learning Management System. Further-

more, we also applied some of the MBT tools generated from

our SPL to test those applications and to support the test

of real applications in the context of our collaboration with

the TDL (see [23]). Those real applications were hosted in

highly complex environments, which provided us with a deep

knowledge on the needs of performance testing teams.

During our last step, we conducted a web-based survey

that has been answered by the performance test experts. An

example question3 is as follows: “Do you concur that the

following monitoring elements that compose our monitoring

metamodel for performance testing are representative?”. The

2Although we focus on web application, our DSL is not intended to be
limited to this domain.

3The complete survey details can be found at http://tiny.cc/ICST-2016.

159

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

participant had to answer using a five points Likert scale [24],

based on their perception of representativeness of the DSL

elements to symbolize performance testing concepts.

The steps above provided us with an initial performance

testing body of knowledge that was used as a base to define the

performance testing requirements and design decisions for our

DSL [5]. Thus, in order to determine the concepts, entities and

functionalities that represent the performance testing domain,

we adopted a strategy to identify and analyze the domain using

an ontology [25]. Besides this ontology, we used the body of

knowledge to provide the basis for determining the objects,

relationships, and constraints to express the performance test-

ing domain. This set of elements composes the metamodels

of Canopus DSL, which will be described in the next section.

To define the Canopus DSL, we need a model to create

our performance testing models, i.e. a metamodel, which can

be used to create abstract concepts for a certain domain [26].

A metamodel is composed of metatypes, which are used to

design a specific DSL. The development process of gener-

ating such metamodels is called metamodeling, which is a

framework defined by meta-metamodels to generate meta-

models. There are several metamodeling environments, a.k.a.
Language Workbenches (LW) (see Section II-B). To support

the creation of our DSL, we chose MetaEdit+, one of the first

successful commercial tools. MetaEdit+ supports the creation

and evolution of each of the Graph, Object, Port, Property,

Relationship and Role (GOPPRR) [26] [27] metatypes.

A Graph metatype is a collection of objects, relationships

and roles. These are bound together to show which objects a

relationship element connects through which roles. A graph

is also able to maintain information about which graphs its

elements decompose into. A graph is one particular model,

usually shown as a diagram. The Object metatype is the main

element that can be placed in graphs. Examples of objects

are the concepts of a domain that must be represented in a

graph. It is worthwhile to highlight that all instances of a

created object can be reused in other graphs. The Relationship

metatype is an explicit connection among two or more objects.

Relationships can be attached to an object via roles. The Role

metatype specifies how an object participates in a relationship.

A Port metatype is an optional specification of a specific

part of an object to which a role can connect to. Thus, ports

allow additional semantics or constraints on how objects can

be connected. The Property metatype can be included in all

other GOPPRR metatypes to specify what information can be

attached to them. In Figure 1 some examples of the basic

elements of these metatypes are labeled.

Canopus has 7 metamodels presented by 7 packages

(see Figure 2). The main metamodels that compose our

DSL are Canopus Performance Monitoring,

Canopus Performance Scenario, and Canopus
Performance Scripting, which together compose the

Canopus Performance Model.

1) Canopus Performance Monitoring Metamodel: The Per-

formance Monitoring (CPM) metamodel is intended to be

used to represent the servers deployed in the performance

testing environment, i.e. application, databases, or even the

load generators. Moreover, for each one of these servers,

information about the testing environment must be provided,

e.g. server IP address or host name. It is worth mentioning that

even the load generator must be described in our DSL, since

in several cases it can be desirable to monitor the performance

of the load generator.

The CPM metamodel requires that at least two servers

have to be modeled: one that hosts the SUT and another

that hosts the load generator and the monitoring tool. The

metatypes supported by the CPM metamodel are: 3 objects

(SUT, Load Generator (LG), Monitor); 2 relation-

ships (Flow, Association); and, 4 roles (From, To,

Source, Target). Moreover, these metatypes are bound

by 4 bindings. For instance, a Flow relationship connects,

using the From and To roles, the LG to the SUT objects.

Furthermore, two objects (LG and SUT) from the metamodel

can be decomposed (i.e, into subgraphs) in a Canopus
Performance Metric model.

