
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/278675845

Generating Performance Test Scripts and Scenarios Based on Abstract

Intermediate Models

Conference Paper · January 2012

DOI: 10.13140/RG.2.1.1033.7445

CITATIONS

17
READS

1,400

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Fundamentação para Transferência de Tecnologia no MDE como um Serviço View project

Detecting Encrypted Attacks View project

Leandro T. Costa

Pontifícia Universidade Católica do Rio Grande do Sul

7 PUBLICATIONS 62 CITATIONS

SEE PROFILE

Ricardo M. Czekster

Aston University

86 PUBLICATIONS 249 CITATIONS

SEE PROFILE

Flávio M De Oliveira

43 PUBLICATIONS 228 CITATIONS

SEE PROFILE

Elder Rodrigues

Universidade Federal do Pampa

60 PUBLICATIONS 157 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ricardo M. Czekster on 18 June 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/278675845_Generating_Performance_Test_Scripts_and_Scenarios_Based_on_Abstract_Intermediate_Models?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/278675845_Generating_Performance_Test_Scripts_and_Scenarios_Based_on_Abstract_Intermediate_Models?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fundamentacao-para-Transferencia-de-Tecnologia-no-MDE-como-um-Servico?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Detecting-Encrypted-Attacks?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leandro-Costa-18?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo-Czekster?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo-Czekster?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aston_University?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo-Czekster?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo-Czekster?enrichId=rgreq-bd5b92e9d4ff4738c87451d7df5b204c-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY3NTg0NTtBUzoyNDE2OTM3NDQxNjg5NjBAMTQzNDYzNTY4NzExMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Generating Performance Test Scripts and
Scenarios Based on Abstract Intermediate Models

Leandro T. Costa, Ricardo M. Czekster, Flávio M. de Oliveira,
Elder M. Rodrigues, Maicon B. da Silveira, Avelino F. Zorzo

Faculty of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre – RS – Brasil
Email: leandro.teodoro@acad.pucrs.br, ricardo.czekster@pucrs.br, flavio.oliveira@pucrs.br,

elder.rodrigues@pucrs.br, bernardino@acm.org, avelino.zorzo@pucrs.br

Abstract—Performance testing involves knowledgement not
only about the application to be tested, its usage, and the
execution infrastructure; it also requires understanding of the
performance test automation tools employed – scripting, moni-
toring and configuration details. Performance script generation
is highly technology-dependent, with great variations from one
test engine (the workload generator) to another. The scenarios,
however, should not depend on that. In this paper, we present a
technology-independent format for test scenarios and test cases,
henceforth denominated abstract intermediate models, and the
process for deriving specific test scripts from them. Hence, we
can easily reuse test scenarios with different workload generators,
allow the performance engineers to edit the scenarios before the
script generation, and abstract details related to configuration of
workload generators and monitors. 1 2

I. INTRODUCTION

Performance testing is a highly specialized task. It in-
volves knowledgement about the application to be tested, its
usage profile, and the infrastructure where it will operate.
Furthermore, because it involves intensive test automation,
performance testing requires understanding of the performance
test automation tools that will be used. Hence, there is a
bottleneck in productivity of performance engineering teams,
due to the increasing complexity of the performance testing
tools and the workload to generate the test case/scripts.

An approach that could be used to automatically gene-
rate performance test cases/scripts is Model-based Testing
(MBT) [8]. MBT can be used not only to automatically
derive performance test scenarios from the System Under Test
(SUT) models, but also to automate the test execution. The
SUT could be modelled under a wide range of modeling
languages, such as state machine diagrams [9], Specification
and Description Language (SDL) [12] and Unified Modeling
Language (UML) [3]. Probably, the most widely used mode-
ling language in the industry is UML. The UML provides
a notation for modeling some important characteristics of
applications, allowing the development of automatic tools for
model verification, analysis and code generation. Performance
is one of these characteristics; it is the object of the UML

1Study developed by the Research Group of the PDTI 001/2012, financed
by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

2The order of the authors is merely alphabetical.

Performance Profile [10], which defines a standard way to
represent performance information in a UML model.

