
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/216763444

Generation of Scripts for Performance Testing Based on UML Models

Conference Paper · January 2011

CITATIONS

20
READS

540

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Referenciais de Educação em Computação View project

Detecting Encrypted Attacks View project

Maicon Bernardino Da Silveira

Universidade Federal do Pampa (Unipampa)

56 PUBLICATIONS   159 CITATIONS   

SEE PROFILE

Elder Rodrigues

Universidade Federal do Pampa

60 PUBLICATIONS   157 CITATIONS   

SEE PROFILE

Avelino F. Zorzo

Pontifícia Universidade Católica do Rio Grande do Sul

138 PUBLICATIONS   1,212 CITATIONS   

SEE PROFILE

Leandro T. Costa

Pontifícia Universidade Católica do Rio Grande do Sul

7 PUBLICATIONS   62 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Maicon Bernardino Da Silveira on 06 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/216763444_Generation_of_Scripts_for_Performance_Testing_Based_on_UML_Models?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/216763444_Generation_of_Scripts_for_Performance_Testing_Based_on_UML_Models?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Referenciais-de-Educacao-em-Computacao?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Detecting-Encrypted-Attacks?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Federal-do-Pampa-Unipampa?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-4c80211ba3164e2ae7a2674cdc68e0fa-XXX&enrichSource=Y292ZXJQYWdlOzIxNjc2MzQ0NDtBUzoxMDY2NDgxNDQxODczOTJAMTQwMjQzODMwODE1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Generation of Scripts for Performance Testing
Based on UML Models

Maicon B. da Silveira, Elder M. Rodrigues, Avelino F. Zorzo,

Leandro T. Costa, Hugo V. Vieira and Flávio M. de Oliveira
Faculty of Informatics (FACIN) – Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre – RS, Brazil

bernardino@acm.org, elder.rodrigues@acad.pucrs.br, avelino.zorzo@pucrs.br,

leandro.teodoro@acad.pucrs.br, hugovares@gmail.com and flavio.oliveira@pucrs.br

Abstract—Software testing process has a high cost when
compared to the other stages of software development.
Automation of software testing through reuse of software
artifacts (e.g. models) is a good alternative for mitigating
these costs and making the process much more efficient and
efficacious. Model-Based Testing (MBT) is a technique to
automatic generation of testing artifacts based on software
models. For software development, the most spread modeling
language in either the industrial or academic environments is
UML. In such environments, it is desirable to reuse UML models
also for MBT, avoiding re-building a different model exclusively
for testing automation. These are the main reasons that make
these semi-formal models an alternative to implementing
MBT. Even though there are a lot of testing tools available
commercially, to the best of our knowledge, none of them fully
uses MBT. Therefore, this paper describes a case study showing
how to implement the MBT process to automate test scripts
generation and execution in a real-world, context. Furthermore,
our solution is generated automatically by a Software Product
Line (SPL). 1

Keywords - Model-Based Testing; Software Product Line;
Performance Testing.

I. INTRODUCTION

Currently, a great number of people and companies use

computer programs to automate their activities, delegating to

systems the execution of complex tasks. This widespread use

of computer systems has also increased the number of residual

software or hardware faults that generate failures to users [1]

[2]. Therefore, it is important that during the development of

a system, different techniques are applied to guarantee that

the system provides a service that can be trusted. The ability

to deliver a service that can justifiably be trusted is known

as dependability [1]. The main attributes that integrate the

dependability are reliability, availability, security, confidential-

ity, integrity and maintainability. According to the taxonomy

presented in [1], system dependability can be achieved by

four techniques: 1) Fault Prevention - prevent the occurrence
or introduction of faults; 2) Fault Tolerance - avoid service
failures in the presence of faults; 3) Fault Removal - reduce
the number and severity of faults, and; 4) Fault Forecasting

- to estimate the present number, the future incidence, and

1Study developed by the Research Group of the PDTI 001/2011, financed
by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

the likely consequences of faults. Several works that provide

system dependability through fault tolerance, fault prevention

and fault forecasting are present in the literature [3] [4] [5].