2) Canopus Performance Scenario Metamodel: The Perfor-

mance Scenario (CPSce) metamodel is used to represent the

users workload profiles. In the CPSce metamodel, each user

profile is associated to one or more scripts. If a user profile is

associated with more than one test script, a probability must

be attributed to every script belonging to this profile, i.e. it

defines the number of users that will execute a test script. In

addition to setting user profiles, in the CPSce metamodel it

is also important to set one or more workload profiles. Each

workload profile is decomposed into a subgraph, a Canopus
Performance Workload (PW) metamodel, which in turn

is composed by 6 objects, defined as follows:

• Virtual Users (VU): number of VU who will make

Figure 1: GOPPRR metatypes from MetaEdit+ Workbench

Figure 2: Canopus class diagram

160

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

requests to the SUT;

• Ramp Up Time (RUT): time each set of ramp up users

takes to access the SUT;

• Ramp Up Users (RUU): number of VU who will access

the SUT during each ramp up time interval;

• Test Duration (TD): refers to the total performance test

execution time for a given workload. It is important to

mention that the test duration will take, at least, the

ramp up time multiplied by the number of intervals

of ramp up time plus the ramp down time multiplied

by the number of intervals of ramp down time, i.e.
TD ≥ n×RUT+m×RDT , where n = �V U/RUU�−1
and m = �V U/RDU� − 1;

• Ramp Down Users (RDU): defines the number of VU

who will leave the SUT on each ramp down time;

• Ramp Down Time (RDT): time a given set of ramp down

users takes to leave the SUT.

The CPSce metamodel is composed by 3 objects

(User Profile, Script, and Workload); 1 relationship

(Association); 2 roles (From and To). Besides, there

is a unique binding, which connects a User Profile
to Script objects, respectively, through From and To
roles. Moreover, each Script object attached to a scenario

model must be decomposed into a subgraph, i.e. a Canopus
Performance Scripting metamodel.

3) Canopus Performance Scripting Metamodel: The Per-

formance Script (CPScr) metamodel represents each of the

scripts from the user profiles in the scenarios part. The CPScr

metamodel is responsible for determining the behavior of

the interaction between VU and SUT. Each script includes

activities, such as, transaction control or think time between

activities. Similarly to the percentage for executing a script,

which is defined in the CPSce metamodel, each script can also

contain branches that will have a user distribution associated

to each path to be executed, i.e. the number of VU that will

execute each path. During the description of each script, it is

also possible to define a set of parallel or concurrent activities.

This feature is represented by a pair of fork and join objects.

Our DSL also allows an activity to be decomposed into another

CPScr metamodel. The CPScr metamodel also supports that

a parameter generated in runtime can be saved to be used in

other activities of the same script flow (the SaveParameters

object handles this feature). The composition of the CPScr

metamodel are: 6 objects, 4 relationships, 9 bindings and 2

metamodels.

IV. A MODEL-BASED PERFORMANCE TESTING PROCESS

The aim of our Domain-Specific Modeling (DSM), using

Canopus, is to improve a performance testing process to

take advantage of MBT. Figure 3 shows our process for

modeling performance testing using Canopus. The process

incorporates a set of activities that have to be performed

by two different parties: Canopus and Third-Party.

The main activities that define our performance testing

process are: Model Performance Monitoring, Model
Performance Scenario, Model Performance

Scripting, Generate Textual Representation,

Generate Third-Party Scripts, Generate
XML, Execute Generated Scripts, Monitor
Performance Counters, and Report Test Results.

The details related to the activities of our performance testing

process are described next:

1) Model Performance Monitoring: The model

performance monitoring is the first activity of our process,

which is executed by the Canopus party. In this activity, the

SUT, monitor servers and performance metrics that will be

measured are defined. The milestone of this activity is the gen-

eration of a Canopus Monitoring Model. This model is

composed of SUT, Load Generator (LG) and Monitor objects.

A Monitor object is enabled to monitor the SUT and LG ob-

jects; this object is controlled by a Canopus Performance
Metric that can be associated with one or more of these

objects. A Canopus Performance Metric model rep-

resents a set of predefined metrics, e.g., memory, processor,

throughput, etc. Each one of them is associated with a metric

counter, which in turn are linked to a criterion and a threshold.

