See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301564193

Structural Test Case Generation Based on System Models

Conference Paper - January 2014

CITATION

1

4 authors, including:

Maicon Bernardino Da Silveira
N Universidade Federal do Pampa (Unipampa)
56 PUBLICATIONS 159 CITATIONS

SEE PROFILE

a Avelino F. Zorzo
W Pontificia Universidade Catolica do Rio Grande do Sul

138 PUBLICATIONS 1,212 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project CORRECT View project

ot Plets-x1: A Revamped Product Line of Testing Tools View project

All content following this page was uploaded by Maicon Bernardino Da Silveira on 22 April 2016.

The user has requested enhancement of the downloaded file.

READS

51

Flavio M De Oliveira

43 PUBLICATIONS 228 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/301564193_Structural_Test_Case_Generation_Based_on_System_Models?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/301564193_Structural_Test_Case_Generation_Based_on_System_Models?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CORRECT-2?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Plets-x1-A-Revamped-Product-Line-of-Testing-Tools?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Federal-do-Pampa-Unipampa?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maicon-Da-Silveira?enrichId=rgreq-0c3dd2fbebf1c97667bea3859ee99292-XXX&enrichSource=Y292ZXJQYWdlOzMwMTU2NDE5MztBUzozNTM2NzM5OTg4MTUyMzVAMTQ2MTMzMzg2MDM0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Structural Test Case Generation
Based on System Models

Leandro Costa, Elder Rodrigues, Maicon Bernardino, Flavio Oliveira, Avelino Zorzo
School of Computer Science - Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
Email: leandro.teodoro@acad.pucrs.br, bernardino@acm.org, {elder.rodrigues, flavio.oliveira, avelino.zorzo} @pucrs.br

Abstract—Structural testing, or white-box testing, is a tech-
nique for generating test cases based on analysis of an application
source code. Currently, there are different tools supporting this
type of test, e.g., JaBUTi, EMMA and Poke-Tool. However,
despite the benefits of these tools, some tasks still have to be
performed manually, e.g., the description of test cases. This
makes the test process time consuming and prone to injection of
faults. In order to mitigate these problems, this paper presents
a Model-based Testing (MBT) approach for deriving structural
test cases for different code coverage tools, using UML sequence
diagrams as input. Qur approach consists of four steps: Parser,
Test Case Generator, Script Generator and Executor. These steps
are based on the four main features of a Software Product Line
for MBT tools, from which we derived two automation tools
(PletsCoverageJabuti and PletsCoverageEmma) that generate
and execute structural test cases, respectively, for the target tools
JaBUTi and EMMA. We also describe a case study, which defines
test cases for an application that manages the skills of employees
in an IT company.

Keywords—model-based testing; structural testing; white-box
testing; code coverage.

I. INTRODUCTION

The evolution and increased complexity of computer sys-
tems have made the testing process an activity as complex
as the development process itself. In order to overcome this
problem, and to increase the effectiveness in the test case gen-
eration process, several tools have been developed to automate
software testing. Currently, there are several tools supporting
different types of testing, for example, structural testing (or
white-box testing), in which the source code of the system is
inspected; or, functional testing (black-box testing), in which
the functionality of the system is verified. In the last decade,
many commercial and academic tools have been developed
and used to support testing activities, such as, JaBUTi [1],
Semantic Designs Test Coverage [2], IBM Rational PurifyPlus
[3], EMMA [4], or Quick Test Professional [5].

However, despite the benefits brought about by these testing
tools, it is still necessary to perform several manual or semi-
automated activities, for example, to provide test cases or to
analyze the test results from running test cases. Furthermore,
manual or semi-automated test case generation makes the
testing process time consuming and prone to introduction of
faults, even by experienced professionals. A solution proposal
for this issue is to automate the test case generation process
through software testing techniques, such as Model-based
Testing (MBT) [6]. This technique consists in the generation of
test cases and/or test scripts based on system models, which
can include the specification of the characteristics that will
be tested. MBT adoption presents several advantages, such
as reducing the likelihood of misinterpretation of the system
requirements by a test engineer and/or decreasing of testing
time.