Although all techniques are used to achieve software de-

pendability, the most used technique in all areas of software

development in industry is fault removal, through software

testing. Software testing is a process that focus on finding

program failures2 during runtime [6], or that has activities

to validate the requirements of a program, determining if the

expected results are met [7]. Performance is a key component

of reliability and availability; therefore, performance testing

is a major activity in system fault removal. However, due to

the systems evolution and their amount of features, systems

are becoming so complex that testing them is a difficult task.

Therefore, it is necessary to implement a testing process to

mitigate testing execution on the final product. This process

should aim to reduce the costs impact, improving the quality

of the software product [2].

One of the techniques that improves the software testing

process is Model-Based Testing (MBT) [8]. This technique

consists in the generation of test cases and/or test scripts

based on the application model. Besides, it also includes the

specification of the features that will be tested [9].

In previous work [10] [11], we have used MBT to build

testing tools for security and functional testing. These tools

were derived products from a Software Product Line [12]

called PLeTs [11]. The work presented in this paper expands

our previous work to apply MBT in the generation of a new

product to execute performance testing. This new product

generates test scripts for a commercial tool called LoadRunner

[13]. Basically, we include stereotypes in the system UML

models to express performance information that will be used

during the execution of test scripts.

This paper is organized as follows. Section II presents a

short description of MBT, SPL and the PLeTs architecture. In

Section III we show how we have used stereotypes to include

information on the UML models and a brief description of

the LoadRunner tool. In Section IV we apply our strategy to

an actual case study that uses the LoadRunner tool to execute

performance testing. This case study is a tool used in a major

2We use fault, error, and failure definition from [1].



IT company. Finally, Section V summarizes the contributions

of our work.

II. BACKGROUND

Software modeling is an important technique that is used in

software development because it allows to capture and to share

knowledge about a system. During the development process,

information about the system is described in many different

documents. To include this information, through, for example,

UML stereotypes, enriches the specification documents. This

increases the quality of the specification and the use of models

developed as the system evolves [14]. Thus, this information is

used to model the incremental creation of new artifacts, or even

allows the automation of other processes to improve the quality

of different developed artifacts. This section describes two

approaches to automate software artifacts development based

on features that are included in the system model: Model-

Based Testing and Software Product Line.

A. Model-Based Testing

Usually, system behavior and requirements are described

using a formal or semi-formal model, allowing team members

to share and to use these models during the life-cycle of

the software development. In spite of that, test engineers are

still producing test cases or test scripts in an informal way

based on a mental representation that they create. A better

alternative would be to derive test artifacts from the system

models [15]. This strategy is commonly known as Model-

Based Testing (MBT) [8]. MBT is based on the idea of the

automation of test case/scripts generation. Albeit, the use of

existing models can increase productivity during the process

of software testing [14].

The cost of software testing is related to the number

of interactions and test cases that are executed during the

development process. As it is one of the most costly and

expensive phases of software development [6], MBT is a good

approach to mitigate this problem by automating the process

of generating test cases or scripts [16].

Several works on MBT have been produced in the past

years. A systematic review is presented in [17] to evaluate

quantitatively and qualitatively some features of MBT. In this

study, 78 articles were evaluated and the following items were

reviewed: type of model (formal or semi-formal) used for test

generation; test types in which the approach can be applied to;

level of automation; support tools; criteria for test coverage,

etc. The study presents test domains (system, integration,

unit/component, regression) in which each of the works were

applied to. The survey identifies that most of the works use

MBT in system testing domain (66%). System testing includes

Performance testing, which is the focus of our work.

Some of the works mentioned in [17] use the same MBT

process, for example [8] [18]. This process requires specific

activities in addition to the usual activities of software testing.

This will require that the test engineers adjust their testing

process, and invest in the use and training of new tools.

The main activities that define the MBT process are (see

Fig. 1. Activities for MBT [8]

Figure 1) [8]: Build Model, Generate Expected Inputs, Gen-
erate Expected Outputs, Run Tests, Compare Results, Decide
Further Actions and Stop Testing. 1) Build Model: constructs

a model based on the specification of system requirements.