2) Model Performance Scenario: The next activ-

ity of our process consists of modeling the performance

test scenario. The Canopus Performance Scenario
Model is the output of this activity. This model is composed

of user profiles that represent VU that can be associated

with one or more script objects. Each one of these scripts

represents a functional requirement of the system from the

user profile point of view. Furthermore, a script is a detailed

VU profile behavior, which is decomposed into a Canopus
Performance Scripting Model. Besides, each sce-

nario allows to model several workloads in a same model.

A Canopus Performance Workload is constituted of

setup objects of test scenario, e.g. number of virtual users.

3) Model Performance Scripting: In this activity,

each script object, modeled in the Canopus Performance
Scenario Model from the previous activity, mimics (step-

by-step) the dynamic interaction by VU with the SUT. This ac-

tivity generates a Canopus Performance Scripting
Model that is composed of several objects, such as activity,

think time, save parameters and data table. It is important to

notice that activity and data table objects can be decomposed

into new sub-models. The former can be linked to a Canopus
Performance Scripting Model that allows to encapsu-

late a set of activities to propose their reuse into other models.

The latter is associated with a Canopus External File
that fills a dynamic model with external test data provided by

a performance engineer. After the three first activities from our

process, the performance engineers has to decide whether they

generate the textual representation from the designed models

(Monitoring, Scenarios and Scripting), or input for a third-

party tool, or even a generic XML file that might be integrated

to any other tool that accepts XML as input.

4) Generate Textual Representation: This ac-

tivity consists of generating a textual representation in a semi-

natural language, a DSL based on the Gherkin [28] language

that extends it to include performance testing information. Our

161

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Model-based performance testing process using Canopus

design decision to deploy this feature in Canopus is to facilitate

the documentation and understanding among development,

testing teams and stakeholders.

5) Generate Third-Party Scripts: Canopus was

designed to work also as a front-end to third-party performance

tools. Therefore, even though we can generate a “generic”

textual representation, our process can also generate input for

any testing tool, hence, it can be integrated with different load

generator tools such as HP LoadRunner or MS Visual Studio.

6) Generate XML: This activity is responsible to gener-

ate a Canopus XML file. We included this feature to support

the integration of Canopus with other technologies. Hence,

Canopus can export entire performance testing information

from Canopus models to an XML file. The ability to export

data in XML format might allow future Canopus users to use

other technologies or IDEs. For instance, in a previous work,

we developed a model-based performance testing tool, called

PLeTsPerf tool [23]. This tool can parse our Canopus XML

file and process the automatic generation of performance test

scenarios and scripts to HP Load Runner.

The other three activities shown in Figure 3 are not part of

the Canopus process and are just an example of one possible

set of steps that can be executed by a performance engineer,

depending on the third-party tool that is used. For example,

the Execute Generated Scripts activity consists of

executing the performance scenarios and scripts generated for

a third-party tool. During the execution of this activity the

load generator consumes the test data mentioned in the data

table object in Canopus Scripting Model; Monitor
Performance Counters activity is executed if the third-

party tool has a monitoring module; and, Report Test

Results activity is also only executed if the performance

tool has an analysis module. Some of these activities can use

information that exist in the Canopus models, e.g. Canopus
Monitoring Model.

V. AN INDUSTRIAL CASE STUDY: CHANGEPOINT

In this section we present an industrial case study, using

the Changepoint application4, in which our DSL is applied to

model performance testing information.

Changepoint is a commercial solution to support Portfo-

lio and Investment Planning, Project Portfolio Management

and Application Portfolio Management. This solution can be

adopted as a “out of the box solution” or it can be customized

based on the client needs. In the context of our case study,

Changepoint is customized in accordance with the specific

needs of a large IT company. Moreover, as Changepoint is

a broad solution, in our case study we focus on how our DSL

is applied to model the Project Portfolio Management module.

That is, we show how to instantiate the modeling performance

testing process. The goal of this case study is to evaluate and

also demonstrate how our DSL can be used throughout an

actual case study in an industrial setting.

To provide a better understanding of how Canopus was

applied in the context of our case study, we show how to

model performance testing using each one of the Canopus

metamodels. Basically, we intend to explore the following

Research Questions (RQ): RQ1. How useful is it to design
performance testing using a graphical DSL? RQ2. How
intuitive is a DSL to model a performance testing domain?

