An Industrial Experience on using Models to Test Web
Service-Oriented Applications

Andre Takeshi Endo*2, Maicon Bernardino®, Elder Macedo Rodrigues?,
Adenilso Simao?, Flavio M. de Oliveira®, Avelino F. Zorzo®, Rodrigo Saad*
! Universidade Tecnologica Federal do Parana (UTFPR)

Cornelio Procopio — PR — Brazil
2 Instituto de Ciéncias Matematicas e de Computacdo — Universidade de Sao Paulo (USP)
PO Box 668, 13560—970 Sao Carlos, SP, Brazil
3 Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre — RS — Brazil
* Dell Inc., Porto Alegre — RS — Brazil
andreendo@utfpr.edu.br, adenilso@icmc.usp.br, {bernardino,
elderrodrigues}@acm.org, {flavio.oliveira, avelino.zorzo}@pucrs.br,

rodrigo_saad@dell.com

ABSTRACT

Service-oriented architectures and Web services have been
widely adopted by enterprises to pervade integration among
software systems. As reliable services are essential to assure
that these systems work correctly, formal and systematic
testing should be performed. This paper reports the ap-
plication of a model-based approach to test Web services
in the context of real-world applications of a multinational
computer technology corporation. The employed approach
is called ESG4WSC, in which an event-driven model is pro-
vided to support modeling and test case generation, as well
as an environment to support the concretization and test
execution.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability

Keywords

model based testing, service composition, event sequence
graph, experience report

1. INTRODUCTION

Service-Oriented Architecture (SOA) is an architectural
style in which functionalities are decomposed into distinct
units named services [16]. These services, distributed over
a global or internal network, can be reused and combined

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

iiWAS 2013, Vienna, Austria

Copyright 2013 ACM 978-1-4503-2113-6/13/12 ...$15.00.

to create new and more complex enterprise applications. In
this process, a composite service is developed by integrating
the functionalities of partner services. There exist various
languages and specifications that have been used to describe
or execute service compositions, such as WS-CDL [14] and
BPEL [12]. Service-oriented applications have been mainly
developed using a set of XML standards (WSDL, SOAP,
and UDDI), known as Web Services technology, which is
implemented by various programming languages.

Since SOA was proposed as an architectural style and Web
services as its main implementation technology, service test-
ing for SOA has been investigated [2, 3]. Furthermore, there
is a research effort on proposing formal testing approaches
that support the verification of atomic and composite Web
services [9]. Among them, Model-Based Testing (MBT) has
been advocated as a promising approach to provide more
systematic and automated testing [4, 6, 11, 21]. In MBT, a
model of the system under test (SUT) is designed in order to
derive test cases automatically. Endo and Simao [8] propose
an MBT process for testing service-oriented applications,
describing the artifacts, tools and revisiting different steps.
A more specific MBT approach to test Web service compo-
sitions is presented in [1]. The authors propose a modeling
technique, named Event Sequence Graph for Web Service
Composition (ESG4WSC), that is able to represent commu-
nication between the partner services and the composition.
Tools were also developed to support modeling and genera-
tion, as well as a test execution environment supported by
an Enterprise Service Bus (ESB).

In this paper, we report an experience on applying a
model-based testing approach in the context of service-
oriented applications developed within a multinational com-
puter technology corporation. The ESG4WSC approach [1]
was adopted to model and test the Web services; moreover,
the testing process proposed in [8] was followed. First, a
set of BPEL-based composite services were modeled and
test suites generated to evaluate the practical capabilities
of the modeling and test generation. Second, the complete
approach, from modeling to test execution, was applied to
an ongoing project. We show the study configuration, the
achieved results, and the lessons learned during this project.

The main contribution of this paper is the experience that
was conducted in an industrial setting and that shed light
on the MBT of real-world service-oriented applications.

The remainder of this paper is organized as follows.
Section 2 briefly describes the MBT process adopted and
presents the modeling technique applied to design the test
models. Section 3 reports the study configuration and
adopted tools. Section 4 analyzes the results. Section 5
presents the lessons learned. Threats to validity and a dis-
cussion on the results are shown in Section 6. Section 7
summarizes the related work. Finally, Section 8 shows the
conclusion and discusses future work.

2. THE TESTING APPROACH

In this study, an MBT process was employed to test service-
oriented applications. This process is divided in four main
steps:

1. modeling: test models are designed by the tester;

2. test generation: the designed test model is used to
derive test cases;

3. concretization: adaptors are implemented to handle
the different levels of abstraction between the abstract
test suite generated and the SUT; and

4. test execution: adaptors and test cases are used to
execute the tests in the SUT.

We adopted the ESG4AWSC approach to model and gen-
erate the test suites [1, 7]. An ESG4WSC model is a di-
rected graph in which nodes are events and edges represent
valid sequences of events. Figure 1 illustrates an ESG4WSC
model for the BCS-05 Service!; this test model intends to
represent the messages exchanged in a composition. In Web
service composition, request messages are represented as
light gray circles and response messages as dark gray el-
lipses. The messages of the composition itself are repre-
sented with a bold line. As the example is a composition
with a request-only operation, the unique event with a bold
line is CSO1:operation01. These events are referred to as
public events, while the messages exchanges with the part-
ner services are referred to as private events. There are two
special nodes, ‘[’ and ‘]’, that represent the entry and exit
nodes, respectively.

A sequence of nodes that are connected by edges is called
event sequence. Any event sequence that starts with a direct
successor of ‘[’ is called partial event sequence (PES). If a
PES ends with a direct predecessor of ‘|, it is called complete
event sequence (CES). There are two assumptions in the
ESG4WSC graph: (i) every event must be reachable from
the entry node by an event sequence, and (ii) the exit node
must be reachable from any event by an event sequence.

