
Mitigating DoS to Authenticated Cloud REST APIs

Régio A. Michelin, Avelino F. Zorzo, Cesar A. De Rose

Computer Science School

Pontifical Catholic University of Rio Grande do Sul

Porto Alegre - Brazil

regio.michelin@acad.pucrs.br, avelino.zorzo@pucrs.br, cesar.derose@pucrs.br

Abstract—Systems available on the Internet are day-by-day

targets of Denial of Service (DoS) attacks. These attacks can leave

a system with high response time or even make it unresponsive. A

DoS attack can be executed at the network level, just by

exploiting communication protocols weakness, or at application

level, by exploiting implementation issues. Based on this scenario,

this article presents a mechanism for mitigating DoS attacks

aimed at exploiting REST applications using authentication

tokens. This mitigation is based on the client behaviour, where it

can be classified as possible malicious client. Our results show a

response time decrease of 36% during an attack scenario applied

to a cloud management system.

Keywords-component; DoS; security; REST; cloud

I. INTRODUCTION

Nowadays, more and more systems become available on
the Internet facilitating their exposure to several different types
of attack. These attacks are intended to steal some information,
deploy malicious code and even to make a system slow to
respond, or worst, to become completely offline. This last kind
of attack is called Denial of Service (DoS) attack, and its main
goal is to bring a whole system offline, or at least make it very
slow [1]. In order for the attack to achieve its goal, it consumes
all computer resources like network bandwidth, CPU cycles or
storage space. Once the system is compromised, legitimate
clients are not able to have theirs requests responded.

When a malicious user is able to consume all computer
resources from its target, and make the computer system
unavailable for legitimate users, the attacker, in some cases,
uses this DoS attack to perform extortion on their target.
Recently the Feedly web site [2], which is a RSS feed
aggregator, was victim of a powerful DoS attack that consumed
its server’s bandwidth and legitimate users were not able to
access it. During the DoS, attackers contacted the web site
owners asking for ransom to stop the attack.

The DoS usage increased in last years due to the increase of
availability of services on the Internet, which was facilitated by
the grow of cloud computing. A system on the cloud consists
of physical or virtual machines that can be rented by
developers that pay only for what they use. So, from the
developers perspective, they do not need to worry with cloud
infrastructure because its management is delegated to the cloud
company (this business model is called Infrastructure as a
Service - IaaS) [3]. Developers hove to be only concerned on
writing the application service.

Many cloud companies grow using this cloud model, which
became popular due to the advances of virtualization
technology. Virtualization allows several virtual machines to
share the same hardware. These virtual machines are, usually,
managed by a software called hypervisor [4], e.g. VMWare [5],
Hyper-V [6], XEN [7] and KVM [8].

However, a hypervisor is not enough to create a cloud, it is
also necessary to include a system responsible to orchestrate
the usage of several different hypervisors, physical computer
allocation, storages, etc. Also, this system must provide a self-
service interface to allow cloud customers to manage their own
virtual machines [9]. Examples of Cloud Management Systems
(CMS) responsible to provide this kind of feature are, for
example, OpenStack [10], CloudStack [11] or Eucalyptus [12].

On the application level, a CMS provides several ways to
allow cloud customers to interconnect their own systems and to
manage virtual machines and services that will run on the cloud
[13]. One way for doing that is through REST
(Representational State Transfer) calls [14]. REST is an
abstraction architecture that allows distributed systems to
communicate over networks. However, once REST is available
to customers, the cloud company must consider how it will be
used to avoid that an attacker compromises the whole cloud
system, which will impact several different cloud clients.

One strategy to avoid damage to a CMS is to use an
authentication mechanism; hence only authenticated users will
be allowed to perform operations using REST [15]. This
authentication can be performed through user name and
password, and upon a correct pair of user name and password,
the CMS generates a token that will be used to allow the user
to access REST operations. This kind of authentication is
provided by different CMSs, but due to the way authentication
is provided by the CMS, it is possible to explore that for DoS
attacks.