4www.changepoint.com

162

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

A. Performance Monitoring

Figure 4 shows the performance testing environment where

the Changepoint application is deployed to. This environment

is composed of five hosts: Database Server is a physical

server hosting the Changepoint database; WebApp is a virtual

machine hosting a web server; APP Server is a virtual ma-

chine hosting the applications server; Spy is a physical server

hosting a performance monitoring tool; and, the Workload
is a physical server hosting a workload generator tool. The

LoadRunner load generator is used to generate VU (syn-

thetic workload) to exercise the Web Server and APP Server
servers, and its monitoring module is hosted on the Spy server

for monitoring the level of resources used by the WebApp,

APP Server and Database Server servers. The monitoring

module can be set up with a set of performance metrics, as

well as the acceptable thresholds of computational resources,

e.g. processor, memory, and disk usage. For instance, Figure 5

presents a single metric of the Canopus Performance Metric

model. This figure depicted four objects; metric, counter,

criterion and threshold. In this case, the metric is memory
that is related to the Available MBytes counter. In turn, each

counter can be related to two or more criteria and thresholds. A

snippet of a textual representation of the Canopus Performance

Monitoring model is depicted in Figure 6. It is important

to highlight that the textual representation supports the def-

inition of several metrics, including the set up infrastructure

information (hostname, IP address) based on the monitoring

model (Figure 4) such as monitors, load generators, and SUT

servers. This model presents a memory metric composed of

three criteria based on available memory, each one of them is

associated to a number of VU that are accessing the SUT. For

instance, when there are less than 350 users, a host must have

at least 3000 MB of available memory (see Figure 6).

Figure 4: Graphical representation of the Changepoint

Canopus Performance Monitoring model

B. Performance Scenario

The Changepoint usage scenarios and workload distribution

were defined based on the application requirements, describing

the user profiles and their respective interactions. Figure 7

shows part of the graphical representation of the Canopus
Performance Scenario model for the Changepoint ap-

plication. This model contains 7 user profiles: Business
Administrator, Development Team, Post Sales,

Pre Sales, Project Manager, Resource Manager
and Solution Architect. There are 63 script objects

associated with these user profiles, which represent the be-

havior of each user profile when interacting with a system

functionality. Moreover, each association relationship, between

a script object and a user profile, has a percentage that defines

the number of VU, from the total number of users defined in

the workload model, e.g. 96.1%. The user profile total number

of VU is defined by the percentage annotated in the user profile

element in this model.

For instance, the Development Team user profile repre-

sents 77% of the workload of an entire Changepoint scenario.

This workload is applied to execute the Submit Expected
Time script based on the Stability Testing work-

load object. This object is decomposed in a Canopus
Performance Workload model, depicted in Figure 8.

This workload model defines that 1000 VU will be running

over Changepoint during 4 hours (test duration time). Besides,

this model also presents information about the users ramp up

and ramp down. For instance, during the test execution 100

VU will be added during every 10-minute interval. In the same

way, the ramp down defines the way in which the VU will

Figure 5: Graphical representation of the Canopus
Performance Metric model

1 Feature Monitor the performance counters of the system
and environment.

2 Monitoring Control the performance counters of the
application.

3 Given that "APP_Server:192.168.1.2" WebApp monitored by
"Spy:192.168.1.5" monitor

4 And workload generated through "Workload:192.168.1.6"
load generator(s) for the WebApp on "AppServer"

5 And the "Changepoint Performance Scenario" test
scenario

6 When the "Memory" is monitored
7 Then the "Available MBytes Counter" should be at least

"2000" MB when the number of virtual user are
between "350" and "700"

8 And at least "1000" MB when the number of virtual
user is greater than or equal to "700"

9 And at least "3000" MB when the number of virtual
user is less than "350"

Figure 6: Snippet of textual representation of the Changepoint

Canopus Performance Monitoring model

163

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

leave the SUT. Thus, the Stability Testing workload

defines that 1000 VU will be simultaneously executing during

2h10min, the users ramp up time (1h40min) and users ramp

down time (10min), therefore, completing 4 hours of test

duration time.
A textual representation of the graphical performance test

scenario, depicted in Figure 7 and Figure 8, is presented in

Figure 9. This textual representation, as mentioned before, is

structured based on the Gherkin language, but with elements

that represent the semantics for performance testing, e.g.
virtual users, ramp up and ramp down, think time. It is worth

to highlight that in this textual representation the percentage

distribution among VU is already expressed in terms of values

based on the workload. Due to space limitation, only a snippet

of the Canopus Performance Scenario models are

presented in this paper5.

