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Abstract

In this paper, we discuss the impact on the energy
consumption of different approaches to schedule paral-
lel application on shared-memory and distributed archi-
tectures. Basically, a trade-off must be determined be-
tween the use of more CPUs, which enables to shorten
the runtime (and thus save energy), and the extra en-
ergetical cost of using these extra resources; besides,
when the parallel program is running on a single, mul-
ticore CPU, the energy consumption can be further re-
duced by tuning the frequency and the voltage of the
chip. We show how these adaptations of the parallel
and sequential characteristics of both the applications
and the hardware can be performed on a variety of par-
allel platforms, ranging from a single multicore chip to
a dynamic cluster.

∗This work is part of the project ”Green Grid”, supported by
a PRONEX FAPERGS/CNPq grant.

1. Introduction

Concerns regarding environmental issues are
steadily growing in the IT community. Greenhouse gas
emissions and contamination due to untreated waste
are the most notable symptoms. A simple PC has a
footprint of about a ton of carbon dioxide during its
lifetime [10].

Engineers have started to worry about power dissi-
pation in the mainline processors to solve issues such
as battery life and heat exhaustion in laptop comput-
ers. However, techniques such as frequency modulation
and Vcore adjustment have found their way to desktops
and servers, making it possible to determine tradeoffs
between energy consumption and runtime.

These techniques can be applied to control the en-
ergy costs of concurrent applications. When it comes
to running a parallel program on a distributed memory
platform (cluster of p CPUs), the energetical consump-
tion is basically multiplied by p. Therefore, the parallel
execution will be energetically worthwhile only if the
speed-up is linear in function of p, in order to com-
pensate the energy overhead. For most applications,
this will be true only up to a certain number of CPUs,
which will provide the upper limit of the parallelism



that can be used while maintaining a good ratio en-
ergy/speedup.

This paper discusses these energetical costs asso-
ciated to parallel applications and architectures. It
presents some results on the efficient use of parallel
resources from an energy consumption point of view,
and the measurements that have been obtained by ex-
perience on real applications and benchmarks.

The rest of this article is organized as follows: First,
Sec. 2 provides the necessary background about the
consumption of energy in a processor, and in a cluster
of CPUs. Then, Sec. 3 shows the kind of control of the
energetic overhead that can be obtained for parallel ap-
plications running on a multicore chip, which enables
a fine control of the cost, and a finer-grained schedule
based on threads. Afterwards, we switch to the case of
clusters (Sec. 4) to treat the issues related to schedul-
ing parallel applications: with more a-priori informa-
tion on the resources and their availability, a batch-
scheduler can obtain good usage of the cluster. When
the parallel application is dynamic (i.e. creates tasks
during its execution), the schedule can be adapted at
each moment to use exactly the right number of re-
sources; this is the subject of Sec. 5. Finally, the last
section provides insights of future developments.

2. Power and Energy in Clusters of CPUs

2.1. Power and Energy in a Single Processor

Energy is the ability to do some work, being mea-
sured in Joules. In digital circuits, energy is provided
by electrical sources. Power can be defined as the time
rate of energy, being measured in Watts. A Watt is a
Joule per second.

For previous generations of CMOS designs, the main
component of power was gate switching. Considering
that Csc is the switched capacitancy, Vdd is the voltage
at which the circuit is operating, f is the operation fre-
quency, ILeakage is the leakage current, N is the num-
ber of cycles required for the program, then the energy
E required for a program can be defined as [8]:

Eop = C × Vdd
2 × f × (

N

f
) + ILeakage × Vdd × (

N

f
)

Hence, energy consumption of a processor may be
reduced by: (i) reducing the total number of operations
performed (N); (ii) reducing capacitancy; and (iii) by
reducing Vdd and frequency f . Although depending
on the number of executed instructions, the number of
switching operations is not derived directly from it due
to the complexity of modern chip designs. Many works
have been developed focusing to reduce capacitance of

CMOS designs, but these are outside the scope of this
paper. Energy spent due to current leakage ILeakage

is becoming increasingly important in modern CMOS
designs [11]. As the gate length reduces, more current
pass through it even when the transistor is not switched
on. Finally, reducing Vdd and f is a possibility open to
users of modern microprocessors.

Reducing only Vdd and not the operation frequency
f is not an option. The propagation delay of a gate
is inversely proportional to the voltage [8]. Thus, at
lower voltages more time is required for the propaga-
tion of a signal through the gate. Reducing f makes
execution slower, as more time is required for each op-
eration. Decreased operation frequencies do not imply
in less energy, and it can even increase in modern pro-
cessors where ILeakage plays an important role. How-
ever, when f is reduced, V dd can be reduced as well,
hence achieving energy savings.