Currently, MBT can be used to generate test cases through
the use of a wide range of modeling notations, such as
Specification and Description Language (SDL) [7] or Unified
Modeling Language (UML) [8]. UML provides a notation
for modeling some important characteristics of applications,
allowing the development of automatic tools for model verifi-
cation, analysis and code generation.

In this context, this paper presents an MBT approach to
drive the automatic generation of test cases and test drivers
for measuring test coverage. Our approach uses sequence
diagrams to identify the classes/methods under test and to gen-
erate test sequences based on the order of execution between
the classes and methods described in the sequence diagram.
Then, generates strucural test cases with a random test case
generation tool, and finally generates test drivers to run the test
cases and measure their coverage with the code coverage tools
EMMA and JaBUTi. Furthermore, our approach is embedded
in a Software Product Line (SPL) and new testing products
are generated automatically. Our approach consists of four
steps: (a) Parser: extracts test information about the classes
and methods to be tested from UML sequence diagrams; (b)
Test Case Generator: applies a random test data generation
technique to generate an abstract structure, ie., a text file
that describes the test case information in a tool-independent
format; (c) Script Generator: generates test scripts/test driver
for a specific code coverage tool from the information present
in the abstract structure; (d) Executor: represents the test
execution for a specific code coverage tool using the test driver
generated in the previous step. Although we have applied our
approach to object-oriented languages, it is straightforward to
apply it to other programming paradigms.

One of the advantages of our approach is related to the reuse
of test information, i.e., information described in the abstract
structure can be reused to generate test scripts for several code
coverage tools, e.g., academic: JaBUTi [1] or EMMA [4];
commercial: Semantic Designs Test Coverage [2] or IBM Ra-
tional PurifyPlus [3]. Therefore, a company that is using tool
A can, motivated by a technical or managerial decision, easily
change to a testing tool B without having to create new test
cases. Another advantage is related to the use of UML models
to generate test cases. Models provide a representation of the
test information at a high level, facilitating the understanding
by the test expert responsible for implementing and executing
test cases. Moreover, differently from others studies that only
describe the process to generate test cases through MBT, our
approach is able to instantiate them to generate test drivers
that could be executed by different code coverage tools.

Based on our approach, we developed two tools: first the
PletsCoverageJabuti tool and then the PletsCoverageEmma
tool. Both tools automatically extract test information from
sequence diagrams (test models), generate an abstract struc-
ture, instantiate the information present in this structure to

generate and execute concrete test cases/test drivers, respec-
tively, for the target tools JaBUTi [1] and EMMA [4]. The
tools presented in this paper were derived from a Product Line
for Model-based Testing tools (PLeTs) [9]. PLeTs supports
the generation of products (MBT tools) that automate the
generation and execution of test cases. We also applied our
approach to a detailed case study, in which we have used two
generated tools to test classes and methods of an application
developed in a research collaboration project, between a Tech-
nology Development Lab (TDL) of a global IT company and
a university.

This paper is organized as follows. Section II discusses
related background. Section III presents the details of our
approach. Section I'V describes a case study in which we derive
tests for an application that manages the skills of employees in
an IT company. Section V discusses related work in structural
test case generation using UML models. Finally, in Section VI
we present some conclusions and lessons learned.

II. BACKGROUND

MBT is a technique for automating the generation of test
artifacts based on system models [6]. Using MBT it is possible
to represent the structure and the system behavior, in order to
be shared and reused by the test team members. Therefore,
it is possible to extract the test information from models to
generate new test artifacts, such as test cases, scripts and test
scenarios.

The MBT adoption requires the creation of models based on
system requirements specified by software engineers and test
analysts. The purpose is that these models include information
that frequently is implicit in traditional specification docu-
ments, for example, through comments and/or annotations.
One approach to improve the system specification is the
use of UML models [8]. UML models can improve the
system specification through stereotypes and tag definitions.
Stereotypes is one of the UML extensibility mechanism that
may have properties that may be referred to as tag definitions.
When a stereotype is applied to a model element, the values
of the properties are referred to as tagged values. Hence, all
the information added to the model through stereotypes and
tagged values can be used to derive new artifacts, such as test
cases and/or test scenarios.