In previous works [5] [15], we described our technique
for deriving the test scenarios and the corresponding scripts
from UML diagrams. During experiments, we learned that
script generation is highly technology-dependent, with great
variations from one test engine (called workload generator) to
another. The scenarios, however, should not depend on that,
because they should be reused to generate scripts for several
workload generators. Thus, it would be wise to separate tech-
nology details from the process of generating test scenarios.

Information Technology (IT) companies, specially global
companies, frequently use different workload generators, due
to costs, marketing and/or different target execution platforms.
The reuse of the scenarios, combined with automatic script
generation, reduces overall testing effort. In addition to con-
tribute to a technology migration, the test scenarios could
have test information in a clear format and common to many
technologies. Therefore, this information could be easily used
to generate scripts to a wide range of performance tools, e.g.
LoadRunner [11] and Visual Studio [13].

In this paper, we describe our approach to generate test
scenarios and test cases, which could be used to derive scripts
to a wide range of workload generator. In order to accomplish
that, we defined a technology-independent format for test
scenarios, which we call abstract intermediate models, and
the process for deriving specific test scripts from them. Then,
we can easily reuse test scenarios with different workload
generators, also allowing the performance engineers to edit
the scenarios before the script generation and abstract details
related to configuration of workload generators and monitors.

The structure of this paper is organized as follows. Section II
discusses related background. Section III explains the conver-
sion from UML diagrams to test scenarios, discussing major
trade-offs and advantages. Section IV provides an example
demonstrating the abstract test scenarios that were derived
automatically from the UML diagrams.

II. BACKGROUND

Performance is a fundamental quality of software systems,
affecting all underlying layers of systems. Therefore, in order

to improve the software quality of applications, Software
Performance Engineering (SPE) is used to describe and pro-
vide means to improve the performance through two distinct
approaches: early cycles studies based on predictive models
and late cycles inspections based on measurements [18]. One
SPE activity is performance testing, responsible to perform
tests for part or for the entire system, under normal load
and/or stress load. Nowadays, there are some techniques, e.g.,
Record/Playback [14] and Model-based Testing, that are used
by some tools to automate the performance test case generation
and results analysis.

MBT [4] [8] [17] is a technique to test systems in which mo-
dels are designed to create testing models suitable mapping a
given reality a model is a useful way for into analyzing quality
properties and performance attributes as it eases understanding
and promotes divide-and-conquer rationale [1]. Thus, a SUT
model can be constructed anticipating problems that may
or may not arise in early design. However, the main usage
of MBT has been directed to the test of functional aspects
(defects) of software and only lately researchers are applying
some of its techniques towards non-functional testing.

Therefore, lately, an increasing numbers of works [2] [5]
[6] [15] discuss how to apply MBT and UML models to
automatic generate performance test cases and scripts. Most of
them apply MBT in conjunction with MARTE Profile [10], an
extension of UML for modeling performance requirements. Its
purpose is to provide modeling patterns with clear semantics,
allowing automated performance model analysis. Based on
the UML models, one can extract information for the tests
and then analyse the performance counters (e.g. throughput,
transactions per second and response time). Such informa-
tion is distributed throughout several UML diagrams, e.g.,
use cases (UC), activity (AD) and sequence diagrams. An
approach that depicts how this diagrams are used to represent
the information of performance testing is presented by [6],
in which a model designed in MARTE and composed by
UML diagrams was tagged with specific properties such as
probabilities on the incidence of use cases, response times for
each activity, resource availability, etc.

III. UML DIAGRAMS AND TEST SCENARIOS

The common first step adopted by the industry when testing
applications for non-functional properties is to choose a given
load engine among the various available tools. The decision on
which tool to best test an application involves several factors
such as familiarity (has been used before), pricing or target
software platform.

However, every workload manager has its own peculiarities,
configurations and tweaks as well as common operations to
be performed when mimicking user behavior within the SUT.
Thus, the test scenarios and scripts generated for some tool
can not be reused to another.

Figure 1 shows our approach, in which the main idea is to
convert high-level UML diagrams to an abstract intermediate
model suitable for the derivation of abstract test scenarios and
scripts to different workload manager. The main difference

between our approach and classic MBT abstract test suites is
the fact that we are interested in creating intermediate models
to use for performance testing rather than functional testing.
Another contribution is that we apply MBT to construct a
performance abstract test scenario. Based on that, can be
generated test scenarios and scripts for a wide range of
workload manager.