2.2. Energy Consumption of a Cluster of p
CPUs

In order to achieve higher scale of parallelism, the
parallel application must be run on a cluster of p > 1
CPUs, interconnected by a network. A parallel ap-
plication that runs during T seconds on a distributed
platform constituted of p resources has an energetical
cost e(p) that is proportional to p×T . Thus, in order to
save energy, two approaches can be used: reducing the
runtime T , or reducing p. However, T depends on p.
Normally, a scalable parallel application has a speedup
S(p) = K/T (p), and T decreases when p increases. All
the problem of an energy-aware parallel execution is
therefore to balance the gains in runtime due to a high
parallelism with the energetic losses due to too much
parallelism.

As an illustration, consider the three typical cases
for the speed-up S(p) detailed in Fig. 1. The corre-
sponding energy cost functions e(p) = pK/S(p) (where
K is a constant factor which is the energy cost of the se-
quential execution) are plotted in Fig. 2. Theses cases
only aim at providing a trend, so that the exact values
do not matter (specific cases are discussed in depth in
the next sections).

As can be seen, for a linear speedup, the energy is
of course constant with regard to p (Fig. 2a). Now
considering the speed-up of a parallel program limited
by Amdahl’s law [6], with for instance 90% of its run-
time totally parallel, one gets S(p) = 1/(0.1 + 0.9/p),
and the energy p/S(p) has a linearly increasing behav-
ior (See Fig. 2b for different energy curves, depending
on the parallel percentage of the program), with slope
equal to the sequential percentage of the program —
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Figure 1: 3 typical speed-up functions: linear, Amdahl, and decreasing.
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Figure 2: The 3 energy functions, for each kind of speedup (linear, Amdahl, and decreasing).

i.e. the more parallel the program, the less the energy
increases. In the last case (Fig. 2c), where the speedup
decreases from a given number of resources, the energy
cost shows an exponential increase, which suggests that
the parallelism in a cluster will be interesting up to, but
not exceeding, a given limit.

Thus, the energy cost of a parallel application can be
reduced either at the level of a multicore computer for
a concurrent application (typically multithread), or by
limiting the use of distinct nodes of a cluster when the
speed-up does not compensate the energy cost. The
following sections detail these two approaches.

3. Scheduling Threads in Multicore
CPUs

Thread scheduling may be done in the application
level, in the system level, or both. In the application-
level scheduling, the objective of scheduling is to en-
hance a program-specific index and not the system per-
formance. Heuristics for application-level scheduling
take in account knowledge of the internal structure of
the program that would not be available to system-level

scheduling.
Processor affinity allows associating a given thread

to a core, hinting the scheduler where this thread
should be run. Pinning a group of threads to a pro-
cessor may enhance performance by better exploiting
reference locality, avoiding migration of data and code
through caches. In most cases, setting processor affin-
ity is a task that requires commitment of the program-
mer and full knowledge of both the program and the
system where it will run, and it may not improve per-
formance in all cases [7].

In Section 2, the relationship between power and
voltage was discussed. Modern processors are able to
change their clocks, but first Vdd must be set. Changes
in operation frequencies are not immediate, requiring
cycles where the processor stops processing before the
new clock can be set [14]. A simplification of the for-
mulas described in Section 2 can be expressed as:

Cindex =
f × α
t

(1)

Where Cindex is the consumption index, f is the
operation frequency, α is the percentage of processor
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use, and t is time.
Nowadays, general solutions for the problem of en-

ergy consumption are mostly based on system-level reg-
ulation of frequency and voltage, using governors to
dynamically adjust them to the requirements of the en-
tire system in a given time. With nowadays technolo-
gies, it is possible to set clock rates for each individual
core. Hence, parallel programs must have strategies to
deal with heterogeneous processors [1]. Both processor
affinity and frequency setting are exposed to users.

To better understand the impact of clock rate and
affinity in both performance and energy consumption,
a case study based on the Josephus problem [5] was
developed. This problem consists in the random gener-
ation of a circular list of tasks with non-uniform loads.
Each task was executed by a thread. The experiments
were run in a Core 2 Duo computer, and repeated
20 times, producing similar results. Loads were gen-
erated so that 65% of tasks would present a load 40%
or less of the total load.