Figure 7: A partial graphical representation of the Changepoint

Canopus Performance Scenario model

Figure 8: Graphical representation of the Changepoint

Canopus Performance Workload model

C. Performance Scripting
As presented in Section III-A3, it is possible to as-

sociate a subgraph model for each script element from

5The models designed during this case study and survey details can be
found at http://tiny.cc/ICST-2016.

1 Feature Execute the test scenario for a workload
2 Scenario Evaluate the "Stability Testing" workload for

"1000" users simultaneously
3 Given "100" users enter the system for each "00:10:00"
4 And "100" users leave the system for each "00:01:00"
5 And "1000" users register into the system

simultaneously
6 And performance testing execution during "04:00:00"
7 When "1%" ("20") of the virtual users execute the

"Solution Architect" user profile:
8 ...
9 When "77%" ("770") of the virtual users execute the

"Development Team" user profile:
10 Then "3.9%" ("30") of them execute the "Adjust Approve

Time" script
11 And "96.1%" ("740") of them execute the "Submit

Expected Time" script
12 ...

Figure 9: Snippet of textual representation of the Changepoint

Canopus Performance Scenario model

Figure 10: Graphical representation of the Changepoint

Canopus Performance Scripting model for the

Submitted Expected Time script

a Canopus Performance Scenario model. Therefore,

each script element presented in the Changepoint scenario

model is decomposed into a Canopus Performance
Script model, which details each user interaction with

the SUT functionalities. Figure 10 presents a snippet of the

Submit Expected Time script. This model is composed

of four activities, each one of them has another subgraph

model associated, represented by “+” (plus) on the bottom

script element. This decomposition allows to reuse part of the

modeled performance scripts. For instance, in this case study

a _Login script element is decomposed into a model that is

included into several others scripts.

Figure 11 shows the Canopus Performance Script
model of the Timesheet Alpha PTC Filter script

from the main model presented in Figure 10. This model is de-

signed with 15 activity elements, 2 data tables (Server.dat
and TaskId.dat) elements, a think time element (Clock

element), and a couple of join and fork elements, i.e., the

Cal JQ, Time Sheet Status, Cal JQ Time Sheet
Status and Form Time Sheet are executed in parallel.

In some activities, test data must be dynamically generated.

This data can be parametrized using data table elements. For

instance, the TaskId.dat element provides test data for four

activities, e.g. Time Sheet Open Task.

A textual representation of the performance scripting model

from Figure 10 is shown in Figure 12. An advantage of using

a textual representation is to present all performance testing

information annotated in the model, facilitating the view of

all relevant information. Although the graphical representation

provides a better way to represent the main domain concepts,

there are some information that are better represented in the

164

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

Figure 11: Graphical representation of the Changepoint CPScr model for the _Timesheet Alpha PTC Filter script

1 Feature Execute the performance test script for different
user profiles

2 Script performance test script based on Test Case N. 1
from "Timesheet Alpha PTC Filter"

3 Given the "Utility Post Xml" activity through "http://{
Server}/Utility/UtilityPostXml.aspx?rid={{rId}}&sno
={{sno}}" action

4 When the system randomize the "Server" data within
{Server.Server} that is dynamically generated and up-
dated on each interaction based on a strategy random

5 And the system loaded the "rid" and "sno" data values
previously stored

6 Then I will be taken to "http://{Server}/Core/TimeSheet/
vwTimeSheet.asp?rid={{rId}}&sno={{sno}}" action in
the "View Time Sheet" activity

7 ...
8 Then I will be taken to "http://{Server}/Core/Treeviews/

TimeSheet.aspx?cid=tvEngTime&rid={{rId}}&reId=&sno
={{sno}}&id={EngagementId}" action in the "Time
Sheet Engagement Id" activity

9 And the system randomize the "TaskId" data within {Tasks
.TaskId}, which is dynamically generated and update
on each interaction based on a strategy random

10 And the system randomize the "EngagementId" data within
{Tasks.EngagementId}, which is dynamically generated
and updated on each interaction based on a strategy
same as "TaskId"