Studio

HP
LoadRunner

− overall load

− path choices

Model

Abstract

− parameters

− qualitative data

A
n
n
o
ta

ti
o
n
s

UML Diagrams
Use Cases

Activity Diagram

c)a) b)

Other Workload
Generators

MS Visual

Fig. 1. Model transformation engine

A. Abstract Intermediate Models

Our focus in this paper is generate a technology-independent
testing description from a MBT approach. Thus, we reuse
the applications models to generate an abstract intermediate
model that is a description of the test scenarios. It contains
information needed to instantiate the performance scripts, such
as loads, ramp-up time, total execution time etc., which can be
derived from the model, while abstracting script details such
as machine locations, API calls etc. An important issue when
using MBT to generate performance test scenarios and scripts
is define which UML diagram and which UML profile will be
used to annotate the needed information.

B. Transformation Methodology

This section describes how to convert UML models (mostly
UC and AD) into general purpose abstract intermediate mo-
dels. Before describing the overall methodology, we discuss
the UML annotation provided by other parties. Our approach
relies on the assumption that the UML models are carefully
annotated with high-quality information. We are trusting that
all stakeholders are interested in the process of discovering
the application’s problems and bottlenecks and also that all
involved personnel is committed to create comprehensive test
scenarios, allowing further reliable analysis.

The process of generating test scenarios from annotated
UML models must encompass a set of operations that must
be performed prior to the test execution. Our methodology
involves basically three steps:

1) UML Annotations Verification (Figure 1-a): We fo-
cus our attention to two broadly used diagrams present in
UML: Use Cases (UC) and Activity Diagrams (AD). This
step entails the evaluation if the models were annotated
with information that can be used to the generation of the
abstract model in the next step. Thus, to annotate these
information on the UML models we defined some UML tags
based on the UML profile to Schedulability Performance and
Time (SPT) [18]: a) <<TDtime>>: limits the performance

test duration(s) for the scenario(s); b) <<TDpopulation>>:
maps the number of virtual users that populates the system;
c) <<TDhost>>: describes the name of the host to connect
to; d) <<TDaction>>: specifies an action that must be taken,
e.g., the execution of a script; e) <<TDparameters>>:
represents two information: name and value, that must be
filled out to proceed, e.g., a login screen, or a search form;
f) <<TDprob>>: indicates the probability to decide the next
activity to be executed. It is used in the decision element model
within the ADs or annotated in the association element model
between actor and use case within the use cases diagram;
g) <<TDthinkTime>>: defines the amount of time units
each virtual user waits before taking another action. This tag
is used by a large set of workload generators to mimic user
behavior.

After this step, the UML models should satisfy the following
conditions: a) every UC have at least one or several ADs
counterparts; b) the AD is well-formed, i.e., contains an initial
and an end state; c) test plan with information regarding the
test itself, e.g., the type of test, the number of virtual users;
d) every activity is annotated with context information, i.e.,
user form and query string parameters and user think time
information.

2) Intermediate Model Generation (Figure 1-b): Our
abstract intermediate model is designed to be extensible and
modular, using hierarchical textual structures to represent
activities readily available in UML diagrams or other similar
representations of business processes (e.g. Business Process
Model Notation (BPMN) [7]). In fact, it is straightforward
to take any high-level business process representation and
directly transform it to a test scenario, however, the test must
be instantiated having a specific workload generator in mind.

This step is split in two abstract models: abstract test
scenarios and abstract test cases. Each abstract models is a
hierarchical structure that is used to map the AD to a textual
abstract representation retaining the order of events and the
parallel activities that must take place. This structure uses
a sequential numbering convention with appended activities,
e.g., 1, 1.1, 2.1 and so forth. Each activity is mapped to a
number, here defined as an activity number. The numbered
mapping is a visual aid to inspect sequential and parallel
relations within the abstract intermediate model.

Note that for the abstract model to function according
to our specification, it should contain only the fundamental
information to instantiate different test scenarios. The abstract
format suggested here is extensible and could be enhanced to
contain more information regarding performance tests for a
more complex test suite.