It is possible to associate decision tables (DTs) with pub-
lic request events when input parameters may cause dif-
ferent events. In Figure 1, event CSO1:operationO1 has
two next private request events that are provoked accord-
ing to an input parameter. Events with associated DTs
are double circled. Table 1 shows a simple DT for event

I This service was developed by the multinational computer
technology corporation; for the sake of confidentiality, we
replace the original labels by generic ones for all services
along the text.

CS01:operation01. It contains constraint constraint0l =
‘smd’, which can be evaluated as true or false, and two
rules (R1 and R2). R1 means that if constraint01l =‘smd’ is
evaluated as true, the next event should be PS01:0p02_smd.
On the other hand, R2 means that if constraint01 =’smd’
is evaluated as false, the next event should be PS01:0p02.
The ESG4WSC model has other features, such as refined
events (which contain one or more refining ESG4WSCs) and
parallel representation. The approach supports a holistic
generation of test cases, covering not only desirable cases
(positive testing), but also unexpected behaviors (negative
testing). Formal definitions of the ESG4WSC model and its
test generation algorithms can be found in [1].

Table 1: Decision table for event CS01:operation01.

rules
R1 R2
constraints constraint0l =‘smd’ True False
PS01:0p02 v

next actions poi1.002_smd v

Positive Testing

To generate the positive test cases, a test suite composed
of CESs is produced automatically to cover all edges (event
pairs) in the test model. The constraints in the DTs are also
solved and new edges are added and covered if necessary [1].
Using the model in Figure 1, 14 test cases were generated;
a sample test case is presented as follows.

< CSO01:operation01 (Rl-constraintOl=’smd’ true), PSO1:0p02_smd,
PSO01:0p02Response, PS02:0p03, PS02:op03Response_na, PS05:0p06)

Negative Testing

Test cases can also be generated for undesirable situations.
These cases are referred to as negative test cases, which can
be applied to public or private events. In public negative
testing, unexpected cases are tested between public events
that were not predicted in the model. The test cases gener-
ated for this situation are called public faulty event sequence
(PubFES). For the example in Figure 1, only one test case
is generated (there is only one public event) and represents
two request events CSO1:operation01 invoked in parallel by
different clients.

In private negative testing, the approach intends to verify
the service composition’s behavior when unexpected situa-
tions occur in the partner services, such timeouts and ex-
ceptions. To do so, different fault classes are defined and
simulated during the tests. Table 2 shows the fault classes
we used, in which type of event is applied, and the num-
ber of negative test cases generated for the BCS-05 service.
The test cases generated for this situation are called private
faulty event sequence (PrivFES). In total, 89 test cases were
generated from the model in Figure 1. A sample PrivFES is
presented as follows; the first part is a PES to reach private
response event PS02:op03Response_na and the second part
(Frr) indicates that event PS02:o0p03Response_na should
take quite some time to be returned to the composition (i.e.,
a longtime response).

({ cso1:operation01 (R1), PSO1:0p02_smd, PSO1:opO2Response,
PS02:0p03, PS02:0pO3Response_na), FLR)

Legend

.@ .@ l! Entry Node Exit Node

Figure 1: Example of an ESG4WSC model.

Table 2: Fault classes and the number of negative

test cases.
Fault Class

Event #Test

cases

No Response (NR)
Missing Service (MS)
Unexpected Fault (UF)
Longtime Response (LR)
Wrong XML Schema (WSc)
Wrong XML Syntax (WSy)
Right Schema, Wrong Data (WD)

request 8

response 16

3. STUDY CONFIGURATION

This study was conducted in cooperation with the Tech-
nology Development Lab (TDL) of a multinational com-
puter technology corporation that provided access to some
of its applications, as well as technological support and doc-
umentation. Our research group on Performance Testing
from PUCRS (one of the top 7 research universities in Brazil)
works in cooperation with this TDL, which has development
and testing teams in different countries worldwide. This co-
operation is set to experiment and develop new strategies
for testing.

The subject applications are all real-world and up-and-
running systems. Applications were selected by the TDL
based on availability and technical support. All data pre-
sented in this paper was produced and collected using Web
service-oriented applications developed and used internally
by the TDL.

The testing process adopted by the TDL is briefly de-
scribed as follows. The development team writes automated
unit tests, the application is deployed in a production server
and developers perform manual tests in integration and sys-
tem levels (some tests through the Web service, but most of
them through the GUI). The development team releases a

stable version that is then tested by the performance team,
reusing functional test suites or including new ones focused
on workload and concurrent users.

We had two researchers that performed the role of testers,
namely, tester A and B. Tester A is an expert in the
ESG4WSC approach (he participated in the proposal of
the approach and in the development of supporting tools).
Tester B is a PhD student that had no knowledge in the
approach, though he had previous experience with MBT
and Web services. Tests were carried out individually or in
pair. From the TDL, there were two professionals involved:
a performance engineer and a software developer. The com-
munication with the TDL was online (via e-mail and instant
messaging) and in face-to-face meetings. Overall, the coop-
eration between the researchers and the TDL was carried
out in one month; the testers were working full time in the
project and two professionals provided support on-demand.