Figure 3 shows the Consumption Index traces for
three different settings. The first one uses frequency
governing, i.e., cores with threads will run in maximum
frequency, while idle cores will reduce their clock rates.
Besides, threads are bound to processors (affinity) ac-
cording to their loads. The second trace shows a run
with neither frequency governing nor processor affinity.
The last trace was done with frequency set on mini-
mum, regardless of load, and without affinity. The ver-
tical axis presents the consumption index Cindex, while
the horizontal axis shows time in seconds. Without
affinity nor frequency governing, energy consumption
is 1.41× larger than with affinity and frequency gov-
erning, and 1.64× larger than with the minimal clock
rate. The use of affinity and frequency governing al-
lowed for a reduction of 29.1% in energy consumption
for an increase of 8.3% in time, while running with the
slow clock rate reduced energy consumption by 39.3%
but increased times in 75.3%.

A second case study applying the Monte Carlo
method for numeric integration was developed. The
graph representing tasks and threads was made unbal-
anced on purpose, i.e., threads in the left most part of
the graph execute over larger intervals of the problem.
This application was executed with and without affin-
ity and application-level scheduling in a Core 2 Quad
computer. For the first case, the average time was
10.02 s, while for the second one time was 6.173 s,
a speedup of 1.62 for the same architecture. Besides,
63.2% less energy was required. Scheduling with more
priority threads that have more load is one factor that
helped performance. As the Monte Carlo method is
applied over a large matrix, processor affinity increases
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Figure 3: Time versus consumption index for the Jose-
phus problem.

data locality on caches. This controlled experiment
shows that it is possible to improve performance while
reducing frequencies using heuristics based from the
application knowledge.

Thus, knowing the structure of a program and using
this knowledge in the scheduling may impact in both
performance and energy consumption of a multicore
CPU. The next section treats the case of a distributed
memory cluster.

4. Scheduling Parallel Applications in
Clusters

In this section, we discuss the energetic cost of a
typical parallel applications run on a cluster : the Lat-
tice Boltzmann Method. As presented in Sec. 2.2, the
speed-up curve can be analyzed in order to determine
if it compensates for the energetical cost.

An important technique for the mesoscopic simula-
tion of fluid dynamics technique is the Lattice Boltz-
mann Method (LBM) [13, 12]. In [13], a parallel ver-
sion is presented for 2D and 3D simulations, based
on block partitioning. On medium-sized clusters, the
speed-ups have shown to be good considering the kind
of application. Fig. 4 presents the speed-ups obtained
on a lattice of N = 128× 128× 128 points, where the
fluid flowing in a 3D pipe with obstacles has been sim-
ulated. All measurements have been made on the clus-
ter Labtec, at the Federal University of Rio Grande do
Sul. This cluster is composed by 20 dual nodes Pen-
tium III, 1.266 Ghz with 512 MB of RAM memory,
interconnected by a Fast Ethernet network.

The speed-up is provided in Fig. 4 for various im-
plementations to illustrate how the right granularity
improves the speed-up of a parallel program. In the
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Figure 4: Speed-up for mono and blocked partitioning
of the 3D Lattice-Boltzmann method (from [13]).
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Figure 5: Energy cost of the blocked partitioned 3D
Lattice-Boltzmann method (in relation to the energy
cost of the sequential execution).

case of this application, the granularity is controlled
by a parameter which specifies the geometry of each
part of the lattice that a given processor simulates.

Evaluating the energy cost as a function of the num-
ber of processors, based on the best speed-up curve, one
gets Fig. 5. What is interesting in this case is that the
energy cost is, of course, increasing when more paral-
lelism is used. This reflects the non-optimal speed-up.
However, the energy cost is not increasing fast. For
p = 20 CPUs, the cost is only 1.8 higher than the
sequential execution. Even with 20 to 25 CPUs, the
energy cost is lower than twice the cost of the sequen-
tial execution — and the runtime is divided by almost
25.

However, not all the applications can be parallelized

in such an efficient way. Some of them simply do not
provide parallelism during part of their execution to
fully and constantly use the computing resources of a
cluster. For such application, a dynamic scheduling
can be used, as shown in the next section.

5. Scheduling Dynamic MPI Applica-
tions

Malleable applications can adapt their usage of par-
allel resources during their execution. This is impor-
tant for many applications, which do not constantly
have the same degree of parallelism. Typically, Branch
& Bound algorithms have to explore a tree of possible
solutions, and they have to develop new branches, and
cut some of them, during the execution. If each branch
is run as a separate task, the number of useful CPUs
will vary at runtime.