To the best of our knowledge, early studies focused on MBT
were limited to functional testing. Nowadays, models are able
to abstract other information, e.g., parameters and input data,
thus allowing MBT to be applied to perform other testing
techniques, e.g., the structural testing [1].

Structural testing is a technique for generating test cases
from the source code analysis. It seeks to evaluate the internal
details of implementation, such as test conditions and logical
paths. For this reason, it is also called test oriented to logic or
white-box testing. In general, most criteria based on structural
analysis use a graph notation named Control Flow Graph
(CFG) [1], which represents all the paths that might be
traversed during the program execution. These criteria are
based on different program elements that can be connected to
the control-flow and data-flow in the program. Control-flow
uses the control features of a program to generate test cases,
i.e., loops, deviations or conditions. Criteria based on data flow
use data flow analysis of the program to generate test cases.

Structural test case generation consists in selecting values
from an input domain of a program that satisfies specific

criteria. For instance, the All-nodes criterion groups in a
domain all the input values that execute a specific node.
The selecting input values task could be made using data
generation techniques, e.g., random [10], based on symbolic
execution [11] or dynamic execution [12]. In this paper we
apply a random technique due to be practical and easier to
automate, which provided a useful test case generation for
specific code coverage tools.

Currently, there is a diversity of commercial, academic, and
open source code coverage tools that assist the testing process.
However, most of these tools have been individually and
independently implemented from scratch based on a single ar-
chitecture. Thus, they face difficulties of integration, evolution,
maintenance, and reuse. In order to reduce these difficulties,
it would be interesting to have a strategy for automatically
generating specific products, i.e., tools that perform tests based
on the reuse of assets and the core architecture. This is one
of the main ideas behind SPLs [13].

An SPL can be defined as a set of systems that share
common and manageable features in order to meet the needs
of a specific domain, which may be a market segment or mis-
sion [13]. The aim is to explore the similarities among systems
in order to manage variability aspects and thus determine a
higher reusability level of software artifacts. Through the reuse
of artifacts, an SPL allows to create a set of similar systems,
thus reducing time to market, cost and, hence, to achieve a
higher productivity and quality improvement.

In the testing context, we developed an SPL of MBT tools
called PLeTs [9]. This SPL aims to support the derivation of
MBT tools that allow automatically generating and executing
test cases. The purpose of PLeTs is not only to manage the
reuse of artifacts and software components, but also to make
the development of a new tool easier and faster. Until now,
PLeTs is able to generate performance testing products. In this
paper we have used the same concepts to develop structural
testing products. A full description about the PLeTs features
can be seen in [9].

In the next sections, we present our approach for generating
structural test cases/scripts using applications models, and how
to generate two specific testing tools using PLeTs.

III. APPROACH TO STRUCTURAL TEST CASE GENERATION

As mentioned in the previous sections, MBT techniques
have been used to improve software testing through automa-
tion of test case generation. Furthermore, using UML models
it is possible to automate the test case generation through
annotation of test information using stereotypes and tags.
Stereotypes and tags can be included in different parts of
an UML model to represent test case information [8]. In
our previous work [14], we have used UML use cases and
activity diagrams as SUT models to automatically generate
performance test cases from the information annotated on
these diagrams. When conducting performance or even func-
tional testing, UML use cases and activity diagrams were
sufficient. However, to execute structural testing it is necessary
to understand the ordering of execution between program units
(such as methods or functions). Therefore UML sequence
diagrams have to be used. In this context, we propose an
approach that aims to automate the generation and execution
of structural test cases based on UML sequence diagrams.
Therefore, test sequences are generated according to the order
of the methods described in sequence diagrams.

-

Test Data

UML Test Abstract Test Test
(XM1) Information Test Case | Structure . Driver Results
—> Parser Script Generator Executor E—

(a) (b)

Generator ‘Data File

(JaBUTi, EMMA, other tools)

(c) (d)

Fig. 1. Approach for generating structural test cases

As mentioned in Section I, we divided our approach in four
steps (see Figure 1): (a) Parser: extracts test information
about classes and methods to be tested from sequence dia-
grams; (b) Test Case Generator: applies a random test
data generation technique to generate the Abstract Structure,
i.e., a text file that describes the test case information in a tool-
independent format; (c) Script Generator: generates test
scripts (Test Driver) for a specific code coverage tool from the
information present in the Abstract Structure; (d) Executor:
performs tests for a specific code coverage tool using the Test
Driver generated in the previous step. These steps are based
on the four main features of PLeTs.

