
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/251573053

PlugSPL: an Automated Environment for Supporting Plugin-Based Software

Product Lines

Conference Paper  in  International Journal of Software Engineering and Knowledge Engineering · July 2012

CITATIONS

0
READS

186

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Usa-DSL: Usability Evaluation Framework for Domain-Specific Languages View project

Detecting Encrypted Attacks View project

Elder Rodrigues

Universidade Federal do Pampa

60 PUBLICATIONS   157 CITATIONS   

SEE PROFILE

Avelino F. Zorzo

Pontifícia Universidade Católica do Rio Grande do Sul

138 PUBLICATIONS   1,212 CITATIONS   

SEE PROFILE

Edson OliveiraJr

Universidade Estadual de Maringá

102 PUBLICATIONS   378 CITATIONS   

SEE PROFILE

Itana Maria de Souza Gimenes

Universidade Estadual de Maringá

101 PUBLICATIONS   623 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Avelino F. Zorzo on 14 September 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/251573053_PlugSPL_an_Automated_Environment_for_Supporting_Plugin-Based_Software_Product_Lines?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/251573053_PlugSPL_an_Automated_Environment_for_Supporting_Plugin-Based_Software_Product_Lines?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Usa-DSL-Usability-Evaluation-Framework-for-Domain-Specific-Languages?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Detecting-Encrypted-Attacks?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elder-Rodrigues-2?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edson-Oliveirajr?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edson-Oliveirajr?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Estadual-de-Maringa?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edson-Oliveirajr?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Itana-Gimenes?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Itana-Gimenes?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Estadual-de-Maringa?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Itana-Gimenes?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-4c79ee0080dd9c1c46c60248895da3da-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU3MzA1MztBUzoyNzM3MzAyNTMzNTcwNTZAMTQ0MjI3Mzc4NjUxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


647

PlugSPL: An Automated Environment for Supporting
Plugin-based Software Product Lines

Elder M. Rodrigues∗, Avelino F. Zorzo∗, Edson A. Oliveira Junior†, Itana M. S. Gimenes†,
José C. Maldonado‡ and Anderson R. P. Domingues∗

∗Faculty of Informatics (FACIN) - PUCRS - Porto Alegre-RS, Brazil
Email: {elder.rodrigues, avelino.zorzo}@pucrs.br

Email: anderson.domingues@acad.pucrs.br
†Informatics Department (DIN) - UEM - Maringá-PR, Brazil

Email: {edson, itana}@din.uem.br
‡Computing Systems Department (ICMC) - USP - São Carlos-SP, Brazil

Email: jcmaldon@icmc.usp.br

Abstract—Plugin development techniques and the software
product line (SPL) approach have been combined to improve
software reuse and effectively generate products. However,
there is a lack of tools supporting the overall SPL process.
Therefore, this paper presents an automated environment,
called PlugSPL, for supporting plugin-based SPLs. Such envi-
ronment is composed of three modules: SPL Design, Product
Configuration, and Product Generation. An example of a
PlugSPL application is illustrated by means of the PLeTs
SPL for the Model-Based Testing domain. The environment
contributions are discussed whereas future work is listed.

Keywords-Software Product Lines, Plugin-based SPL, Model-
based Testing.

I. INTRODUCTION

In recent years, software product line (SPL) [1] engineer-
ing has emerged as a promising reusability approach, which
brings out some important benefits, e.g., it increases the
reusability of its core assets, in the meanwhile decreases time
to market. The SPL approach focuses mainly on a two-life-
cycle model [1]: domain engineering, in which the SPL core
assets are developed for reuse; and application engineering,
in which the core assets are reused to generate specific
products. It is important to highlight that the success of the
SPL approach depends on several principles, in particular
variability management [2].

Although SPL engineering brings out important benefits,
it is clear the lack of an environment aimed at automating
the overall SPL life cycle, including: (i) configuration of
feature model (FM); (ii) configuration of products; and
(iii) generation of products. Literature and industry present
several important tools that encompass part of the SPL
development life cycle, e.g., SPLOT [3].