This step defines the choice of the model, according to the

application being developed; 2) Generate Expected Inputs:

uses the developed model to generate test inputs (test cases,

test scripts, application input); 3) Generate Expected Outputs:

generates some mechanism that determines whether the results

of a test execution are correct or not. This mechanism is

the test oracle and it is used to determine the correctness

of the output; 4) Run Tests: executes test scripts and stores

the processing results of each test case. This execution can

be performed in the system under test (SUT) and/or system’s

environment; 5) Compare Results: compares the test results

with expected outputs (test oracle), generating reports to alert

the test team about failures; 6) Decide Further Actions: based

on the results, it is possible to estimate the software quality.

Depending on the quality achieved, it is possible to stop

testing (quality achieved), to modify the model to include

further information to generate new inputs/outputs, to modify

the system under test (to remove remaining faults), or to run

more tests; 7) Stop Testing: concludes the system testing. The

activities from MBT process can bring several new advantages

to the test team [8], for example: shorter schedules, lower cost,

and better quality.

A good possibility to reduce the problems mentioned at

the beginning of the previous paragraph would be to have

a single tool that would cover all the phases of the MBT

process, i.e. a tool in which it would be possible to describe

the system model, that would generate test cases/scripts, that

would execute the test scripts and also compare the results.

Even better if the test team could have a tool that could

generate the testing tool for each different application or

different type of test the test team wants to execute over the

same application. Furthermore, it is desirable that the test team

reuse implemented artifacts (e.g.: models, software compo-

nents, scripts). Thus, in this context, it becomes interesting



to design a set of MBT tools based on a Software Product

Line (SPL). A SPL ensures the variability, reusability of test

artifacts, thus decreasing costs and time to market. Several

evidence of the benefits of the use of SPL, in different areas,

can be found in [19] [20]. The next section introduces the

concept of SPL.

B. Software Product Line

A Software Product Line (SPL) seeks to exploit the com-

monalities among systems from a given domain, and at the

same time to manage the variability among them [12]. Accord-

ing to [21], SPL engineering has three main concepts: core as-

sets development, product development, and management. The

core assets are the main part of an SPL, and its components

aim to represent, in a clear way, the common and variable

aspects of the future products. Thus, following the SPL

concepts, new products variants can be quickly created based

on a common architecture, models, software components, etc.

Because of that, SPL allows for rapid entry of a product on the

market as well as makes it easier for mass customization of

products of a company. Companies are finding that the practice

of building sets of related systems from common assets can, in

fact, produce quantitative improvements in product quality and

consumer satisfaction, efficiently meeting the current demand

for mass customization.

However, given the large number of products that can be

present in a product line (PL), it is necessary to control the

variability and commonalities among them. The variability

management is used to control the variables aspects present in

the products of the PL.

Feature Models is an important concept to modeling vari-

ability. Originally, Feature Modeling was developed as part

of Feature-Oriented Domain Analysis (FODA) [22]. However,

nowadays it is applied in many areas such as embedded

systems [23] or networks protocols [24].

When Feature Models are applied to represent variability,

they are analyzed and categorized as common, optional or

alternative [25]. Common features represent features that must

be present in every product of the SPL. There are also called

mandatory, necessary, or kernel features. Optional features
represent features that are supported by some products in

the SPL, and; the alternative features represent features that

are mutually exclusive, i.e. only one of the features can be

provided in each product of the SPL (see Figure 2).

C. PLeTs Tool

The PLeTs tool [11] aims to automate the generation,

execution and results collection of MBT process. The tool is

able to manage the whole MBT process and is based on the

concepts of SPL. Its goal is not only the reuse of artifacts to

make it easier and faster to develop a new tool of the family,

but also to improve the creation, run and gathering of test

results. It was developed with the intent to be used by software

engineers, developers and test engineers, assisting the process

of defining and executing test cases and test scripts. Figure 2

shows the current PLeTs Feature Model that represents some

of the features that could be present in a software variant. The

first level of the model has four main features:

Fig. 2. Feature Model for PLeTs Tool [11]