In order to generate and execute the Test Driver, our ap-
proach must retrieve information, about classes and methods,
annotated in an UML sequence diagram. It is important to
highlight that the diagrams must be well-defined, i.e., they
have to contain information about classes and methods pa-
rameters (name, type), as well as, each method return type.
Besides, it is also necessary to annotate the diagrams with
additional information, e.g., a variable that will be used to
specify the path of the classes that will be tested. This infor-
mation will be used to generate the Abstract Structure (more
details about how the diagram is annotated will be presented in
Section IV). The UML sequence diagram is annotated with the
following tags: < TDexternalLibrary>>: specifies the
libraries path of the SUT; < TDclassPath>>: specifies the
path of the classes to be tested; < TDtoolPath>>: specifies
information about the chosen code coverage tool (such as
JaBUTi, EMMA, etc.), e.g., the installation directory and the
path of its launcher; < TDimportList>>: specifies a list of
imported classes (import, package).

Each tag can define a fixed value or a variable that can be
replaced when generating the actual test case or driver for
a specific code coverage tool. For example, the previously
mentioned four tags must be annotated in the sequence dia-
gram with the following parameters: @externallLibrary,
@classPath, @toolPath and @importList. However,
these parameters are just a reference and have no actual
information about code coverage tool, class path, external
library or import list. The advantage of annotate the sequence
diagram with these tags is that they are used to provide
information used to automatically generate Test Drivers, such
as libraries, dependencies among classes and import list. After
this annotation process, it is necessary to export all information
described in the UML sequence diagram to a XM/ file, which
is the input of the first step in our approach.

The first step (Parser) consists in to parse the XM/ file
in order to extract the information necessary to generate a
data structure in memory, which we call Test Information
(see Figure 1 - a). The Test Information describes the test

sequences generated from the sequence diagram and it has
information about the methods and classes to be tested. The
second step (Test Case Generator)receives as input the
Test Information and a XML file called 7Test Data (Figure 1 -
b).

The Test Data file has the actual values about libraries used
to the application execution, the path of classes to be tested
and the package list to be imported. However, the Test Data
file has no tool information, since the first two steps of our
approach are tool-independent. Moreover, the Test Data also
describes a set of different parameter values for all classes and
methods of the application to be tested.

Based on that, the Test Case Generator applies a
random test data generation technique [10] under the parame-
ter values presented on Test Data and only for the classes and
methods described on Test Information. The random technique
generates a set of input values for each method described
in a test sequence. The reason for choosing this technique
consists in selecting a set of specific parameters for each
one of these classes and methods. This technique was used
due to its practicality and to be easier to automate. However,
other techniques for test data generation are presented in the
literature, e.g., symbolic execution [11], dynamic execution
[12] and feedback-directed random testing [15].

After applying the random test data generation technique,
the Test Case Generator also produces the Abstract
Structure and the Data File, which are the input of the third
step. The Abstract Structure is a text file that describes,
in a sequential and tool-independent format, the entire data
flow of the classes and methods to be tested (see Figure 3
for an example of file that contains the Abstract Structure).
The Abstract Structure is divided in three groups: 1) Tool
Configuration: defines the @toolPath parameter, which
specifies the information about the code coverage tool that
will be used for the test; 2) Test Configuration: defines the
@classPath, @externallibrary and @importList
parameters, which define the information used for a specific
test case; 3) Sequential Flow Configuration: defines the
sequential flow of the methods that will be tested.

Each one of these parameters is a reference to the actual data
that is stored in the Data File, which is a text file that contains
the information (values) used to instantiate test cases for a
given code coverage tool (see Figure 4 for an example of a
file that contains actual values for a specific tool). The test case
instantiation is performed by the step Script Generator
(see Figure 1 - c¢), which consists of automatically generating
the Test Driver for a specific code coverage tool. Therefore,
when the Abstract Structure and Data File are instantiated
to generate Test Driver, a class file named TestDriverjava
is generated. This file contains a class that makes calls to
the methods that will be tested and also includes a set of

information to be used as input of these methods. In our
approach, the input information is generated automatically
using the random test data generation technique previously
mentioned. Furthermore, in the step Script Generator
the user must provide all information about a specific code
coverage tool, e.g., the path of its launcher.