We adopted a set of tools to support the conduction of the
study and automation. The Test Suite Designer (T'SD) tool
was used to design ESG4WSC models and to generate posi-
tive and negative test suites [1]. The Event Runner for Test
Ezecution (ERunTE) tool was adopted to support the test
concretization and execution [1]. ERunTE is integrated with
Mule-ESB [17] to record and control all messages produced
during the tests. SoapUI [10] was employed to mock some
services. Finally, Eclipse [5] and JUnit [13] were used to
support the development of adaptors (programmed in Java)
and the test execution.

In this study, the research goal was to evaluate the feasi-
bility of MBT, specifically the ESG4A4WSC approach, in real-
world service-oriented applications. In particular, we aim
to validate the modeling and test generation capabilities, as
well as to analyze the concretization and test execution steps
and associated tools. Thus, we divide the study as follows:

1. Modeling and test generation: we focused on the mod-
eling and test generation over BPEL-based composite

services. Further details are shown in Section 4.1.

2. Concretization and test execution: we analyzed the full
application of ESG4WSC approach in the context of
an ongoing project to deploy the ABC application, em-
phasizing the concretization and test execution. Fur-
ther details are shown in Section 4.2.

4. ANALYSIS OF RESULTS
4.1 Part 1: Modeling and Test Generation

In this part, we used 23 composite services specified in
BPEL to evaluate the ESG4WSC’s modeling capabilities.
The sources of information about the 23 services were the
BPEL specification itself, WSDL files, logs of the BPEL en-
gine, and meetings with the developers. Then, we evaluated
the test suites generated from these models.

Table 3 shows the test model’s characteristics for each of
the modeled services. Observe that all services are asyn-
chronous (request-only) since the number of public response
events (Column #4) is zero for all services. The number
of public request events (Column #1) is low, most of them
with one or two requests. Only services BCS-03 and BCS-20
have more public requests. The number of private requests
and response events (Columns #2, #5) reflects the com-
plexity of communication with the partner services. The
overall complexity of the test models can be summarized
by the number of events and edges (Columns #9, #10).
Service BCS-11 has the largest test model with 447 events
and 501 edges, followed by BCS-22, BCS-09, and BCS-20. In
services BCS-11, BCS-20, and BCS-22, refined events and re-
fining ESG4WSCs (Columns #7, #11) were adopted to deal
with the complexity of many events and edges. ESG4WSCs
in parallel (Column #12) were not used in these models.
Most of the branches in the models are caused by differ-
ent types of responses, instead of input parameters. This
is observed by the number of DTs (and their elements, con-
straints, actions, and rules) that is low (Columns #13-#16).
BCS-20 has the highest number of DTs, which is consistent
with its public request events; BCS-10 has the highest num-
ber of constraints for one DT (Column #14). Ten out of 23
services do not have associated DTs (Column #13).

From the test models, positive and negative test suites
were generated. Table 4 shows the test suite’s information
divided by the type of testing. For each type of test suite,
the number of executed events is also shown as a cost mea-
sure (Columns #2, #4, #6, .., #20). All test suites were
automatically generated using the TSD tool. The cost of
positive test cases is highly dependent on number of events
and edges in the model (Columns #9, #10 in Table 3). Ser-
vice BCS-11 has the highest number of test cases (40) and
BCS-01, BCS-15, and BCS-17 has the lowest number of test
cases (2) (in Column #1).

Columns #3-#20 refer to negative test suites and their
costs. For PubFESs, the cost is related to the number of
public request and response events (Columns #1, #4 in Ta-
ble 3). Services BCS-03 and BCS-20 have the highest number
of test cases and cost (Columns #3, #4), 49 test cases ex-
ecuting 98 events and 25 test cases executing 222 events,
respectively. Sixteen out of 23 services have only one test
case (Column #3).

The PrivFESs are divided in accordance with the fault
classes described in Table 2. Notice that PrivFESs are re-

lated to private events (as described in Section 2) since for
each private event, a test case is generated to simulate a
different fault class. The test suites for the fault classes
NR, MS, and UF (Columns #5-#10) are dependent on the
number of private request events (Column #2 in Table 3).
They have different costs (Columns #6, #8, #10) because
each fault class has its own characteristics during the exe-
cution. For instance, in class NR, the affected request event
happens and no response is produced, while in class UF a
response event is provoked. Services BCS-11, BCS-09, and
BCS-22 have the highest number of test cases.

The test suites for the fault classes LR, WSc, WSy, and
WD (Columns #11-#18) are dependent on the number of
private response events (Column #b5 in Table 3). Services
BCS-11, BCS-09, and BCS-22 also have the highest number
of test cases. Services BCS-03, BCS-08, and BCS-23 have no
test case for these fault classes since their models do not
contain private response events (Column #5 in Table 3).

The last Columns #19, #20 show the total number of
PrivFESs, including all seven fault classes. As the negative
testing for private events produces test suites that cover all
request and response events in combination with the fault
classes, a high number of negative test cases is generated.
For all models, its cost (Column #20) exceeds the cost of
positive testing (Column #2).

Test model information gives an idea on the human effort
that would be spent since the tester is supposed to design it
manually. Although the modeling effort is directly related
to the application’s size and complexity, we observe that
other factors may also influence it. The restricted access to
information sources and unclear test purposes may increase
the cost during the modeling.

The cost of generating test suites is low since it is auto-
matically performed by the tool. For the largest model, the
tool took less than 11 seconds to produce the positive and
negative tests. We have provided the test suite information
as an additional measure to predict the cost of execution.
It is important to emphasize that a development effort is
also needed to implement adaptors during the concretiza-
tion. This topic was not investigated in this part of the
study. We provide further discussion on it in Section 4.2.