The plugin approach has also received an increasing
attention in the development of SPLs [4]. In the SPL
field, a plugin-based approach enables the development of
different applications by selecting/developing different sets
of plugins. Although the use of plugins to develop SPL
products is a promising approach and several works have

been published in recent years, to the best of our knowledge,
there is no tool to support plugin-based SPLs. Therefore,
this paper presents an automated environment for supporting
the overall SPL engineering life cycle, the PlugSPL. Such
an environment differs from existing tools as it aims at
supporting plugin-based SPLs. Moreover, PlugSPL provides
capabilities both to import/export FMs from/to other tools
and to effectively generate products.

This paper is organized as follow. Section II discusses
some concepts of SPL and plugin-based SPLs; Section III
presents the PlugSPL environment and its main characteris-
tics; Section IV illustrates the use of PlugSPL to manage a
Model-Based Testing (MBT) SPL; and, Section V presents
the conclusion and directions for future work.

II. BACKGROUND

In recent years, the plugin concept has emerged as an
interesting alternative for reusing software artifacts de facto
[5]. Moreover, plugins are a useful way to develop applica-
tions in which functionalities must be extended at runtime.

In order to take advantage of the plugin concept for
developing software, it is necessary to design and implement
a system as a core application that can be extended with
features implemented as software components. A successful
example of the plugin approach is the Eclipse platform [6],
which is composed of several projects in which plugins are
developed and incorporated to improve both the platform
and the providing services.

The plugin approach has also received an increasing
attention in the development of SPLs [4]. The SPL approach
has emerged over the last years due to competitiveness in
the software development segment. The economic considera-
tions of software companies, such as cost and time to market,
motivate the transition from single-product development to
the SPL approach, in which products are developed in a
large-scale reuse perspective [1]. Whereas a SPL can be
defined as a set of applications that share a common set of
features and are developed based on a common set of core



648

assets, the plugin approach can be easily applied to build
new applications by plugging different sets of plugins to a
core application [7]. Although the use of plugins to develop
products is a promising approach and several works have
been published in recent years, there is no tool to support
plugin-based SPLs.

III. PLUGSPL ENVIRONMENT: SUPPORTING
PLUGIN-BASED SOFTWARE PRODUCT LINES

Although there are many tools focused on SPL modeling,
consistence checking [3], and product generation support [8],
currently, there is no tool that integrates all SPL development
phases. Moreover, there is no tool to support the auto-
mated product configuration and product generation from a
plugin-based SPL. Therefore, in this section we present the
PlugSPL environment that has been developed to support
SPL design, product configuration and generation of plugin-
based SPLs. Figure 1 presents the PlugSPL modules and
activities, as follows:

Figure 1: The PlugSPL modules.

a) the SPL Design module aims to design a FM by either
creating it from scratch or importing a pre-existing FM
from SPL tools. Such tools, usually, do not use a common
format to represent FM elements and constraints, there-
fore, we conceived the PlugSPL SPL Design module
to work with a wide FM representations and file formats.
Thus, PlugSPL FMs can be seen as a starting point to
automate the creation of the SPL architecture and then
to generate products. Based on information extracted
from a FM, the SPL Design module represents such
information as SPL Models (Figure 1). Such models
are taken as input to the Product Configuration
module for composing the SPL architecture;

b) the Product Configuration module is responsi-
ble for automating the SPL architecture. Basically, this
module has two activities - Generate Abstract
Classes and Configure Product. The former re-
ceives the SPL Models provided by the SPL Design
module and creates a set of abstract classes, one class

for each feature. Each abstract class is a variation point
and/or a variant with a specific type. Thus, each plugin
may extend only one abstract class. The abstract classes
might be used, according to the SPL documentation,
by the core assets developer to build each plugin that
composes the SPL. After the generation of the abstract
classes, the SPL engineer is able to select the desired
features for the target system (product configuration).
PlugSPL checks the system consistency and generates
the target system architecture (abstract classes).

c) the Product Generation module takes the target
system architecture as input. This module graphically
shows such architecture to the application engineer. Thus,
this module retrieves from the plugin repository respec-
tive plugins that implement the types of the abstract
classes (product architecture). After that, the plugins are
linked to each of their respective abstract classes and the
consistency between the generated architecture and FM is
checked. PlugSPL shows graphically the set of plugins
that is able to be selected for resolving the variability
in each class and generates the target system. Them,
the application engineer: (i) selects one or more plugins
(which denote a feature in the FM) to resolve each class
variability; (ii) gives a name to the target system; and
(iii) clicks a button to generate the system.