11 ...
12 Examples: TaskId.dat
13 |CUSTOMERID | ENGAGEMENTID | PROJECTID | TASKID |
14 |C8DDF527-4A13| 9E988BD0-AD4D| FA13E2DC-FE3E| E9DD7653-13BB|
15 |C8DDF527-4A13| 555549F3-3473| E8453F8B-F8B7| C8AFD538-A7C7|
16 |C8DDF527-4A13| 23B6FFD9-5E9C| 074C8F57-B7C9| 39097DBF-6DF3|

Figure 12: Snippet of textual representation of the Changepoint

Canopus Performance Scripting model

elements from the textual representation. Furthermore, some

activities (see Figure 12) have a dynamic parameter that refers

to a data table, such as the Time Sheet Engagement
Id activity (line 8) that refers to the {EngagementId}
parameter, which in turn refers to a data table presented at the

end of the script (line 10). Note that the test data associated

to the {EngagementId} parameter will be updated on each

interaction of a virtual user based on the {TaskId} parameter

(line 9).

D. Case Study Analysis

We investigated and answered each one of the research

questions stated previously in Section V, based on the results

of our case study and interviews conducted with a performance

testing team. Moreover, a web-based survey was answered by

fifteen performance test experts. The purpose of this survey

was to evaluate the graphical elements and their represen-

tativeness to symbolize performance elements that compose

each Canopus metamodel (Scripting, Scenario, Monitoring).

The subjects answered a survey composed of: (i) statements

to find whether the element is representative for a specific

metamodel, based on a five points Likert scale [24]: Disagree

Completely (DC), Disagree Somewhat (DS), Neither Agree

Nor Disagree (NAND), Agree Somewhat (AS) and Agree

Completely (AC); (ii) open questions to extract their opinions

on each metamodel. The answers were summarized in the

frequency diagram shown in Figure 13. The numbers in this

figure are based on the evaluation of 37 elements: 13 elements

for the CPScr metamodel, 10 for CPSce metamodel and 14 for

CPM metamodel. The frequency diagram presents the results

grouped by each set of evaluated elements for each metamodel.

As can be seen in the figure, 81.54% (60.51% AC + 21.03%

AS) of the answers understand that the Monitoring elements

are representative for the CPM metamodel. For the CPSce

metamodel, 90.67% (73.33% AC + 17.33% AS) agree that

the elements for that metamodel are representative. Finally,

85.71% (67.62% AC + 18.1% AS) agree that the elements

represent the features they intend for the CPScr metamodel.

These results are used as part of the evaluation of our DSL.

Each of the research questions mentioned in Section V, are

answered next.

RQ1. How useful is it to design a performance testing using
a graphical DSL? The graphical representation of a notation,

language or model is useful to better explain issues to non-

technical stakeholders. This was also confirmed by the perfor-

mance team that reported that using our approach, it is possible

to start the test modeling in early phases of the development

165

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

Monitoring

Scenario

Scripting

Disagree Completely (DC) Disagree Somewhat (DS)

Neither Agree nor Disagree (NAND) Agree Somewhat (AS)

Agree Completely (AC)

Figure 13: Frequency diagram of the graphical elements that

compose Canopus, grouped by metamodel

process. Furthermore, it would be possible to engage other

teams during all process, mainly the Business System Analyst

(BSA). The BSA is responsible to intermediate the business

layer between the developer team and the product owner.

Another interesting result pointed out by the subjects is that the

textual representation is also very appropriate, since it allows

to replace the performance testing specification. However, as

expected, there is a steep curve on the understanding of the

DSL notation and an initial overhead when starting using an

MBT-based approach instead of a CR-based approach.

RQ2. How intuitive is a DSL to model a performance testing
domain? The case study execution indicates that the use of our

DSL is quite intuitive, since the performance testing domain

is represented throughout graphs, objects, relationships and

properties. Visually, for instance, the scripting model can show

the different flows that have been solved in several test cases

on the fly, and also the decomposition features that can map

objects into other graphs. This feature is also related to the

reuse of partial models among models, characteristic of a DSL

that allows to improve the productivity and to reduce the spent

time on performance testing modeling activity.

VI. FINAL REMARKS AND LESSONS LEARNED

This paper presented Canopus, a DSL that was developed

in the context of a collaboration between our university and a

TDL from an IT company. Throughout an industrial case study,

we discussed the domain analysis and presented the Canopus

metamodels, as well as a process to integrate Canopus to

model-based performance testing in the context of a real

environment. Finally, we also showed how Canopus can be

used throughout a case study to model performance testing.