1) Parser: represents the Build Model step in the MBT main

activities (see Section II-A). It is a mandatory feature and

has two child features: UML - FSM and UML - PN. Each

one of these parsers is used to extract the information from

the UML models to generate a formal model (Finite State

Machine (FSM) or Petri Nets (PN)); 2) Test Case Generation:

represents part of the Generate Expected Inputs step in the

MBT main activities. It is a mandatory feature and has three

child features: Functional Testing, Performance Testing and

Security Testing (one of them should be selected in each

software variant). Both Performance Testing and Security

Testing have a mandatory child feature: UIO Method [26];

3) Script Generation: represents another part of the Generate
Expected Inputs step in the MBT main activities. It is an

optional feature, because, for example, for security testing

there could be no tool to execute the generated test cases. This

feature has two child features: Jmeter [27] and LoadRunner

[13]; 4) Execution: represent the Run Tests and Compare
Results step in the MBT main activities. This feature also has

two child features: Jmeter and LoadRunner.

It is important to highlight that there are dependencies

between some features (see the dotted lines in Figure 2). For

example, if some software variant selects the feature Execution
and the child feature LoadRunner, it must select the feature

Script Generation and the child feature LoadRunner, because

the tool is not able to execute the tests without a test script.

Another important point is that the Feature Model can be

extended to support new testing techniques or tools, adding

new child features to the main four features. For example,

if someone wants to add new features to work with the

SilkPerformer tool [28], he should include new child features

for the Script Generation and Execution main features.

To develop the tool in a way to represent the feature model

flexibility, the PLeTs architecture is based on plug-ins that

allows extensibility and flexibility. Based on that, the tool

allows to select, in runtime, each plug-in (represented by a

feature) that is necessary to perform a MBT activity and to

automatically generate/execute the test scripts.



III. UML MODELS FOR PERFORMANCE TESTING

In previous works [10] [11], we described some components

of PLeTs developed for security and functional testing. Here

we apply our approach in a different application domain,

reusing, or expanding, previous components automatically

through SPL.

In our approach, the starting point for test script generation

is the construction of an UML model activity diagram with

performance stereotypes3, represented in an XMI file. This

XMI file is parsed and converted into a formal model, e.g. Fi-

nite State Machine (FSM). Then, performing the UIO Method

[26], the sequences of activities that have to be executed

are obtained. These sequences could be transformed in a

description that is equivalent to test cases in natural language.

This approach was used in our previous works, i.e. all these

features have already been developed. To expand our work, we

propose here a set of new features to support the generation

of a product that can perform performance testing for the

LoadRunner tool [13].

As mentioned above, we use stereotypes, which are the way

we describe performance information necessary to generate

our test cases and test scripts. We include stereotypes in two

UML diagrams: use case and activity. Our approach uses four

stereotypes from our previous works and a new one that was

missing. The five performance stereotypes are the following:

1) <<PApopulation>>: this stereotype has two tags: the

first one represents the number of users that are running the

application, while the second one represents the host where the

application is executed (defined in all actors of the use cases

diagram); 2) <<PAprob>>: defines the probability of exe-

cution for each existing activity; 3) <<PAtime>>: expected

time to perform a given use case; 4) <<PAthinkTime>>:

denotes the time between the moment the activity becomes

available to the user and the moment the user decides to

execute it, for example, the time for filling a form before

its submission; 5) <<PAparameters>>: defines the tags

for the input data that will be provided to the application

when running the test scripts (this is a new stereotype that

our previous works did not include).

A. LoadRunner

HP LoadRunner [13] is a product to analyze the behav-

ior and the performance of systems. This tool can emulate

hundreds, or thousands, of users, known as Virtual Users

(VUsers), simultaneously.

In the LoadRunner architecture the main configuration part

that has to be changed for each application that is tested is

stored in the script folder. Basically, our PLeTs plug-in gen-

erates a new script file, that are scripts written in C language.

The test description, which includes application transactions

and parameters, is included in that file. Our PLeTs plug-in also

generates the configuration scenarios, which are included in

3We use UML 2.0 SPT (Schedulability, Performance and Time) Pro-
file [29] [30].