One of the advantages of using a file to store the actual
values, which are used in the instantiation of the class file,
is that it is not necessary to include, in the UML sequence
diagram, the parameter values of the methods that will be
tested. Thus, to generate new test cases with different input
values, it is only necessary to generate new test data using any
kind of data generation technique. Moreover, the advantage of
using the Abstract Structure is related to the ability to reuse
information for different code coverage tools, e.g., JaBUTi [1],
Semantic Designs Test Coverage [2], IBM Rational PurifyPlus
[3] or EMMA [4]. In this sense, if a company decides to
migrate to a different code coverage tool, due to a management
strategy, it will be able to use the test cases previously
generated. Besides that, the Abstract Structure presents the test
information in a clear format, making it simple and easy to
understand. Therefore, it is easier to automate the Test Driver
generation for several tools. The last step (Executor - see
Figure 1 - d) consists of performing the test with a specific
code coverage tool. Therefore, all the class files generated on
step three are used for the test execution. The generation of
the class files will be further described in Section IV.

IV. CASE STUDY

This section describes how we have applied our approach to
test an application to manage profiles of employees from any
company, i.e., Skills. The main goal is to assess the efficacy
and the functionality of our approach through presenting
how we derived two tools (PletsCoverageJabuti and PletsCov-
erageEmma) that generate test cases from UML sequence
diagrams and execute TestDrivers using two coverage tools,
e.g., JaBUTi and EMMA. Through the use of our approach we
were able to reuse components from steps 1 and 2 (Section III)
for both testing tools. As mentioned in Section III, the two first
steps are related to extraction of information from the sequence
diagram and to generate the Abstract Structure that contains
test case information. The last two steps are tool-dependent,
one to extract information from the Abstract Structure and to
generate the Test Driver to different coverage tools, and the
other to execute the Test Driver and collect results from the
execution of a coverage tool.

A. Skills tool - Workforce Planning

The application used as case study is called Skills (Work-
force Planning: Skill Management Tool) [14]. This application
was developed in a research collaboration project, between
a TDL of a global IT company and a university. The main
objective of this application is to manage and to register
skills, certifications and experiences of employees for a given
company.

With the purpose of verifying the functional aspects of our
approach, we have tested a set of classes and methods of
Skills. These classes and methods are represented by four
sequence diagrams that describe processes, in which an user
performs several operations, e.g.: (a) search for a particular
certification information; (b) search for a particular skill infor-
mation; (c) display a list of registered experiences; (d) display

information about the user profile; and (e) change the login
password. Figure 2 shows part of one of the four sequence
diagrams (all sequence diagrams can be found in [16]), in
which it is possible to see how tags described in Section III are
annotated in the sequence diagram. As can be seen in Table I,
these operations are performed through calls of 22 methods of
9 classes (2,561 lines of code). Note that our approach consists
in automating the test case generation, in which only the
system internal methods are analyzed. Therefore, no method
called from the user interaction will be analyzed, since our
approach does not implement this feature. In this context, only
the information about the methods described in Table I will be
used to automatically generate and executing the Test Driver.

In order to generate and execute the Test Driver, initially,
we had to annotate the four sequence diagrams with the tags
TDexternallLibrary, TDclassPath, TDtoolPath,
TDimportList and their respectively parameter values:
@externallibrary, @classPath, @toolPath and
@importList. These tags and values were annotated in the
classifier role elements, which represent the nine classes used
for this case study. After annotating the sequence diagrams
with test information, we exported these test models to a XMTI
file. This XMI file is an input for the PletsCoverageJabuti and
PletsCoverageEmma tools, generated based on our approach.
During their execution, the tools parse the XMI file, extracting
information from the methods and classes that will be tested
in order to generate a data structure in memory (7est Informa-
tion). Based on the Test Information and the Test Data (a XML
file with different parameter values for all classes and methods
of the SUT), the tools apply a random test data generation in
order to generate the Abstract Structure (Figure 3) and Data
File (Figure 4).