Analyzing the threats to validity of our proposal, we under-

stand that having applied Canopus to a single industrial case

study addressing only one application, could be a threat to

the conclusions of the viability of our DSL. We are aware

that we must further investigate the suitability of Canopus

to other real industrial scenarios. Furthermore, the selection

of a representative case study, as well as the complexity

and the size of the models designed during the study may

not be representative to generalize the results. Nevertheless,

to mitigate this threat we interviewed several performance

engineers, as well as selected a set of distinct software projects

from our TDL partner to choose the most representative case

study to evaluate Canopus. In summary, the main lessons we

have learned from the development process of Canopus are:

LL1) Domain analysis: domain analysis based on ontologies is

a good alternative to transform the concepts and relationships

from the ontology into entities and functionalities of the DSL.

There are several methods and techniques for describing this

approach, for instance [29] [30].

LL2) DSL over a General Purpose Language (GPL): a DSL

provides a better understanding of a domain than an adapted

GPL, e.g. UML profile. In previous studies [23] [31], we

empirically investigated the advantages and disadvantages on

using an MBT approach or a CR approach. The results

provided evidence towards proposing our DSL, since the UML

approach that was applied did not completely support the

entire domain concepts and rules. We are aware that we must

conduct further investigation to discuss the advantages on

using a DSL instead of UML or other GPL on the performance

testing domain.

LL3) Learning curve: one disadvantage of using a DSL is the

high cost of training users who will use the DSL, i.e. steep

learning curve [17]. However, this disadvantage can be handled

pragmatically, since the cost for a new staff to learn several

load generators technologies could be higher than compared

to our DSL.

LL4) Performance testing engagement: the experience with

our industrial partner point out that it is common to the

performance team to engage only on the final steps of software

development. Our DSL brings the performance team to engage

in early stages of the software development process.

LL5) Incremental development methodology for creating a
DSL: we adopted an incremental development methodology

for creating Canopus. This methodology allowed us to improve

the DSL on each interaction, which is composed of the

following steps: analysis, development, and utilization [17].

LL6) More reuse using models than scripts: it is easier to reuse

a Canopus model to create/compose other models than when

reusing scripts in a CR-based approach. Moreover, the use

of a CR-based approach could limit the reuse of previously

generated artifacts, inducing the tester to rewrite new scripts

from scratch.

In [32] we present an empirical experiment that shows that

Canopus is better suited for modeling performance testing than

UML models. Currently, we are working close to our partner,

which is trying Canopus to other actual projects. This will give

us some good insights on which elements should be improved,

altered or even included in Canopus.

ACKNOWLEDGMENTS

We thank several performance engineers from DELL and

researchers from the Research Center on Software Engineering

(CePES) at PUCRS that helped in development of our DSL.

166

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Yang, M. He, M. Li, Q. Wang, and B. Boehm, “Phase Distribution
of Software Development Effort,” in 2nd ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. New
York, USA: ACM, 2008, pp. 61–69.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, USA: Morgan Kaufmann, 2006.

[3] OMG, “UML Profile for Schedulability, Performance, and Time Speci-
fication - OMG Adopted Specification Version 1.1,” 2005.

[4] Gatling, “Gatling Stress Tool,” Available in: http://gatling.io/.
[5] M. Bernardino, A. F. Zorzo, E. Rodrigues, F. M. de Oliveira, and

R. Saad, “A Domain-Specific Language for Modeling Performance Test-
ing: Requirements Analysis and Design Decisions,” in 9th International
Conference on Software Engineering Advances, Nice, France, 2014.

[6] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in The Future of Software Engineering.
Washington, USA: IEEE, 2007, pp. 171–187.

[7] I. Molyneaux, The Art of Application Performance Testing: Help for
Programmers and Quality Assurance, 1st ed. O’Reilly, 2009.

[8] S. Barber, “User Community Modeling Language
(UCML) for performance test workloads,” Available in:
http://www.perftestplus.com/articles/ucml.pdf, sep. 2003.

[9] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes, “A
Methodology for Workload Characterization of E-commerce Sites,” in
1st ACM Conference on Electronic Commerce. New York, USA: ACM,
1999, pp. 119–128.