4.2 Part2: Concretization and Test Execution

In this part, we applied the ESG4WSC approach in
the ABC application (an ongoing project), specifically in its
composite service ABCService (ABCS). This service inter-
acts with three other services: PartnerService01 (PS01),
PartnerService02 (PS02), and PartnerService03 (PS03).
Table 5 shows the tested services, if they are composite or
not, their total number of operations, and number of oper-
ations involved in the tests.

Table 5: Information about services.

Service Name composite #opera- Finvolved
service? tions opera-
tions
ABCService yes 8 2
PartnerService0O1 no 26 2
PartnerService02 no 12 1
PartnerService03 no 10 1

Testers A and B worked together to perform this part

Table 3: Test model information.

1 2 3 4 5 6 7 8 9 10 11 | 12 | 13 14 | 15 | 16
] n 2
2| ¢ 5| & 2
5 %’ > w 3 .E
> w = o o b o
w -] "]) - » >
- n n 7] = c 0 [0}]] 7]
") - £ o o = = o = L
] 3 H) o > c 3) © o %
3 o > o] w v [w = @ 0n o
Sl a2 |d|g| 28| o|a|a w @ |F|E|E
= 7} I = o £ ol = n 2| = S| ® o
u -] 7] - ° o E 2 0 = w | = £ o
— ©] = © =3 £ Q e) £] - 7] (-]
o 2 T 2 2 n = c o o e 0] o €] =
= = Q = = Q Q [> o [\ (7] 3 (-] (7] =
. a o © o o © [Qo w w = w] 1%} < (3
Service Name 3# 3+ #* * 3* #* #* #* # 3# 3#* #* 3* #* #* #*
BCS-01 1 3 4 0 2 2 0 2 8 10 0 0 1 1 2 2
BCS-02 1 8 9 0 7 7 0 Q0 16 25 0 0 1 2 3 3
BCS-03 7 7 14 0 0 0 0 Q0 14 21 0 0 0 0 0 0
BCS-04 2 15 17 0 13 13 0 0 30 42 0 0 1 1 2 2
BCS-05 1 8 9 0 16 16 0 0 25 39 0 0 1 1 2 2
BCS-06 2 15 17 0 14 14 0 1 32 45 0 0 1 1 2 2
BCS-07 1 9 10 0 7 7 0 Q 17 26 0 0 1 3 4 4
BCS-08 1 2 3 0 0 0 0 Q 3 6 0 0 1 2 3 3
BCS-09 1 38 39 0 33 33 0 0 72 87 0 0 1 1 2 2
BCS-10 1 26 27 0 13 13 0 2 42 56 0 0 1 14 14 14
BCS-11 1 235 | 236 0 181 181 11 19 | 447 | 501 11 0 1 4 4 4
BCS-12 1 24 25 0 22 22 0 5 52 63 0 0 0 0 0 0
BCS-13 2 5 7 0 4 4 0 0 11 15 0 0 0 0 0 0
BCS-14 1 5 6 0 5 5 0 0 11 16 0 0 0 0 0 0
BCS-15 1 2 3 0 1 1 0 2 6 8 0 0 1 1 2 2
BCS-16 2 6 8 0 11 11 0 0 19 30 0 0 0 0 0 0
BCS-17 1 4 5 0 3 3 0 0 8 10 0 0 0 0 0 0
BCS-18 1 7 8 0 9 9 0 0 17 24 0 0 0 0 0 0
BCS-19 1 4 5 0 4 4 0 0 9 12 0 0 0 0 0 0
BCS-20 6 26 32 0 13 13 2 6 53 65 2 0 6 6 12 12
BCS-21 1 13 14 0 14 14 0 4 32 44 0 0 0 0 0 0
BCS-22 1 33 34 0 29 29 2 8 73 86 2 0 0 0 0 0
BCS-23 2 3 5 0 0 0 0 0 5 9 0 0 1 2 3 3

of the study. Based on performance test scripts and on
meetings with the development team, the test model shown
in Figure 2 was designed. It focuses on the flow of mes-
sages triggered by operations operation0l and operation02
of ABCService. This model was augmented with SOAP
messages for the public request events and private response
events. These messages are necessary to provoke some se-
quences.

The four services involved in the tests were deployed in
Mule-ESB. Thus, all messages produced during the tests
will be passed through the bus and controlled by mod-
ule esbcomp of the ERunTE tool. We used SoapUI to
mock services PartnerService01, PartnerService02, and
PartnerService03. A simple modification was performed
in ABCService, the original service endpoints were changed
to the ones provided by the ESB. Thus, all messages pro-
duced during the tests are controlled by the ESB.

Using the model in Figure 2, test cases were generated
using the TSD tool. Table 6 summarizes the test suites
generated for positive and negative testing. In total, 68 test
cases were generated.

The next step was the concretization of tests. Two
adaptors were implemented, PublicEventAdaptor and Mes-
sageCheckingAdaptor [1, 7]. PublicEventAdaptor implements
the calls for public events, i.e., invoking the composite ser-
vice, and checks its responses. Each event has an associ-
ated method that is annotated with the event name. Mes-
sageCheckingAdaptor implements individual verifications for
all events. Its purpose is to verify, after executing a test

Table 6: Number of positive and negative test cases.