3) Workload Generator Instantiation (Figure 1-c): This
step is tool-oriented because it generates specific test scenarios
that must be created for each abstract intermediate model. We
explain how this is performed in the following sections. Our
approach shifts the concern on the performance test execution
itself to the description of an abstract model that captures the
needed test information looking up only to high-level (UML
models). Next, we present how to apply our approach to

generate scripts to two workload generators.

IV. EXAMPLE OF USE: GENERATING SCRIPTS BASED ON
ABSTRACT TEST SCENARIOS

This section describes an application scenario which our
approach is applied to generate abstract models. For this
purpose, we used the TPC-W benchmark [16] as an application
example and develop a tool to generate automatically the
abstract scenarios and then generate scripts for MS Visual
Studio and LoadRunner. The TPC-W is a transactional web
service benchmark that implements a benchmark and an e-
commerce application that is used by the benchmark (or by
any other workload generator).

To support the generation of scripts to test the TPC-W
application, we developed an application to parse the infor-
mation annoted in the UML models and generate the abstract
models (following the guidelines described in Section III).
This application is derived from the Software Product Line
called PLeTs [5] [15].

A. TPC-W UML Diagrams

The first step to apply our approach (Section III) to test
the TPC-W application is to annotate the TPC-W models. For
this task, we have created several UML based tags to represent
the performance information needed to generate the abstract
intermediate models. As a starting point we have annotated
three different use cases (shown in Figure 2): a) Browser: the
users performs browsing interactions; b) Registration:
the user fulfill a registration form; and c) Shop: the users
performs purchase interactions.

Fig. 2. TPC-W Use Case Diagram

Each actor present in the UC diagram contains information
for a specific test scenario. Thus, we define two different
test scenarios interactions for actors Customer and New
Customer. The test scenario for New Customer is a set
of interactions that will be performed over the set of use
case elements (Browser, Registration and Shop). It
is important to notice that each UC is related to a specific AD,
e.g., the AD present in the Figure 3 is related to the shop use
case (Figure 2). Basically, each AD represents the sequence
of activities performed by an actor over the application.
As depicted in Figure 3, the first activity is Home Page,
which is the TPC-W home page. After that, the user could

Fig. 3. TPC-W Activity Diagram

perform the following actions: selects a specific book category
(New Products) or performs a search for a particular book
(Search Request and Search Results). The activity
Search Request shows as a result a list of books to the
user. Hence, when selecting a book from this list (Search
Results), several information of the selected book are
displayed to the user (Product Detail). After that, the
user must perform one of the following activities: finish his
access to the application or continue on the website and make
a purchase (Shopping Cart). If the user decided for the
latter option, the next step is related to the registration of
customer (Customer Registration) in the application.
Then, the user fills some information of purchase such as
financial information (e.g. credit card number) and delivery
date (Buy Request). The last step checks if all information
is correct, then the purchase is confirmed (Buy Confirm)
and finishes the access to the application. This diagram has
also two decision elements in its flow, that represent the
probability of executing different paths in the system, e.g.,
the tag @homePage.searchRequest.prob between ac-
tivities Home Page and Search Request in the Figure 3.

As described in Section III, the UML diagrams can be
initially annotated with seven tags in our approach. The UC
shown in Figure 2, has four tags: TDpopulation,
TDhost, TDtime and TDprob. Each one has its
respective parameter, @customer.population,
@customer.host, @customer.time and
@newCustomer.BrowsingMix.prob. In relation to
our AD we have also included four different tags and their
respective parameter (see Figure 3).

B. Abstract Test Scenarios Generation

Once all the UML diagrams (see Figures 2 and 3) were an-
notated with performance informations, we apply our approach
to generate abstract test scenarios for the TPC-W application.
The creation of abstract test scenarios allows a later definition
of a workload manager and its test script templates.

Basically, an abstract test scenario defines the amount of
users that will interact with the SUT and also specifies the
users behavior. The abstract test case contains the information
regarding the necessary tasks to be performed by the user.

Figure 4 shows an example of an abstract test scenario
generated for the actor Customer. The amount of abstract
test scenarios generated based on a UC diagram is directly
related to the amount of actors modeled in the UC model, e.g.,
for the TPC-W example there are two abstract test scenarios.