[10] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley, 2010.
[11] ——, “A Pedagogical Framework for Domain-Specific Languages,”

Software, IEEE, vol. 26, no. 4, pp. 13–14, July–Aug. 2009.
[12] Microsoft, “DSL Tools Web Site,” Available in:

http://msdn.microsoft.com/en-us/library/bb126259.aspx, 2015.
[13] GME, “Generic Modeling Environment,” Available in:

http://www.isis.vanderbilt.edu/projects/gme, 2015.
[14] EMF, “Eclipse Modeling Framework,” Available in:

http://www.eclipse.org/modeling/emf/, 2015.
[15] MetaCase, “MetaEdit+,” Available in: http://www.metacase.com/mep/.
[16] D. Ghosh, “DSL for the Uninitiated,” Queue, vol. 9, no. 6, pp. 10:10–

10:21, Jun. 2011.
[17] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages:

an Annotated Bibliography,” SIGPLAN Notices, vol. 35, pp. 26–36, Jun.
2000.

[18] G. Ruffo, R. Schifanella, M. Sereno, and R. Politi, “WALTy: A User
Behavior Tailored Tool for Evaluating Web Application Performance,”
in 3rd IEEE International Symposium Network Computing and Appli-
cations. Washington, USA: IEEE, 2004, pp. 77–86.

[19] D. Krishnamurthy, M. Shams, and B. H. Far, “A Model-Based Per-
formance Testing Toolset for Web Applications,” Engineering Letters,
vol. 18, no. 2, pp. 92–106, May 2010.

[20] N. Bui, L. Zhu, I. Gorton, and Y. Liu, “Benchmark Generation Using
Domain Specific Modeling,” in 18th Australian Software Engineering
Conference. Melbourne, Australia: IEEE, Apr. 2007, pp. 169–180.

[21] Spafford, Kyle L. and Vetter, Jeffrey S., “Aspen: A Domain Specific
Language for Performance Modeling,” in International Conference on
High Performance Computing, Networking, Storage and Analysis. Los
Alamitos, USA: IEEE, 2012, pp. 84:1–84:11.

[22] E. M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes, “PLeTs
Tool - Test Automation using Software Product Lines and Model Based
Testing,” in 22th International Conference on Software Engineering and
Knowledge Engineering. Redwood City, USA: Knowledge Systems
Institute Graduate School, Jul. 2010, pp. 483–488.

[23] E. M. Rodrigues, M. Bernardino, L. T. Costa, A. F. Zorzo, and F. M.
Oliveira, “PLeTsPerf - A Model-Based Performance Testing Tool,” in
8th IEEE International Conference on Software Testing, Verification and
Validation. Graz, Austria: IEEE, April 2015, pp. 1–8.

[24] R. Likert, “A technique for the measurement of attitudes,” Archives of
Psychology, vol. 140, no. 55, 1932.

[25] A. Freitas and R. Vieira, “An Ontology for Guiding Performance Test-
ing,” in IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technologies, Aug. 2014, pp. 400–407.

[26] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. John Wiley & Sons, 2007.

[27] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment,” in Pro-
ceedings of the 8th International Conference on Advances Information
System Engineering. London, UK: Springer-Verlag, 1996, pp. 1–21.

[28] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2012.

[29] R. Tairas, M. Mernik, and J. Gray, “Models in Software Engineering,”
M. R. Chaudron, Ed. Germany: Springer, 2009, ch. Using Ontologies
in the Domain Analysis of Domain-Specific Languages, pp. 332–342.

[30] T. Walter, F. Silva Parreiras, and S. Staab, “OntoDSL: An Ontology-
Based Framework for Domain-Specific Languages,” in 12th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems. Germany: Springer, 2009, pp. 408–422.

[31] E. M. Rodrigues, R. S. Saad, F. M. Oliveira, L. T. Costa, M. Bernardino,
and A. F. Zorzo, “Evaluating Capture and Replay and Model-based Per-
formance Testing Tools: An Empirical Comparison,” in 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement. New York, USA: ACM, 2014, pp. 9:1–9:8.

[32] M. Bernardino, E. Rodrigues, and A. Zorzo, “Performance Testing
Modeling: an empirical evaluation of DSL and UML-based approaches,”
in Proceeding of the 31st ACM Symposium on Applied Computing.
ACM, April 2016, pp. 1–6.

167

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 08,2022 at 17:02:25 UTC from IEEE Xplore. Restrictions apply.