Fig. 3. Skill Management Use Case Diagram

scenarios file. This file contains performance counters that will

be used in the reports that are generated by the LoadRunner.

Another important LoadRunner feature is a library with

predefined functions. Each set of functions that are included in

this library have a specific task in each of the testing protocols

that LoadRunner implements. For example, functions starting

with web are used to represent HTTP requests, while the

ones starting with lr are general and can be used in all

protocols. Some of the existing functions, which will be used

in the work described in this paper, are: 1) lr think time:

determines the idle time between user interactions and the

system; 2) web submit data: submits web form data without

a previous operation context; 3) web url: is responsible for

accessing a URL via a web browser; 4) web image: repre-

sents a click on an image on a page (tag HTML <IMG>);

5) web link: represents a click on a text link on a page

(tag HTML <A href=...> e </A>); 6) web submit form:

submits web form data but considering the context of the

previous operation.

Based on these functions, it is possible to simulate the test

scenarios in order to verify the performance behavior of a

given application. Moreover, the concepts discussed in this

section (tool architecture, script features and functionalities

interpreted by LoadRunner), were important to implement the

automatic scripts generation based on information extracted

from the UML model.

IV. CASE STUDY: SKILLS MANAGEMENT TOOL

In this section, we apply our strategy and the PLeTs tool to

an application that manage skills, certifications and experience

of employees of a given organization. This tool is called Skills

and was developed in collaboration between a research group

of our institution and an IT company. Skills was developed in

the Java programming language, using the MySQL database

for data persistence and Tomcat as web application server.

Fig. 4. Skill Management Activity Diagram

One example of our use of UML with stereotypes is the

“Search” case. Figure 3 shows part of the user interaction

behavior with the application. Furthermore, the necessary steps



to implement this case study are detailed in the activity

diagram shown in Figure 4. This diagram represents five se-

quential activities, starting with “Login” to access the system,

“Skills” to consult the user’s abilities, “Certifications” to view

the technical certification assigned to the user; “Experiences”

a list the user’s professional experience; and “Logout” to exit

the system.

Once all the UML diagrams (e.g. see Figures 3 and 4)

have been constructed, we use PLeTs to generate the test

scripts for the Skill Management Application. The scripts were

generated to run on LoadRunner, but we could have changed

the plug-in that generates scripts and apply the same set of test

using a different testing tool, for example the IBM Rational

Performance Tester [31]. Figure 5 shows an extract from the

script that was generated. This extract shows the actions of

a given user, for example the think time through function

lr_think_time(10) and the submission of data filled in

the step “Login” (from the activity diagram - see Figure 4)

through function web_submit_form.

Fig. 5. Script Generated for LoadRunner

As described in Section III, we can include five stereotypes

in our UML diagrams, with one or more tags. As can be seen

in Figure 3, the “Search” use case diagram has three of those

stereotypes, and they are generated with the following values:

• PApopulation

– TDpath = http://192.168.1.26/skillsApp/mainIE.jsp

– TDpopulation = 30

• PAprob

– TDprob = 1.0

• PAtime

– TDtime = 300

The other stereotypes, in this case study, are included in

the activity diagram as shown in Figure 4. For example, the

“Login” activity has the following values:

• PAthinkT ime

– TDthinkT ime = 00:00:10

• PAparameters

– TDaction = login.jsp

– TDparameters = username@@admin

– TDparameters = password@@123456

Notice that the TDparameters tag is the concatenation

of two pieces of information: name and value, separated

by the delimiter @@. This information could be generated

automatically for different scenarios that the test engineer

wants to test.

All tags are extracted from the UML diagram and processed

by the PLeTs plug-in that generates scripts for LoadRunner.

Although all necessary information is included in the UML

diagrams, LoadRunner also needs a description for the test

scenarios. The configuration of the test scenarios is included

in the scenarios file. The PLeTs plug-in uses a template

to automatically generate the scenarios file for LoadRunner.

This template has some markings that are replace by the tags

from the UML diagrams. For example, tag <<Vusers>>
represents the number of virtual users that will be simulated

during the test.