A traditional approach in a cluster of p CPUs would
be to decide and run one MPI process per CPU. Each
one of them would start exploring the tree from its root,
until at least p branches have been created. Then, each
process only explores its own subset of branches, thus
distributing the computation. This implementation re-
lies on static tasks, since they are all scheduled to a
process at the start of the execution. However, using
the dynamic creation of MPI processes, one can use
a dynamic scheduling of the tasks: each process still
starts exploring one sub-tree, however it maintains a
stack of branches to be explored, while it works on one
of them. Whenever one of the processes does not have
any branch anymore in its stack, it sends a steal request
to one of the others, which sends it back part of the
branches in its stack. If a steal attempt reaches a pro-
cess that also have an empty stack, the stealer attempts
to steal from an other victim. This dynamic load bal-
ancing algorithm, called Work Stealing [2], leads to
close to optimal speed-up. Notice that, due to the in-
herent irregular behavior of the Knapsack problems,
an optimal schedule cannot be statically determined:
good performance can only be achieved through a dy-
namic treatment.

Fig. 6 shows the compared speed-ups of the static
and dynamic versions of classical NP-Complete prob-
lem: a Knapsack with 2.500 items [5]. All the execu-
tions have been performed on the same cluster as in the
previous section. As it can be seen, the speed-up of the
dynamic version is linear and almost optimal, whereas
the static implementation suffers from bad load balance
and has a saturated speed-up.

Fig. 7 provides insight on the energy cost of both
versions. As explained in the introduction, the en-
ergy cost of the static version presents a linear increase
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Figure 6: Compared speed-ups of the static and dy-
namic MPI version of Knapsack. Taken from [9].

when more resources are used. Adding the bad speed-
up and this increase, one can conclude that the more
parallelism the static version uses, the more power it
consumes, without accelerating the program. Clearly,
from Fig. 6, there is almost no more acceleration with
more than 15 CPUs.
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Figure 7: Compared energy costs of the static and dy-
namic MPI version of Knapsack (in relation to the en-
ergy cost of the sequential execution).

On the other hand, Fig. 7 shows that the energy
cost of the dynamic version remains almost constant
up to 20 CPUs (albeit a slight increase for more than
15 CPUs). In this case, the almost linear speedup com-
pensates for the linear increasing energy cost. With
such a dynamic scheduling, the MPI Knapsack version

is energy-safe.
In [4], the authors have explored the use of MPI-2

dynamic processes to provide malleability in MPI pro-
grams. MPI processes are spawned when new resources
become available, and when tasks are ready to be run.
There is a scheduler helping in this issue, which is able
to identify the changes in the amount of resources avail-
able and indicate which resources are able to receive
new processes [3]. It provides two policies: Round-
Robin and workload-based. The scheduler has been
integrated to a batch-scheduler in order to be notified
when new resources are available. With this more gen-
eral work, which can be used for MPI programs that
are not restricted to Brand & Bound computations,
similar results in terms of speed-up and energy are to
be expected.

6. Conclusion

This paper has presented a series of studies of the
different, representative, parallel applications that can
be run on a range of platforms that go from the sin-
gle, multicore chip, up to a cluster with dynamic, on-
demand allocation of CPUs to the application. In each
case, a discussion of the impact of the scheduling tech-
niques on the speed-up and energy cost was presented.
The bottom line is that the energy cost of running a
parallel application on parallel hardware can be main-
tained reasonably constant if the speedup is close to
linear, in order to compensate the linear increase of
CPUs (or cores) that are used; when coupled to effi-
cient, low-level mechanisms to adapt the frequency of
the CPUs, a fine balance between runtime gain and
controlled energy overhead can be achieved.

One of the actual key points in order to guarantee
the energy efficiency is the ability to adapt both the
parallelism of the program, and the activity of the re-
sources, to the behavior of the application at runtime.
From the programmer point of view, this means that a
dynamic schedule must be used, and this implies that
the programming framework be adapted to this end.
Typically, a static, parallel MPI program running one
process by CPU will not have the necessary malleabil-
ity.

The open problem that remains is to automize the
different levels of control that we have highlighted in
this paper: frequency rate and affinity at the chip level,
on-demand allocation of part of the nodes of a clus-
ter, limitation of this number based on the energy vs.
speed-up criteria. This clearly leads to a multi-criteria
optimization problem, without having all the necessary
prior information at the start of the execution. In fu-
ture work, we intend to apply heuristics to advance on
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this point.
An other promising platform for parallel computing

is a cloud of volunteer resources. Through the use of
idle resources of Desktop Grid nodes, this may generate
a significant power consumption saving, compared to
the use of dedicated clusters in addition to users work-
stations. In this second case, both groups of machines
(cluster servers and workstations) consume power dur-
ing busy and idle periods. In contrast, the use of CPU
cycles of idle nodes, adds to the power consumption
only the extra CPU work in these machines. Improv-
ing the efficiency of task scheduling, and making a good
use of the availability windows in such a volunteer en-
vironment, would thus be very important to achieve
reductions in energy consumption.
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