Positive testing

Test Suite #Test cases Exec. time
#CESs 7 ~ 13s
Negative testing
Test Suite #Test cases Exec. time
#PubFESs 4 = 5s
#PrivFESs (NR) 7 ~ Tbs
#PrivFESs (MS) 7 ~ 515s
#PrivFESs (UF) 7 ~ 13s
#PrivFESs (LR) 9 ~ 96s
#PrivFESs (WSc) 9 ~ 12s
#PrivFESs (WSy) 9 ~ 58
#PrivFESs (WD) 9 ~ 12s

case, whether all messages were produced and in the de-
fined order. Moreover, a couple of additional classes were
implemented to configure and run the tests. Modules run-
ner and service of ERunTE were used to support the test
execution with the developed adaptors. Table 7 shows the
number of lines of code and the cyclomatic complexity for
the two adaptors and the entire project. The metrics were
collected using Eclipse Metrics plugin [20].

All test cases were successfully executed; the approximate
execution time is also presented in Table 6. The test suite for
fault class MS took more time than the tests for other classes

Table 4: Test suite information.

1 2 3 4 5 6 7 8 9 10 | 11 | 12 13 14 15 16 | 17 | 18 19 20
>
- - - - - - - =
g - c c c c c c c 3
2, 0|5 g g : : g g 3 =
w8 || = g ||z2| ¢ |2v| @ |2=| @ |2&| & |2¥| o |29| ¢ |28 @ |®RE| @
| > [[& > (152 > 52| 2 |52 2 (54| 2 |53 2 [52| 2 |53 2 |5 ¢ >
Q w] w F — w T — w F — w T — w F — w H -— w H — w e Q w
Fl o nwn|l o (Yo - S o - T IV I - S ol - v I - O o - O T - T I -
21 8[|=8[8 ||al8 & |08 2 [a8| 8 |od & [al]| 8 |al| & |0l & [*af &
2| 5[|ue| 5 ||=e| 5 |#e| 5 |=e| 5|2 5 |=wc| 5 |5 [=| 5 [4m| 5
el o =0 v} So|l v |B0| 0 |So v |Ba|l o S v} Sao v |Cao| v ™ (7]
nl o | aQ 23| @ |23 @ [235| @ |23 @ [23 9 23| @ |23 @ |®gE]
] - Sg| X o x Cog| X Co| X |=g X C o 1] ol X Cog| X |8 x
. o w o a w o gl w oo w oo w | g w oa w [- W) w o g w 0 > w
Service Name| | # | # #w H# #wv| # [#Hw| # || # [#Hwn| #* #w # || # (0| # ([FPwWw H*
BCS-01 2 7 1 2 3 12 3 9 3 15 2 6 2 8 2 8 2 8 18 68
BCS-02 8 | 47 1 2 8 36 8 28 8 a4 | 7 33 7 33 7 33 7 33 | 53 | 242
BCS-03 7114 49 | 98 7 14 7 7 7 21 0 0 0 0 0 0 70 | 140
BCS-04 10| 80 6 28 15 (103 |15 | 88 | 15 [118 13| 54 | 13 | 67 [13 | 67 | 13 | 67 | 103 | 592
BCS-05 14| 97 1 2 8 46 8 38 8 54 | 16 | 80 16 96 16 96 16 96 89 508
BCS-06 11| 85 6 28 15 (10315 | 88 | 15 [118| 14 | 56 | 14 | 70 | 14 | 70 | 14 | 70 | 107 | 603
BCS-07 9| 39 1 2 9 30 9 21 9 39 | 7 18 7 25 7 25 7 25 | 56 | 185
BCS5-08 3 5 1 2 2 4 2 2 2 6 0 0 0 0] 0 0 0 0 7 14
BCS-09 151|159 1 2 38 | 327 | 38 | 289 | 38 |365| 33| 210 | 33 | 243 | 33 | 243 | 33 | 243 | 247 | 1922
BCS-10 14| 53 1 2 26 | 78 26 52 26 | 104 | 13 | 26 13 39 13 39 13 39 | 131 | 379
BCS-11 40 | 822 1 2 2353923 235 |3688| 235 |4158| 181 | 2623 | 181 |2804| 181 |2804| 181 (2804143022806
BCS-12 101|173 1 2 24 | 285 | 24 | 261 | 24 | 309 22 | 243 | 22 | 265 22 |265| 22 | 265 | 161 | 1895
BCS-13 4 | 24 5 17 5 23 5 18 5 28 4 13 4 17 4 17 4 17 36 150
BCS-14 5| 27 1 2 5 22 5 17 5 27 5 16 5 21 5 21 5 21 36 147
BCS-15 2|5 1 2 2 6 2 4 2 8 1 2 1 3 1 3 1 3 11 31
BCS-16 10| 55 4 8 6 28 6 22 6 34 | 11 40 11 51 11 51 11 51 66 285
BCS-17 2|13 1 2 4 18 4 14 4 22 3 10 3 13 3 13 3 13 | 25 | 105
BCS-18 7| 47 1 2 7 36 7 29 7 43 9 38 9 47 9 47 9 47 58 289
BCS-19 3|15 1 2 4 14 4 10 4 18 | 4 10 4 14 4 14 4 14 | 29 96
BCS-20 9 1112 25 | 222 26 | 250 | 26 | 224 | 26 | 276 | 13 | 88 13 1101] 13 |101| 13 | 101]| 155 | 1363
BCS5-21 111|140 1 2 13 | 103 | 13 90 13 | 116 | 14 | 103 | 14 | 117 | 14 | 117 | 14 | 117 | 96 765
BCS-22 8 |132 1 2 33402 | 33 | 369 | 33 | 435 29 | 310 | 29 |339]| 29 |339| 29 | 339]| 216 | 2535
BCS-23 4| 7 4 8 3 6 3 3 3 9 0 0 0 0 0 0 0 0 13 26

Table 7: Code metrics for the test project (adaptors,
setup code).