Besides the <<Vusers>> marking, the template file for

scenarios has other markings that are used when generat-

ing test scripts: 1) <<Path>>: contains the application

host address; 2) <<Result_file>>: specifies the results

file name; 3) <<HostGenerator>>: defines the server

that generates the load; 4) <<TestChief>>: contains

the paths for the script tests that will be run for the sce-

nario; 5) <<GroupChief>>: stores information on each

VUsers group that will be simulated by the test script;

6) <<GroupInfo>>: defines the performance counters that

will be used during the test.

Once the test script generation is completed, PLeTs calls

the LoadRunner tool passing as a parameter the test script and

scenario produced. In the test we have performed, we used the

LoadRunner standard performance counters that are already

set in the default user interface. We could have redefined the

screens and counters we wanted to verify, but for the Skill

Management application this was not necessary.

V. CONCLUSION

The use of formal models is a good way for modeling the

behavior and structure of a system. This allows for a precise

understanding of the system behaviour by software developers

or test engineers and, therefore, allows for a better reuse of

the system components as the system evolves.

Although automatization of software testing is desirable, test

engineers usually perform testing manually using, of course,

a set of tools. Capture-replay tools, for example, are widely

used, but they require a full, running build of the application

in order to create the test scripts for the first time, thus

delaying script development; moreover, they require the tester

to execute (manually!) all the script al least once. Besides, test

engineers have to build a mental model of the whole testing

process or strategy. As shown in this paper, MBT can help test

engineers to build a formal model for their testing process as

well. It is important to mention that despite all the advantages

of using MBT described in this paper, MBT requires a

professional with skills in programming languages, software

testing and modeling, and also with theoretical background



on mathematics, automata theory, graph theory and formal

languages [8].

Furthermore, the use of MBT could require a significant

investment if not supported by a set of tools to plan, monitor

and produce test artifacts. This paper has shown how we

have applied MBT to an application without having to start

the whole process from scratch, hence helping test engineers

that do not have the above mentioned skills or background.

Our approach is based on an SPL tool that generates testing

tools based on MBT. In some previous works we had already

applied our strategy to different testing domains and we were

able to reuse some already developed testing artifacts in the

work presented here. This has reduced our costs to test an

actual application that is used in an IT company.

Another important contribution of this paper is the devel-

opment of a tool to allow the use of MBT in commercial

tools, such as the LoadRunner. Currently there are none, to

the best of our knowledge, commercial tool that uses MBT.

The LoadRunner plug-in developed for the PLeTs tool shows

that the use of MBT is viable in industry. Besides, the team

of the IT company can now use the same plug-in for different

applications they want to test.

Despite the advantages of the implementation of the new

plug-in presented here, some improvements in this new plug-

in could be adopted, for example, in the current plug-in

implementation several data that are needed for the generation

of the LoadRunner scripts are inserted in the model stereotypes

(See Section IV). A simple modification could be the insertion,

in the TDparameters tag, of a name of a file, or even a

database, that would contain these data. The plug-in, then,

would generate scripts based on the data stored in that file, or

database. These improvements will allow us to use parts of the

plug-in for different commercial tools and to further explore

our strategy.

ACKNOWLEDGMENT

We also thank CNPq/Brazil, CAPES/Brazil and INCT-SEC

for the support in the development of this work. We also thank

the reviewers for their comments, which helped to improve our

paper.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transaction Dependable Secure Computing, vol. 1, no. 1, pp. 11–33,
2004.

[2] M. Young and M. Pezzè, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[3] J.-C. Laprie, “Dependability Evaluation of Software Systems in Oper-
ation,” IEEE Transactions on Software Engineering, vol. SE-10, no. 6,
pp. 701–714, 2009.

[4] D. Powell, “Failure mode assumptions and assumption coverage,” 22nd
International Symposium on Fault-Tolerant Computing. Digest of Pa-
pers., pp. 386–395, 2002.

[5] A. Romanovsky and A. F. Zorzo, “Coordinated atomic actions as a
technique for implementing distributed gamma computation,” Journal
System Architecture, vol. 45, no. 15, pp. 1357–1374, 1999.