Therefore, this work proposes a mechanism to mitigate
DoS that attack REST calls in CMSs. This will be achieved by
analysing client requests performed through REST calls, and
based on the client information and behaviour, i.e. whether it is
a legitimate client or not, to block REST calls. This mechanism
is based on the client IP and a timed control queue. As a case
study, we analysed the Keystone [16] component of
OpenStack, which is the module responsible for identity
management. Although we have applied our solution to a
CMS, we believe that our solution can be applied to any
application on the Internet that uses REST APIs.

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 106

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

This paper is organized as follows. Section II presents
related work. Section III describes how the problem was
observed in REST that relies on authentication tokens. Section
IV proposes a solution to mitigate the DoS attacks. Section V
shows our solution applied to OpenStack Keystone module.
Section VI presents our conclusions and future work.

II. RELATED WORK

Lu [13] work presents an empirical study related to cloud
APIs. In his work, Lu analyses the Amazon Elastic Compute
Cloud (EC2) APIs, and shows a quantitative classification
related to its API. The majority of cases that cause the API
failure are related to the call being unresponsive. There are also
a significant portion of cases in which they brought the system
to provide slow response time.

Kargl [17] studied the first DoS as well as its change to the
DDoS (Distributed DoS), performed through several machines
infected by daemons that allow an attacker to remotely control
the machine. To defend a system against these attacks, he
proposes a Linux kernel change that includes a mechanism to
route different packages through round robin and last
connection. This change basically creates a load balancing in
order to properly distribute client requests among servers.
Kargl solution works in a network level, and once the package
is received, it is validated and if the client is in a suspect queue,
the package is dropped.

The research performed by Beitollahi [18] presents a DoS
defense mechanism operating at application level. In his work,
Beitollahi creates a mechanism that attributes different points
to each received connection, based on connection history and
statistics. However, this solution is applied only if the client is
a human, because when it detects a suspect behaviour it sends a
CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart) to the client. However, since in
our scenario the client will be other system interacting through
REST, Beitollahi’s solution cannot be applied.

A collaborative defense system against DoS is proposed by
Tariq [19]. This defense system is deployed in several nodes
over a network, so when a node detects any malicious traffic, it
sends a sign to other nodes and then the malicious traffic is
filtered, avoiding it to reach the target system. This control and
analysis is performed by collecting packages in a time frame
window, and the collected data is compared with known DoS
behaviours. This research works at network level, so for
application level attacks, which create a valid connection, it
will not work properly allowing the malicious traffic to hit its
target.

III. DOS IN REST API

A. DoS Taxonomy

DoS attacks consist basically in consuming all system
available resources. The attack target goals are bandwidth,
when this attack is performed at network level, and CPU and
storage, when the attack is performed at application level. In
the latter case, the attack usually is more complex due to the
need to create many valid requests to its target, making this

attack much more expensive than a regular network level DoS
attack. Thus the attack can vary based on its characteristics.

The different characteristics allow the DoS attack to be
classified in different ways, i.e. it can be executed in different
levels from network to application level. Mirkovic [20]
presents a taxonomy to classify several different types of DoS
attacks, as well as defense mechanisms. Actually, Mirkovic
classifies Distributed DoS (DDoS), i.e. attacks that are
performed by several different clients aiming a single target
system. Fig. 1 presents a simplified version of Mirkovic
DDoS attack classification.

Figure 1. Taxonomy of DDoS attacks adapted from Mirkovic [20] work

As shown in Fig. 1, the source is used to evaluate if the
attack is performed from a valid IP address, normally when the
attack targets a specific application, or spoofed IP address,
applied to create more noise during attack to avoid its
detection. The exploited weakness can be semantic when the
attack targets a specific protocol implementation bug or even a
feature. During the attack, the number of packages sent can be
used to classify it to a constant or random rate. Depending on
the attack characteristics, it will let the target system slow or, in
the worst case, completely offline, not allowing legitimate
clients to have their valid requests answered.

B. Authentication on REST

Nowadays, as mentioned before, many requests performed
over Internet are based on the architectural style known as
REST [14]. REST calls are very important part to consider
when designing a system over the Internet or cloud, because
through this type of calls, different operations are exposed and
many different applications can be integrated through them.
Once REST calls are used, services will be available through
the network to be accessed by users or systems. At this point,
anyone with network access is able to perform a call to a REST
operation, i.e. any malicious user (attacker) can use this
exposure to try to compromise the system, for example, to
perform a DoS.