Lines average
of cyclomatic
Code complexity
PublicEventAdaptor 94 1.5
MessageCheckingAdaptor 231 1.8
Entire test project 900 1.6

(around 515 seconds). This happened due to a limitation
in the ERunTE tool that requires more time to simulate a
missing service. The test suites for fault classes NR and
LR also took more time since the ERunTE tool simulates
timeouts for these PrivFESs.

S. LESSONS LEARNED

At the beginning of the study, there were two testers:
tester A was an expert and tester B that needed training
in the approach. We opted by a strategy similar to pair
programming [23]. In the first sessions, tester A employed
the approach while tester B observed and asked questions.
Next, tester B took control and performed the work while
tester A observed and inspected the tasks. When tester B
was comfortable with the approach and tools, testers A and

B worked independently. A lesson we learned is that working
in pairs was effective to introduce the approach since we
saved time with training and yet part of job were performed.

Other lesson is that the models were designed more effi-
ciently in two steps:

1. Ezploratory modeling: an initial ESG4A4WSC model was
designed, identifying request and response events. The
order among them was also modeled. During this step,
the global communication is prioritized and branches
and DTs are not taken into account. Generic events
and comments were used to recall that these issues
need to be handled in future.

Test-driven modeling: using the model designed in the
previous step, a more detailed analysis was conducted
to identify and model DTs (constraints, rules, and ac-
tions). Generic events and comments were removed
and branches along the model were solved. The goal
of this step is to set up a model that is adequate to
generate test cases.

This configuration of steps was intuitively performed dur-
ing the modeling of the first four services. After a phase
of identification, all services were modeled in two steps and
therefore with two model versions.

During the modeling of the 23 services, limitations were
identified on the ESG4WSC modeling technique and tool.

Legend

-ﬁ DT..
Entry Node Exit Node

PSO1:
op04_pl

Figure 2: ESG4WSC model for the ABC application.

However, we learned that these limitations can be handled
pragmatically. We describe the limitations and possible so-
lutions as follows.

Event branch: it happens when some event branch is
solved by some event or input parameter (in a DT) that
happens previously in the workflow. In Figure 3(a), events
resp01_1 and resp01_2 are used to select the branch in
event req03. Although this design is acceptable in the ex-
ploratory modeling, Figure 3(b) shows a solution to support
test case generation. The event sequence between the solv-
ing events (resp01_1 and resp01_2) and the branch (req03)
needs to be replicated. A drawback is that the replicated
piece of model can be large and difficult to manipulate.

e™e @5
1‘ (a) f

(b)

@

Figure 3: Model snippets for the event branch issue.

ForEach in parallel: the activity ForEach in parallel
from BPEL 2.0 and the flowN extension of Oracle BPEL en-
gine introduce the possibility of executing n request events
in parallel. As the parallelism is implicitly introduced
and the number of threads is only decided during runtime,
ESG4WSCs in parallel are not able to directly represent
this case in the proposed model. Figure 4(a) shows an ex-

ample so that the graph within the box can be executed n
times in parallel. Figure 4(b) illustrates a solution assuming
that there will be two instances (threads). Thus, the tester
defines the number of instances before the test generation
and replicates the ESG4WSCs in parallel in a refined event.
The tester needs to know and define the number of instances
(threads) in modeling time, which is a drawback.

| Foreach(parallel=yes) or Oracle:Flowh

(a)

Refined Event

'z
N

(b)

Figure 4: Model snippets for the ForEach in
parallel issue.

Private events within loops: this case is similar to the
previous one, as the number of iterations in a loop is de-
cided during runtime. Figure 5(a) shows a model snippet
usually obtained during the exploratory modeling (events
req01 and resp01_1 are within a loop). Figure 5(b) depicts
a solution so that the loop is extended in three iterations.

The tester should identify the number of iterations and re-
peat the instances in the model before generating the tests.
The drawback here is also to have some previous knowledge
on the runtime execution of the composite service.

-

(b)

Figure 5: Model snippets for the loop issue.

Global/internal variables: BPEL engines have the con-
cept of global variables that are independent and assigned
outside the scope of the composition. However, they can be
referred to within the BPEL and define different branches.
Internal variables are more common in composite services
implemented in traditional programming languages, instead
of BPEL. These composite services tend to interact with
databases and modify the workflow depending on internal
variables. These global and internal variables cannot be
represented in the ESG4AWSC model. Figure 6(a) illustrates
a case in which the branch after event resp01_1 is solved
by global variable var. A practical solution is to estab-
lish preconditions to the model or to the test cases. Fig-
ure 6(b) depicts the splitting in two models with precondi-
tions (var=true and var=false). These preconditions have
to be handled during the test execution that may require an

extra effort from testers.

var=true|

Previous
Event
| var=false(req04

var=true [Previous
Event
_ Previous
var=false @ req04 @

Figure 6: Model snippets for the variables issue.

Finally, the concretization and execution steps involved
technical issues. We had problems to generate facade classes
that interact with the services, and even accessing them due

to security control. The SoapUI tool was particularly helpful
by supporting the mocking of services and the production
of template SOAP messages.

6. THREATS TO VALIDITY AND
DISCUSSION

The first threat to this study is that the IT corporation
and its applications may not be representative of the univer-
sal set of existing companies and applications that employ
SOA and Web services. We recognize that the presented re-
sults cannot be generalized, albeit relevant insights were ob-
tained about the adoption of the approach (and also MBT).