Abstract Test Scenario: Customer
Test Setting
Virtual Users : <<TDpopulation: @customer.population>>
Host of SUT : <<TDhost: @customer.host>>
Test Duration : <<TDtime: @customer.time>>
Test Cases Distribution:
<<TDprob: @customer.Shop.prob>>
1. Shop
1.1. Shop 1
1.2. Shop 2
1.3. Shop 3
1.4. Shop 4
<<TDprob: @customer.Browser.prob>>
2. Browser...
<<TDprob: @customer.Registration.prob>>
3. Registration
3.1. Registration 1...
3.4. Registration 4

Fig. 4. Abstract test scenario of the actor Customer

As presented in Section III, the abstract test scenario has
the information related to the test context and the definition of
the abstract test cases that must be instantiated, including the
distribution of the number of virtual users for each abstract test
case. Thus, our annotation approach is divided in two groups:
1) Test Setting – describes the general characteristics that are
applied to the test context as a whole (extracted from the UC);
2) Test Cases Distribution – represents information specific to
the abstract test cases generated from each AD. In order to
accomplish that, each test case represent a user path in the
SUT. It is important to notice that the header of each abstract
test case contains probability information (see Figure 4) .

As show in Figure 5, the abstract test cases are built in a
hierarchical approach, in which activities are listed and orga-
nized according to the dependency between the AD activities
(represented by activity number). Figure 5 shows the abstract
test case based on one test sequence derived from the AD
(Figure 3). Furthermore, in the description of abstract test
cases there is a variation of parameters added to each activity,

which are composed by the name and the value of each tag,
showing the flexibility of the configuration models. A parame-
ter is the concatenation of two pieces of information: activity
name and tag name, preceded by the delimiter @. Although, the
tag TDprob has three pieces of information. The first of these
information is the tag name preceded by the name of two UML
elements. An example of that is presented in Figure 3 where
the tag TDprob @homePage.searchRequest.prob is
tagged in the UML association element between the UML
decision node and the target activity (Search Request).
The same notation is applied in the UC diagrams, where
the tag is applied between the UC Shop and the actor new
Customer.

#Abstract Test Case: Shop 3
1. Home Page

<<TDmethod : @HomePage.method>>
<<TDaction : @HomePage.action>>
<<TDparameters : @HomePage.parameters>>
<<TDthinkTime : @HomePage.thinkTime>>

2. New Products...
3. Product Detail...
4. Shopping Cart...
5. Customer Registration...
6. Buy Request...
7. Buy Confirm

<<TDmethod : @BuyConfirm.method>>
<<TDaction : @BuyConfirm.action>>
<<TDparameters : @BuyConfirm.parameters>>
<<TDthinkTime : @BuyConfirm.thinkTime>>

Fig. 5. Example of abstract test case generated from the Shop use case

It is important to notice that each tag parameter refers to
a data file (Figure 6), that is automatically generated. Thus,
when abstract test scenario and scripts are instantiated to
a concrete test scenario and scripts for a specific workload
generator, the tag parameter is replaced by a value extract
from a file.

@BuyConfirm.method:"POST"
@BuyConfirm.action:"http://localhost/tpcw/buy_confirm"
@BuyConfirm.parameters:[$ADDRESS.CITY, $ADDRESS.STATE]
@BuyConfirm.thinkTime:5

Fig. 6. Example of data file containing some parameters

C. Test Scenarios and Scripts Instantiation

Based on the abstract test scenarios and test cases presented
in Section IV-B, the next step is to generate concrete instances
(scripts and scenarios). This is a technology dependent step,
because the concrete scenarios and test cases are strongly
related to a specific workload generator that will directly
execute the test cases.

This is an important step on the automation of the per-
formance testing, because it allows the flexibility of choice
a workload generator or technology only in the execution
stage of the test cases. However, it is necessary an advanced
tool knowledgement to create scripts and scenarios. There-
fore, to demonstrate how our approach could be valuable

to a performance testing team, we presents how to generate
test scenarios and scripts for two workload manager: Visual
Studio (VS) and LoadRunner (LR). Basically, the VS and
the LR structure its test scenarios and scripts in two files.
One of them is a scenario file that is used to store the
test configuration, workload profile distribution among test
scripts and the performance counters that will be monitored
by the tool. The other file is a script configuration file
that is used to store the information about users’ interaction
with the application, including HTTP requests, as well as its
parameters and transactions defined between requests. Figure
7 shows the VS scenarios file that was generated to test
TPC-W. In this case, the MaxUser property corresponds to
the parameter @customer.population. Another tag that
has changed was the RunConfiguration with attribute
RunDuration that is related to the tag @customer.time.
The process to instrument a test scenario is based on a
template. Hence, the further information within the scenario,
that are not from the abstract test scenario are those standard
information present in any test scenario generated by the
workload generator.