The exposed REST services can be divided into services
that do not require any authentication, i.e. the user does not
need to provide a user name and password or token to execute
an operation; and services that require an authentication
mechanism, which usually is performed by using user name
and password.

Fig. 2 shows the steps performed during a typical REST
operation that uses an authentication mechanism. First, a client
accesses the system address sending the user name and
password (1). This is performed, usually, through a secure

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 107

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

connection. The system validates this information and, if the
user name and password are correct, a token is generated and
stored in a database (2). After that, that token is returned to the
user (3). Therefore, the user does not need to send the user
name and password again every time a REST call is performed.
So every time the user wants to perform an operation, the
desired operation with the generated token is sent to the service
(4). Once the token is received by the REST service, it must
verify whether the user is allowed to execute the operation or
not. This validation is performed consulting a database (5) in
order to identify the user's permission level. If the token exists
and the user has enough privileges, the operation is executed.

Figure 2. Regular REST flow considering authentication

C. Performing the DoS attack

REST services allow a client to execute several different
operations that provide information about the system, for
example, list of virtual machines, list of system tenant users,
etc. If the client is not authenticated before executing these
operations, the system can be compromised. Even though the
authentication prevents a malicious user to access vital
information about the system, token validation action can be a
very attractive target for malicious users, because they can,
continuously, send invalid tokens to try to overload that
system. This might happen since the system will have to
validate each invalid token that is submitted.

Basically, the service overload problem happens because
upon receiving each request, the application has to check the
database (or something similar to a database, i.e. a storage that
contains valid tokens) in order to identify if the received token
is valid and what are the operations the owner of that token can
execute. This query may be time consuming depending on the
type of access to the database. Traditional detection and traffic
block mechanisms for DoS are not applied to this scenario,
because all the incoming traffic (on the network level) is valid,
e.g. the XML (eXtensible Markup Language) or JSON
(JavaScript Object Notation) contents sent through REST calls
are valid, only the token information is invalid. Usually, most
DoS defense mechanisms work at network level, which
consider only the information inside each network packet.
Even some works that detect the malicious behaviour at
application level, normally consider that on the other side of
the connection there is a human user, not a system [18] (see
Section II).

Fig. 3 presents the scenario where several malicious users
are sending malicious traffic in order to consume the CPU
target system, and then leading the legitimate client responses
being delayed or even denied.

Figure 3. Attack scenario to a sytem with REST calls

IV. PROPOSED SOLUTION

As mentioned in the problem described in Section III, the
service overload leads to resource depletion when the DoS
attack is executed. As mentioned in Section II, there are several
different DoS attacks based on different attack aspects (see
Fig. 1). Based on that taxonomy, this work focus on attacks
that are automatic (automation), based on brute force
(weakness), constant (attack rate), where the attackers have
valid IPs (source), and their target is an application (victim
type). The impact of the attacks can start as degrading, but can
be disruptive. The proposed defense mechanism is reactive
based on anomaly detection, running on the target computer,
which takes an action based on the attacker agent
identification.

Based on the presented problem (see Section III) and the
above classification, we propose a defense mechanism at
application level in order to minimize the unnecessary
validation of tokens, avoiding the system to query the database.
This implementation assumes that a legitimate client will not
flood the system with invalid tokens.

Our mechanism works in two modes: monitoring and
filtering. During monitoring, our mechanism verifies whether
the system is being stressed or not, for example, when the CPU
is overloaded, i.e. more than 70% of usage (this can be set with
a different percentage depending on the type of system in
which our mechanism is applied to). If the CPU is not
overloaded, it takes the requests from each client, and if it
detects that the requests contain invalid tokens, it marks this
client as a probable attacker and includes this client in a gray
list. When the system is overloaded, then our mechanism
moves from monitoring mode to filtering mode, in which the
gray list becomes a black list and clients that are in this list
have their REST calls dropped. Therefore, any request
performed by a client that is in the black list will be discarded
as soon as it is received. Our mechanism gets back to
monitoring mode again when the system is not overloaded, for
example, CPU usage is 30%. Notice that there is a difference
between how we consider whether the system is overloaded or
not. This is performed to avoid our mechanism to change
modes too frequently. Imagine the situation in which our
mechanism changes from monitoring mode to filtering mode
and right after it starts to drop REST packets, the CPU usage of
the system, for example, becomes 69%. If we considered that
the system is not overloaded anymore and we move our