A limitation of this study is that we did not obtain infor-
mation about the fault detection capability. The available
subject applications selected may not be approapriate to ex-
periment a new testing approach, once they are stable and
likely have few if not none functional faults. Due to time
limitations from both researchers and professionals from the
IT corporation, we could not conduct further analysis. In
future work, we intend to search for more evidences by, e.g.,
analyzing the code coverage and previously-detected faults
(stored in some issue tracker). However, we believe the ob-
tained results have provided insights and preliminary evi-
dences that motivate further investigation and investments
from the industry.

Some may also wonder how representative is the adopted
approach for MBT as a whole. The ESG4WSC approach
was proposed inspired in the state-of-art in MBT [4, 6, 11,
21]. By the description of the approach and the results, it is
not difficult to realize that an MBT process is followed. We
are not aware of experiments or case studies that adopt a
widely accepted MBT approach. There are several compet-
ing approaches/tools and one is selected for the experimental
study usually based on the expertise, as we did in this pa-
per. Nevertheless, comparisons with similar approaches are
essential and planned as future work.

The corporation has cooperated with the PUCRS univer-
sity for more than 10 years. Although the Technology De-
velopment Lab (TDL) of the corporation has a cost-effective
testing process, they have recently demonstrated interest in
the adoption of MBT. The effort has been spent mainly on
performance testing. However, this work describes an initial
effort towards the use of MBT for functional testing. As the
corporation has no tool/approach that automates the test-
ing of Web services, we could not compare the ESG4WSC
approach with the way services have been tested in the com-
pany.

During the tests, no fault was detected in the SUT. This
can be explained by the application’s stability. The applica-
tion has been released for more than two years and many cy-
cles of testing/maintenance were performed. Although most
of the generated test cases (scenarios) were likely covered by
previous tests (performed by the development team), there
is a lack of automated solutions for testing Web services.
Our impressions are that the MBT approach can be useful
in scenarios, similar to the presented one, that have complex
workflows and mocking different services and sequences of
messages are too complex and error-prone. However, more
robust and automated tools would be essential to a large
scale adoption.

We observed that there is still room for improvements
in the approach automation. In the adaptors development,

MessageCheckingAdaptor may use the XML schema in the
WSDL files to support automatic verification of messages.
Most of the written code can be generated automatically.
Moreover, XPath queries that currently are evaluated in the
adaptor code can be included directly in the model (and in
the XML test cases as well). Thus, ERunTE-runner would
be in charge of reading XPath queries and evaluated them,
working as a test oracle. ESB configurations may also be au-
tomatically performed and integrated with the development
environment. We also noticed opportunities for supporting
performance testing. For instance, the module esbcomp (in-
tegrated with the ESB) of ERunTE could be extended to
capture metrics used to evaluate and monitor performance,
such as response time and throughput. Extensions could
also be carried out in the model in a way that performance
testing information is introduced and used to guide the gen-
eration of model-based performance tests.

7. RELATED WORK

The testing of service-oriented applications has been in-
vestigated to deal with specific features found in this class of
software (comprehensive surveys on SOA testing can be seen
in [2, 3]). However, as surveyed by Bozkurt et al. [2], just
11% of 177 analyzed papers about testing and verification of
Web services have conducted some experimental validation
with real world case studies. This section focuses on the Li
et al. [15]’s and Wieczorek et al. [22]" studies which repre-
sent a thin effort on evaluating model-based approaches to
test Web service compositions in real-world and industrial
scenarios.

Li et al. [15] propose a gray-box approach to test business
processes specified in BPEL. The approach involves coverage
for composition, regression testing for loose-coupling SOA,
and test generation. To reach this goal, the authors use three
key enablers: test-path exploration, trace analysis, and re-
gression testing selection. A testing tool named BPELTester
was implemented to support the approach. They carried out
a preliminary case study with 12 BPEL processes from var-
ious industry projects. While Li et al. focus mainly on
white box testing, our study (which is black box testing)
analyzed 23 BPEL processes and yet a service composition
implemented in Java.

Wieczorek et al. [22] present a case study on the applica-
tion of an MBT approach to test service choreographies in
a real-world project. They use a proprietary model, called
Message Choreography Model (MCM), to design the test
models and generate test cases. The study involved two
groups of users: integration experts and integration testers.
The authors claim that the obtained results confirmed the
approach applicability and the potential to save resources.
This study differs from ours mainly regarding the users.
While our goal was to cover several samples of real-world
applications, the tester role was performed by researchers
(not real users). The experience reported in this paper can
be extended in future with group of users like in [22].

This paper intends to contribute on Web service test-
ing applied to industrial cases, as well as to provide more
evidences on the practical application of MBT in service-
oriented applications. The experience reported herein also
complements previous experimental studies conducted in con-
trolled contexts, proving a more comprehensive evaluation
of the ESG4WSC approach [1, 7).

8. CONCLUSION

In this paper, we have presented an experience report on
applying a model-based approach to test Web services. A set
of real-world applications of a multinational computer tech-
nology corporation was used in the study. In the first part,
the results on modeling and test generation of 23 BPEL-
based composite services have been described. In the second
part, we have provided more details on the concretization
and test execution for the ABC application.

The experience reported in this paper has given prelimi-
nary evidences that model-based testing, more specifically,
the ESG4WSC (Event Sequence Graph for Web Service Com-
position) approach, is applicable to test service-oriented ap-
plications in real and less controlled scenarios within an IT
corporation. From the results, we have analyzed a set of is-
sues that impacts the approach and tools, and discussed how
they can be overcome. More investigation on how to deploy
the approach in an ongoing project and its cost-effectiveness
is still necessary. Another topic that needs further investiga-
tion is to research the automatic generation of event-driven
models out of BPEL specifications, reducing the initial effort
to design test models.