IV. PLUGSPL APPLICATION EXAMPLE

This section presents an example of how PlugSPL can
be used to design, develop and derive MBT products from
PLeTs SPL [7]. PLeTs is a SPL aimed at automating
the generation, execution and results collection of MBT
processes. The MBT process consists in the generation of
test cases and/or test scripts based on the application model.
The MBT process main activities are [10]: Build Model,
Generate Expected Inputs, Generate Expected Outputs,
Run Tests, Compare Results, Decide Further Actions and
Stop Testing. PLeTs goal is the reuse of SPL artifacts to
make it easier and faster to develop a new MBT tool.
Figure 2 shows the main features of the current PLeTs FM:
Parser, TestCaseGenerator,ScriptGenerator
and Executor.

Figure 2 shows several dependencies (denoted
by propositional logic) between features. For
instance, if feature Executor and its child feature
LoadRunnerParameters are selected, then
feature ScriptGenerator and its child feature
LoadRunnerScript must be selected as the generated
tool is not able to execute tests without test scripts.

The PLeTs FM can be extended to support new testing
techniques or tools by adding new child features to its
main features. For instance, if one adds new features for
the SilkPerformer testing tool, new child features for the
ScriptGenerator and Parameterization features
must be included.



649

Figure 2: The PLeTs Feature Model [7].

A. Using PlugSPL for Generating a MBT SPL
Designing and development of SPLs supported only by

FMs editors and SPL documentation itself might be error
prone and time consuming activities. Moreover, checking
features constraints manually is a hard task. Therefore, this
section explains how PlugSPL can be used to automate the
overall SPL process by using PLeTs as an example SPL.

PlugSPL imports PLeTs FM (Figure 2) to the SPL
Design module. Thus, PlugSPL re-constructs and checks
the FM and shows the result to the SPL architect using
a tree notation. Therefore, the SPL architect can interact
with the PLeTs FM to, for instance, add or edit feature
relationships. The PLeTs FM is saved as SPL Models to
support the Product Configuration phase.

During Product Configuration, PlugSPL generates the
PLeTs architecture, formed by its abstract classes, e.g.,
Parser, UmlDiagrams and ScriptGenerator. Thus, the SPL
architect might export such classes, by clicking on the
Deploy Development Library button, and send it to
the plugin development team. Based on the architecture,
such team develops a plugin by extending a specific abstract
class (e.g. Parser), and sends it back to the SPL architect
to store it in the SPL plugin repository. As shown in
Figure 3, the product architect might define each product
architecture by selecting the abstract classes in the tree
structure. A product is a performance MBT tool that re-
alizes the following activities; a) Accepts as input an UML
model (Parser, UmlDiagrams); b) Transforms the model in a
formal model (TestCaseGenerator, FiniteStateMachine), and
applies it a sequence method (HSI) to generate the testing
sequence. Based on such a testing sequence, it generates the
abstract performance test cases (AbstractTestCaseGenerator,
PerformanceTesting); c) Uses the abstract performance test
cases to generate scripts to the LoadRunner performance
tool (ScriptGenerator, LoadRunnerScript); d) Executes pro-

duct via command line (Execution, Console) and sets the
LoadRunner parameters (Parameterization, LoadRunnerPa-
rameters).

PlugSPL allows the product architect to save each product
architecture in a repository for reuse. It is important to
highlight that in the PLeTs SPL each abstract class is
a variation point that is resolved by selecting a variant
(plugin).