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 108

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

mechanism to monitoring mode again, we stop dropping REST
packets, but in the next instant of time, the CPU usage could
become 70% again, so our system would move again to
filtering mode. This process could keep changing while the
attack takes place, basically keeping the CPU usage at a peak
that was not necessary if we dropped packets from the
attackers. This would not make the system disruptive, but it
would keep the system working in a degraded mode.

Figure 4. Client control solution achicteture

Fig. 4 shows our solution architecture, in which legitimate

and malicious clients send REST operations and tokens.
Notice that when our mechanism is in filtering mode, some
invalid tokens will be verified if the clients are not in the black
list. When this happens, during filtering mode, our
mechanism includes those clients in the black list and their
REST calls are also dropped. Requests from clients that are in
the black list will be dropped for a period of time (window).
After that window, our mechanism allows one request to be
verified to check if the client now has a valid token. This may
happen when a legitimate client sent invalid tokens (expired for
example) and was included in the gray/black list, but after
some time got a valid token. If we did not do that, legitimate
clients could be blocked forever. If the client is malicious and
keeps sending invalid tokens, then the time they are blocked
(window) is increased.

V. CASE STUDY: KEYSTONE MODULE OF OPENSTACK

In order to evaluate our proposed solution, we applied our
mechanism in an open source CMS, i.e. OpenStack, which is
composed by the following components: Cinder (responsible
for controlling block storages for the virtual machines), Glance
(responsible for managing operating system images), Swift
(controls object storages), Neutron (responsible for network
management), Horizon (provides the graphical user interface),
Nova (orchestrate all OpenStack components), and Keystone
(responsible for identity management). These different
modules communicate through REST calls. For example, when
a user accesses the cloud via the Horizon module, a token is
generated by the Keystone module. Every time a client wants
to execute a new operation, for example, to create a new virtual
machine or to list the available disks, a REST call is made to
the Horizon module that sends this call to the corresponding

module, i.e. Nova or Cinder. These modules will send a REST
call to Keystone to verify whether the token is valid or not.

As mentioned above, OpenStack modules communicate
among them through REST calls (In the Fig. 5, arrows
represent these calls).

Figure 5. Simplified OpenStack archicteture

Fig. 5 shows a simplified OpenStack version. As can be
seen in the figure, the Keystone module is central to the whole
functioning of OpenStack, since it is responsible for the
identity management. Therefore, Keystone is contacted by all
modules to verify whether an operation can be executed or not.
This is done because Keystone is responsible for storing all
valid tokens and for checking if an arriving token is valid or
not. Hence, Keystone is a good target for malicious users that
want to overload the whole infrastructure provided by
OpenStack. Once this user can get access to Keystone REST,
he can send multiple requests containing invalid tokens, and
this will force the component to consult the database,
overloading the system.

In order to avoid Keystone REST exposure, during
OpenStack installation, it is possible to configure the Linux
firewall to block any call to Keystone REST. Hence, only users
with access to the OpenStack management network are allowed
to access the REST API. Despite the firewall protection, in
some situations, like when a module has to be integrated with
third party software, this REST must be exposed. Therefore,
this default installation must be changed in order to allow
access to the Keystone REST from different networks. In this
work we assume the situation in which REST has to be
exposed.

Our experiment focuses on two Keystone REST operations
to be stressed, i.e. simulating an attack. After the attack is
performed, we retrieve the requests response time to verify
what the impact on the Keystone module is. The operations
that are called are: token generation, where we assume that a
real system user is calling the REST sending a valid user and
password; and token validation through tenant list operation, so
this operation requires a token to list all system tenants. Fig.
6 shows the time difference when both RESTs where
overloaded. The experiment executes three different scenarios:
i) clients start calling tenant list REST operation sending

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 109

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

invalid tokens; ii) the same operation but now in a stress
scenario where all clients are sending valid tokens; and, iii)
stress situation with clients sending valid users and passwords
but calling the token generation operation. In the three
execution scenarios, our system started in an idle state, and the
number of clients sending requests increased until 180000
requests. As can be seen in Fig. 6, response time degrades
significantly faster for invalid token validation than for token
generation or even for valid token validation.