<LoadTes t . . .>
<S c e n a r i o s>

<S c e n a r i o Name=” Customer ” . . .>
<T h i n k P r o f i l e Value=” 0 ” P a t t e r n =”On” />
<L o a d P r o f i l e P a t t e r n =” S tep ” I n i t i a l U s e r s =” 0 ”

MaxUsers=” 50 ” S t e p U s e r s =” 10 ” S t e p D u r a t i o n =” 0 ”
StepRampTime=” 60 ” />

<BrowserMix> . . .</ BrowserMix><TestMix> . . .</ TestMix>
<NetworkMix> . . .</ NetworkMix>

</ S c e n a r i o>
</ S c e n a r i o s>
<C o u n t e r S e t s> . . .</ C o u n t e r S e t s>
<R u n C o n f i g u r a t i o n s>

<R u n C o n f i g u r a t i o n RunDura t ion =” 7200 ” WarmupTime=” 300 ”
T e s t I t e r a t i o n s =” 100 ” . . .> . . .</ R u n C o n f i g u r a t i o n>

</ R u n C o n f i g u r a t i o n s>
</ LoadTes t>

Fig. 7. XML of test scenario generated for the Visual Studio (*.LoadTest)

Figure 8 presents a snippet of VS test scripts that was
generated to test TPC-W. In turn, Figure 9 shows a snippet
for LR. These test scripts were instantiated based on abstract
test case presented in Figure 5. Basically, the test scripts
are a set of several HTTP requests. Among the features
correlated in the set of test artifacts, we highlight the
following example: 1) Tag Request - in the VS the
attribute Url and the attribute web_submit_data
in the LoadRunner are related to the parameter
@BuyConfirm.action; the VS attribute ThinkTime and
the parameter lr_think_time LoadRunner are correlated
to the parameter @BuyConfirm.thinkTime; 2) Tag
QueryStringParameter - the VS and LoadRunner
attributes Name and Value are related to the parameter
@BuyConfirm.parameters.

V. FINAL CONSIDERATIONS

The present work proposed a common format to define
abstract intermediate models suitable for the instantiation of

<WebTest Name=” Shop 3 ” . . .>
<I t e m s>
<T r a n s a c t i o n T i m e r> . . .</ T r a n s a c t i o n T i m e r>
<T r a n s a c t i o n T i m e r Name=”Buy Confirm ”>
<I t e m s>
<Reques t Ur l =” h t t p : / / l o c a l h o s t : 8 0 8 0 / tpcw /

TPCW buy conf i rm serv le t ” ThinkTime=” 5 ” . . .>
<Q u e r y S t r i n g P a r a m e t e r s>

<Q u e r y S t r i n g P a r a m e t e r Value=”{{$ADDRESS . CITY}}”
Name=”CITY” . . . />

<Q u e r y S t r i n g P a r a m e t e r Value=”{{$ADDRESS . STATE}}”
Name=”STATE” . . . /> . . .

</ Q u e r y S t r i n g P a r a m e t e r s>
</ Reques t>

</ I t e m s>
</ T r a n s a c t i o n T i m e r>

</ I t e m s>
<V a l i d a t i o n R u l e s> . . .</ V a l i d a t i o n R u l e s>

</ WebTest>

Fig. 8. Test script generated for the Visual Studio

Ac t i on ()
{

. . .
l r t h i n k t i m e (5) ;
web submi t da t a (” buy conf i rm . j s p ” ,
” A c t io n = h t t p : / / l o c a l h o s t : 8 0 8 0 / tpcw / TPCW buy conf i rm serv le t

” ,
” Method=POST” ,
” RecContentType = t e x t / h tml ” ,
” R e f e r e r =” ,
”Mode=HTML” ,
ITEMDATA,

”Name=CITY” , ” Value={{$ADDRESS . CITY}}” , ENDITEM,
”Name=STATE” , ” Value={{$ADDRESS . STATE}}” , ENDITEM,

LAST) ;
. . .