[6] G. J. Myers and C. Sandler, The Art of Software Testing. New York:
John Wiley & Sons, 2004.

[7] B. Beizer, Software System Testing and Quality Assurance. New York:
Van Nostrand Reinhold, 1984.

[8] I. K. El-Far and J. A. Whittaker, Model-based Software Testing. New
York: Wiley, 2001.

[9] M. Popovic and I. Velikic, “A Generic Model-Based Test Case Genera-
tor,” 12th IEEE International Conference and Workshops on Engineering
of Computer-Based Systems, pp. 221–228, 2005.

[10] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
Security Aspects in UML Models,” 1st International Workshop on
Modeling Security In ACM/IEEE 11th International Conference on
Model-Driven Engineering Languages and Systems, pp. 1–10, 2008.

[11] E. de M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes,
“PLeTs-Test Automation using Software Product Lines and Model
Based Testing,” 22th International Conference on Software Engineering
and Knowledge Engineering, pp. 483–488, jul. 2010.

[12] P. Clements, L. Northrop, and L. M. Northrop, Software product lines:
practices and patterns. Addison-Wesley Longman Publishing, 2001.

[13] Hewlett Packard - HP, “Software HP LoadRunner,” Available in:
https://h10078.www1.hp.com/cda/hpms/display/main/hpms content.jsp?
zn= bto&cp=1-11-126-178̂ 4000 100, sep. 2010.

[14] L. Apfelbaum and J. Doyle, “Model Based Testing,” Software Quality
Week Conference, 1997.

[15] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems: Advanced Lectures. Se-
caucus: Springer, 2005.

[16] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer,” Formal Methods and Testing, 2008.

[17] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
Survey on Model-Based Testing Approaches: A Systematic Review,”
1st ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies, pp. 31–36, 2007.

[18] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing,” Working Paper, The University of Waikato, Hamilton, New
Zealand, Tech. Rep., apr. 2006.

[19] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing PLA at Bosch Gasoline Systems: Experiences
and Practices,” 3rd International Conference on Software Product Lines,
vol. 3154, pp. 34–50, 2004.

[20] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Addison-Wesley Longman, 2003.

[21] Software Engineering Institute (SEI), “Software Product Lines (SPL),”
Available in: http://www.sei.cmu.edu/productlines/, sep. 2010.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon University, SEI, Tech. Rep., nov. 1990.

[23] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker, “Gener-
ative Programming for Embedded Software: An Industrial Experience
Report,” 1st ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Component Engineering, pp. 156–172, 2002.

[24] M. Barbeau and F. Bordeleau, “A Protocol Stack Development Tool Us-
ing Generative Programming,” 1st ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering, pp. 93–109,
2002.

[25] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison Wesley
Longman Publishing, 2004.

[26] R. Anido and A. Cavalli, “Guaranteeing Full Fault Coverage for UIO-
Based Testing Methods,” 8th International Workshop for Protocol Test
Systems, pp. 221–236, 1995.

[27] Y. Jing, Z. Lan, W. Hongyuan, S. Yuqiang, and C. Guizhen, “JMeter-
based aging simulation of computing system,” International Conference
on Computer, Mechatronics, Control and Electronic Engineering, vol. 5,
pp. 282–285, aug. 2010.

[28] G. hun Kim, H. choun Moon, G.-P. Song, and S.-K. Shin, “Soft-
ware Performance Testing Scheme Using Virtualization Technology,”
4th International Conference on Ubiquitous Information Technologies
Applications, pp. 1–5, dec. 2009.

[29] OMG, “UML Profile for Schedulability, Performance, and Time Spec-
ification - OMG Adopted Specification Version 1.1,” Available in:
http://www.omg.org/spec/SPTP/1.1/, 2005.

[30] C. Woodside and D. Petriu, “Capabilities of the UML Profile for
Schedulability Performance and Time (SPT),” in Workshop SIVOES-SPT
RTAS’2004, 2004.

[31] D. C. et al., Using Rational Performance Tester Version 7. IBM
Redbooks, 2008.

View publication statsView publication stats

https://www.researchgate.net/publication/216763444