A. Results Analysis

Since all cloud system were built on top of virtualization
concept (and using different hypervisors), we chose to run our
experiment on a virtualized infrastructure. The virtualization
system used was VMware workstation 10.0.1 running on an
Intel Core i5-4570@3.20GHz platform, with 16GB of RAM
bus DDR3 1600 and Microsoft Windows 7 Professional 64 bits
Operating System. The virtual machine where OpenStack
Grizzly was running uses 4GB of RAM and 2 processors using
Linux Ubuntu Server 14.04. The virtual machines for the client
have 2GB of RAM and 1 processor running on Linux Ubuntu
Server 14.04. The client virtual machines are used for starting
the attack scripts.

Figure 6. Response time increases when component is stressed

Figure 7. CPU usage during attack

Fig. 6 shows the response time, in milliseconds, for both

REST operations (token validation and generation). The system
handling 180000 invalid tokens requests for the Keystone
REST tenant list operation, would take 898 milliseconds (error
10%) to respond to a valid client. The same system validating

valid tokens for 180000 valid requests, would take 425
milliseconds (error 16%). On the other hand, while the system
was idle, this token generation time was 151 milliseconds
(error 11%). Besides this response time growth, the processor
usage also increased, reaching around 90%. Fig. 7 shows
this use and also that token validation is the operation that
demands more processor usage.

Once the problem was identified in the Keystone REST
operation, our solution was deployed in order to analyse the
received tokens. Running the system again with the same load
of 180000 and performing the tenant list operation with an
invalid token, the response time drops to 328 milliseconds
(error 10%). This time is approximately 36% faster than the
same scenario without our solution. Fig. 9 shows this time
difference.

Figure 8. Response time during token generation

Figure 9. Response time with our solution running

Fig. 8 shows the token generation during a system stress
scenario. We noticed that this response time varied from 401
milliseconds to 381 milliseconds considering an error of 15%
to our samples. This behaviour happens since the proposed
solution works only for handling the token validation
operation. We also noticed the processor usage decreased when
our solution is running. Fig. 10 shows the processor usage
on the system when our solution was applied. Our solution was
responsible for keeping its usage around 40%, against 90%
usage when no solution was applied.

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 110

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

Figure 10. Processor usage with our solution running

VI. CONCLUSION

In this paper we presented a solution to avoid DoS attacks
made on application level. These DoS attacks would be
performed exploiting the authentication mechanism of REST
calls, since every time a call is made, it is necessary to verify
whether a token, generated at the beginning of the process, is
valid or not. This might cause a system to overload if a huge
amount of invalid tokens is sent during normal operation.
Naturally, as our solution works only for DoS attacks on
application level, it is important to include also some kind of
protection to avoid DoS on network level. For example, if an
attack exploits a TCP/IP failure or even a network package
flood, then a solution like the one proposed by Tariq [19]
would successfully protect the system. Therefore, if these, and
other, solutions are used together, the system would be more
resilient against DoS attacks.

It is important to notice that when our solution is running,
there was an improvement on the response time when the
system is under attack (see Fig. 9). The response time was
improved in 36% when our solution is running, so even during
a DoS attack, the system still responds in an acceptable time.

As future works we intend to analyze the attacks that
happen during a time window. This time window will be used
to verify the amount of valid and invalid requests that are being
sent from the same IP address. This will be useful to avoid
dropping packets from legitimate clients that are behind a NAT
solution, i.e. if some attackers are executing behind a NAT, to
hide invalid packets with valid packets, our extended solution
would allow the CMS to reconfigure, dynamically, the
percentage of packets from that IP that might be filtered or not.

ACKNOWLEDGMENT

The authors would like to thank Mauro Storch the
discussions on cloud computing and to HP R&D Brazil for
providing a scholarship through Brazilian law 8.248/91.

REFERENCES

[1] L. D. Stein and J. N. Stewart, "WWW security faq: Securing against
denial of service attacks.", 2003, http://www.w3.org/Security/Faq/
wwwsf6.html (Access Date: 04 Jun, 2014).