}

Fig. 9. Test script generated for the LoadRunner

test scenarios for different workload managers. Throughout the
paper we have discussed some important aspects on how to
use annotated UML models to derive an intermediate textual
format having the most important primitives that are needed
to construct comprehensive test scenarios. We also show how
to transform the abstract test scenarios in test script for two
workload manager.

Our technique provides an indication that generating
abstract models is a powerful means to derive effective
technology-independent test scenarios. It is important to high-
light that the creation of an abstract model for later definition
of a test script and scenario using a chosen workload manager
needs only to annotate a few selected data in the UML models.
Translating UML models to this representation is also more
comprehensible for end-users when they are tracking bugs or
trying to understand the flow of operations for a functionality.

We envision several future works to consider following
the present proposition. One could, for example, seamlessly
translate a different UML model (e.g. Sequence Diagram)
using our abstract model to generate scripts to some tool that
is based on a different testing technique, e.g, structural testing.
Another concern that has come to our attention is directed to
the description of an abstract model to relate more architectural
information in terms of the underline infrastructure of the
SUT, for instance, the use of virtualized environments or cloud
computing.

Acknowledgments. We thank CNPq/Brazil, CAPES/Brazil,
INCT-SEC, and DELL for the support in the development of
this work.

REFERENCES

[1] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-Based
Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30:295–310, May 2004.

[2] C. Barna, M. Litoiu, and H. Ghanbari. Model-based performance testing
(nier track). In Proceedings of the 33rd International Conference on
Software Engineering, pages 872–875, New York, NY, USA, 2011.
ACM.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide (2nd Edition). Addison-Wesley Professional,
2005.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 21st International Conference on Software engineering,
pages 285–294, New York, NY, USA, 1999. ACM.

[5] E. de M. Rodrigues, L. D. Viccari, and A. F. Zorzo. Plets-test
automation using software product lines and model based testing. In
22th International Conference on Software Engineering and Knowledge
Engineering (SEKE), pages 483–488, 2010.

[6] S. Demathieu, F. Thomas, C. Andre, S. Gerard, and F. Terrier. First
experiments using the uml profile for marte. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, pages 50–57, may 2008.

[7] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis
of business process models in BPMN. Information and Software
Technology, 50(12):1281–1294, 2008.

[8] I. K. El-Far and J. A. Whittaker. Model-based Software Testing. Wiley,
New York, 2001.

[9] R. Ferreira, J. Faria, and A. Paiva. Test Coverage Analysis of UML
State Machines. In Proceedings of the 3rd International Conference
on Software Testing, Verification, and Validation Workshops, pages 284
–289, april 2010.

[10] O. M. Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE). MARTE specification version 1.0.
OMG, 2009. OMG document number formal/2009-11-02., 2009.

[11] Hewlett Packard - HP. Software HP LoadRunner, Sep. 2010. URL:
https://h10078.www1.hp.com/cda/hpms/display/main/hpms\ content.
jsp?zn=bto&cp=1-11-126-17\ˆ8\ 4000\ 100.

[12] A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from sdl
specifications. In Proceedings of the 6th SDL Forum, pages 135–152,
1999.

[13] J. Levinson. Software Testing With Visual Studio 2010. Pearson
Education, 2011.

[14] G. Meszaros. Agile regression testing using record & playback. In
Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
353–360, New York, NY, USA, 2003. ACM.

[15] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, L. T. Costa, H. V. Vieira,
and F. M. Oliveira. Generation of Scripts for Performance Testing
Based on UML Models. In 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE), pages 1–6, 2011.

[16] TPC-W Org. Benchmark TPC-W, Feb. 2012. URL: http://http://www.
tpc.org/tpcw.

[17] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, San Francisco, 2006.

[18] C. Woodside and D. Petriu. Capabilities of the UML Profile for
Schedulability Performance and Time (SPT). In Workshop SIVOES-SPT
RTAS’2004, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/278675845