Moreover, we intend to implement the approach in a
component-based architecture. Hence, it is necessary to
modularize each feature of the approach into components,
allowing to reuse and extend the ESG4WSC approach in
other domains, e.g., performance testing. Once the compo-
nents have been implemented, it is possible to deploy them
into a software product line for MBT tools called PLeTs [18,
19]. A tool derived from PLeTs is assembled by installing
a set of selected components on a common software base.
As mentioned earlier, this thread aims to more robust and
automated tools for a large scale adoption in industry.

9. ACKNOWLEDGMENTS

Andre T. Endo was financially supported by
FAPESP/Brazil (grant 2012/21083-9). In this study,
he was also partially supported by the project PRO-
CAD/CAPES 191/2007 “Integrando e aprimorando
atividades de pesquisa, ensino/treinamento e transferéncia
tecnoldgica em teste e walidagio de software”. Study
partially developed by the Research Group of the PDTI
001/2013, financed by Dell Computers of Brazil Ltd.
with resources of Law 8.248/91. We thank CNPq/Brazil,
CAPES/Brazil, INCT-SEC, and Dell Brazil for the support
in the development of this work. Avelino Zorzo is a
researcher financed by CNPq/Brazil.

10. REFERENCES

[1] F. Belli, A. T. Endo, M. Linschulte, and A. Simao. A
holistic approach to model-based testing of web
service compositions. Software: Practice and
Ezperience, pages n/a—n/a, 2012.

[2] M. Bozkurt, M. Harman, and Y. Hassoun. Testing and
verification in service-oriented architecture: a survey.
Software Testing, Verification and Reliability,
23(4):261-313, 2013.

[3] G. Canfora and M. Di Penta. Service-oriented
architectures testing: A survey. In Software
Engineering: International Summer Schools (ISSSE),
pages 78-105, Berlin, Heidelberg, 2009.
Springer-Verlag.

[4]

8]

[10]
[11]

[12]

[13
[14]

[15]

[16]

[17]

[18]

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In International
conference on Software engineering (ICSE), pages
285-294, Los Angeles, USA, 1999. ACM.

Eclipse.org. Eclipse, 2012. [23 May 2013].

I. K. El-Far and J. A. Whittaker. Model-based
software testing. In Encyclopedia on Software
Engineering, pages 825-837. Wiley, 2001.

A. T. Endo. Model based testing of service oriented
applications. PhD thesis, Instituto de Ciencias
Matematicas e de Computacao, Universidade de Sao
Paulo (USP), Sao Carlos, SP, Brazil, Apr. 2013.

A. T. Endo and A. Simao. Model-based testing of
service-oriented applications via state models. In IEFEE
International Conference on Services Computing (SCC
2011), pages 432439, Washington, DC, USA, 2011.
A. T. Endo and A. S. Simao. A systematic review on
formal testing approaches for web services. In 4th
Brazilian Workshop on Systematic and Automated
Software Testing (SAST), pages 89-98, Natal, Brazil,
2010.

Eviware. soapUI, 2012. [23 May 2013].

W. Grieskamp, N. Kicillof, K. Stobie, and V. A.
Braberman. Model-based quality assurance of protocol
documentation: tools and methodology. Software
Testing, Verification and Reliability, 21(1):55-71,
2011.

D. Jordan, J. Evdemon, A. Alves, A. Arkin,

S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guifjzar, N. Kartha, C. K. Liu,

R. Khalaf, D. Konig, M. Marin, V. Mehta, S. Thatte,
D. van der Rijn, P. Yendluri, and A. Yiu. OASIS web
services business process execution language
(WSBPEL) v2.0, 2007.

junit.org. JUnit, 2012. [23 May 2013].

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
Y. Lafon, and C. Barreto. Web services choreography
description language version 1.0, 2005.

Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, and N. M.
Mitsumori. Business-process-driven gray-box soa
testing. IBM Systems Journal, 47(3):457-472, 2008.
C. M. MacKenzie, K. Laskey, F. McCabe, P. F.
Brown, R. Metz, and B. A. Hamilton. OASIS reference
model for service oriented architecture 1.0, 2006.
MuleSoft. Mule ESB: Open source ESB and
integration platform. [23 May 2013].

E. M. Rodrigues, L. D. Viccari, A. F. Zorzo, and 1. M.
Gimenes. PLeTs Tool - Test Automation using
Software Product Lines and Model Based Testing. In
Proceedings of the 22th International Conference on
Software Engineering and Knowledge Engineering
(SEKE), pages 483-488, Redwood City, California,
USA, 2010.

M. B. d. Silveira, E. d. M. Rodrigues, A. F. Zorzo,

L. T. Costa, H. V. Vieira, and F. M. de Oliveira.
Generation of Scripts for Performance Testing Based
on UML Models. In Proceedings of the 23rd
International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 258-263,
Miami, Florida, USA, 2011.

20]

(21]

(22]

23]

SourceForge.net. Eclipse metrics 1.3.6, 2005. [23 May
2013].

M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2006.

S. Wieczorek, A. Stefanescu, and A. Roth.
Model-driven service integration testing - a case study.
In International Conference on the Quality of
Information and Communications Technology
(QUATIC), pages 292-297, Washington, DC, USA,
2010. IEEE Computer Society.

L. Williams, R. Kessler, W. Cunningham, and

R. Jeffries. Strengthening the case for pair
programming. IEEE Software, 17(4):19-25, 2000.