[2] Feedly, "Denial of service attack [neutralized] — building feedly.",
2014, http://blog.feedly.com/2014/06/11/denial-ofservice-attack/
(Access Date: 05 Aug, 2014)

[3] W. Dawoud, I. Takouna, and C. Meinel, ―Infrastructure as a service
security: Challenges and solutions,‖ in 7th International Conference on
Informatics and Systems (INFOS), 2010, pp. 1–8.

[4] D. Perez-Botero, J. Szefer, and R. B. Lee, ―Characterizing hypervisor
vulnerabilities in cloud computing servers,‖ in Proceedings of the 2013
international workshop on Security in cloud computing, 2013, pp. 3–10.

[5] I. VMWare, "Vmware virtualization for desktop server, application,
public hybrid clouds.", 2014, http://www.vmware.com (Access Date: 03
Jul, 2014)

[6] I. Microsoft, "Virtualization for your modern datacenter and hybrid
cloud.", 2014, http://www.microsoft.com/enus/server-cloud/solutions/
virtualization.aspx (Access Date: 03 Jul, 2014)

[7] Xen, "The xen project, the powerful open source industry standard for
virtualization.", 2014, http://www.xenproject.org/ (Access Date: 03 Jul,
2014)

[8] KVM, "Kernel based virtual machine.", 2014, http://www.linux-
kvm.org/page/Main Page (Access Date: 03 Jul, 2014)

[9] P. M. e Timothy Grance, "The NIST definition of cloud computing.",
2002, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
(Access Date: 23 Jul, 2014)

[10] OpenStack, "Openstack open source cloud computing software.", 2014,
https://www.openstack.org/ (Access Date: 03 Sep, 2014)

[11] A. CloudStack, "Apache cloudstack: Open source cloud computing.",
2014, http://cloudstack.apache.org/ (Access Date: 23 Jul, 2014)

[12] Eucalyptus, "Eucalyptus open source private cloud software.", 2014,
https://www.eucalyptus.com/ (Access Date: 23 Jul, 2014)

[13] Q. Lu, L. Zhu, L. Bass, X. Xu, Z. Li, and H. Wada, "Cloud API issues:
an empirical study and impact," in Proceedings of the 9th international
ACM Sigsoft conference on Quality of software architectures, 2013, pp.
23–32.

[14] R. T. Fielding, "Fielding dissertation: Chapter 5: Representational state
transfer (rest).", 2000, http://www.ics.uci.edu/ fielding/pubs/dissertation/
restarchstyle.htm (Access Date: 03 Jun, 2014)

[15] R. Gracia-Tinedo, M. Sanchez Artigas, and P. Garcia Lopez, ―Cloudas-
a-Gift: Effectively exploiting personal cloud free accounts via REST
APIs,‖ in Cloud Computing (CLOUD), 2013 IEEE Sixth International
Conference on, June 2013, pp. 621–628.

[16] OpenStack, "Welcome to keystone, the openstack identity service!",
2014, http://docs.openstack.org/developer/keystone/ (Access Date: 03
Jun, 2014)

[17] F. Kargl, J. Maier, and M. Weber, ―Protecting web servers from
distributed denial of service attacks,‖ in Proceedings of the 10th
International Conference on World Wide Web, 2001, pp. 514–524.

[18] H. Beitollahi and G. Deconinck, "Tackling application-layer DDoS
attacks" Procedia Computer Science, vol. 10, no. 0, pp. 432 – 441, 2012,
ANT 2012 and MobiWIS 2012.

[19] U. Tariq, Y. Malik, B. Abdulrazak, and M. Hong, ―Collaborative peer to
peer defense mechanism for DDoS attacks,‖ Procedia Computer
Science, vol. 5, pp. 157 – 164, 2011.

[20] J. Mirkovic and P. Reiher, ―A taxonomy of DDoS attack and DDoS
defense mechanisms,‖ SIGCOMM Computing Communications, vol.
34, no. 2, pp. 39–53, Apr. 2004.

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 111

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 09,2022 at 20:55:57 UTC from IEEE Xplore. Restrictions apply.