The Product Generation module presents graphically the
abstract classes structure of a product. It also links a plugin
to classes by performing a search in the plugin repository to
find what plugins are implemented by each product abstract
class. Thus, the product architect selects a plugin, or a set
of plugins, to resolve each variability. In the Product Gene-
ration activity each variability (abstract class) uses only one
variant (plugin) to resolve a variability. However, it might be
necessary to use two or more variants to resolve a variability.
After resolving a variability, the product architect has two
options: save the product configuration and/or generate the
MBT product. In the first option, the tool asks for a product
name and, then, saves its classes and plugins to generate
a product later. In the second option, PlugSPL asks for a
product name, and then generates the MBT product. In order
to generate the product, PlugSPL: (i) selects the product
abstract classes and its related plugins; (ii) packages them
by using a “glue code”; and (iii) generates an executable
product file. Although the “glue code” generation is only
invoked and executed by PlugSPL, the piece of code that
generates such a code is implemented in the SPL base plu-
gin. This approach simplifies the development and evolution
of the product as the complex information necessary to
generate products from a wide amount of SPLs is stored
as a SPL artifact.



650

Figure 3: PlugSPL Feature Model Editing and Product Configuration.

V. CONCLUSION AND FUTURE WORK

This paper presented PlugSPL, which is an automated
environment to support the overall plugin-based SPL life
cycle. Although there are tools to partially support the SPL
life cycle as, for instance, pure::variants, there is no
tool that supports plugin-based SPLs and the overall SPL life
cycle. Furthermore, there are tools to design FMs, but most
of them use different notations and file formats. PlugSPL
provides capabilities with regard to create or import/export
FMs from/to other tools and uses a wide file format. There-
fore, there is no need to incorporate other tools/environments
into PlugSPL.

Although PlugSPL is a flexible environment for modeling
FMs, its most significant benefit is supporting the generation
of SPL products based on its FM. Moreover, PlugSPL
automatically generates an abstract class structure, which
can be used to develop third-party plugins. A PlugSPL
application example was presented for deriving MBT tools
from the PLeTs SPL. Directions for future work are: (i)
plan and conduct experiments for assuring the effectiveness
of PlugSPL environment; (ii) extend PlugSPL functionalities
to support different plugin-based SPLs; and (iii) include into
PlugSPL an overall SPL evaluation module.

REFERENCES

[1] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[2] E. A. Oliveira Junior, I. M. S. Gimenes, and J. C. Maldonado,
“Systematic Management of Variability in UML-based Soft-
ware Product Lines,” Journal of Universal Computer Science,
vol. 16, no. 17, pp. 2374–2393, 2010.

[3] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T.: Soft-
ware Product Lines Online Tools,” in Proc. Conf. Object Ori-
ented Programming, Systems, Languages, and Applications.
New York, NY, USA: ACM, 2009, pp. 761–762.

[4] R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and
H. Prahofer, “Supporting Runtime System Adaptation through
Product Line Engineering and Plug-in Techniques,” Int. Conf.
Commercial-off-the-Shelf (COTS)-Based Software Systems,
pp. 21–30, 2008.

[5] J. Mayer, I. Melzer, and F. Schweiggert, “Lightweight Plug-
In-Based Application Development,” in Proc. Int. Conf. Ne-
tObjectDays on Objects, Components, Architectures, Services,
and Applications for a Networked World. London, UK, UK:
Springer-Verlag, 2003, pp. 87–102.

[6] M. Kempf, R. Kleeb, M. Klenk, and P. Sommerlad, “Cross
Language Refactoring for Eclipse Plug-ins,” in Proc. Work-
shop on Refactoring Tools. New York, NY, USA: ACM,
2008, pp. 1–4.

[7] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, L. T. Costa,
H. V. Vieira, and F. M. de Oliveira, “Model-Based Automatic
Generation of Performance Test Scripts,” in Proc. Software
Engineering and Knowledge Engineering Conf. Miami,
USA: IEEE Computer Society, 2011, pp. 258–263.

[8] D. Beuche, “Modeling and Building Software Product Lines
with Pure::Variants,” in Proc. Int. Software Product Line Conf.
New York, NY, USA: ACM, 2011, pp. 358–.

[9] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund, “Abstract
Features in Feature Modeling,” in Int. Conf. Software Product
Line, 2011, pp. 191–200.

[10] I. K. El-Far and J. A. Whittaker, Model-based Software
Testing. New York: Wiley, 2001.

View publication statsView publication stats

https://www.researchgate.net/publication/251573053