Abstract Structure: Search for Certification
Tool Configuration

Tool Information : <<TDtoolPath:
Test Configuration
External Libraries : <<TDexternallibrary:
Path Classes : <<TDclassPath: @classPath>>
Imported Classes : <<TDimportList: @importList>>
Sequential Flow Configuration

1. ServletCertification

1.1. searchCertification(String certification,
boolean

1.2. checkName (String certification, String provider): String
1.3. getProvider (String certification, String provider): int

@toolPath>>

@externallibrary>>

Fig. 3. Code snippet of the Abstract Structure

@toolPath = C:\Jabuti\bin;
C:\Jabuti\lib\capi. jar;
@externallibrary = C:\Tomcat 6.0\1lib\jsp-api.jar;

@classPath = C:\CmTool_SkillsTest\web\WEB-INF\classes;
@importList = servlets.x; Jjava.io.x; Java.util.StringTokenizer
1. ServletCertification

C:\Jabuti\lib\bcel-5.2. jar;

1.1. searchCertification ("ActiveX", "BrainBench")
1.2. checkName ("ActiveX", "BrainBench")
1.3. getProvider ("ActiveX", "BrainBench")

Fig. 4. Code snippet of the Data File for JaBUTi

Figure 3 shows a code snippet of the Abstract
Structure that is divided into three information groups:
Tool Configuration, Test Configuration and
Sequential Flow Configuration. As mentioned in
the Section III, all the parameters present in each information
group are a reference to the actual data that is stored in the
Data File that contains all values that will be used to instantiate

String provider):

<<interfaces> TDexternallibray = @externalLibray SenvletCertification : SenvietSkill
User Lser Ulskills TDclassPath = @classPath - - SenvletCertification ServletSkil
UISKills TCtoolPath = @toolPath

TDimportList = @importList

| 1: enterCertification() I
P,—

2. enterProvider()

| 3 clickSendinformationButton()

3 1: searchCertification(String certification, String provider) - boolean

3.3 getProvider(Siring certification, String provider) : int

4: EnterSkillName()

|

\

\

\

\

\

3.2: checkName(String certification, String provider) : String |
\

\

K———————— — — I
|

4 1 searchSkill(String name) : boolean

4.2: checkMName(String name) : String

Fig. 2. Sequence diagram

test cases for a given code coverage tool (JaBUTi or EMMA).
Figure 4 presents a code snippet with information regarding
the parameters values of this file. In this example we defined
information about the JaBUTi launcher path (@toolPath);
for EMMA, we just need to change this value in the Data
File.

Based on the information described in the Abstract Structure
and Data File, the TestDriver.java class is generated. This
class is the same for both JaBUTi and EMMA. Since JaBUTi
and EMMA perform structural analysis on the bytecode,
PletsCoverageJabuti and PletsCoverageEmma create a Java
process to compile the driver class. Figure 5 shows a code
snippet of the TestDriverjava file. In order to perform test
cases with EMMA, automating the generation of the Test-
Driverjava class is enough. However, in order to perform test
cases with JaBUTi it is necessary to generate a project file.
PletsCoverageJabuti generates this project file by creating a
Java process. This process runs a JaBUTi’s internal class called
br.jabuti.cmdtool.CreateProject, in which some
information such as paths of the JaBUTi’s internal libraries is
used as input parameter.

Once these two files are generated, the test execution con-
sists in the internal call of the probe.DefaultProber.
probe and probe.DefaultProber.dump methods for
JaBUTi. At the end, the PletsCoverageJabuti creates a Java
process for running JaBUTi, which is responsible to calculate
and to show the updated coverage information for the defined
test case. Based on that converage information, the tester
could continue running the PletsCoverageJabuti in order to
generate more test cases and increase code coverage. In this
context, the tool executes several tests until the code coverage
is reached. The tester has also the possibility of terminating
the PletsCoverageJabuti execution in any moment and then,
finalize the test. An advantage of using PletsCoverageJabuti
is that it could generate several tests avoiding redundant test
cases, since each test case generated by the random technique
is saved by the tool. This ensures that a test case will not
be repeated. Table I shows the coverage results after four test
runs. It is important to mention that all classes and methods
were analyzed based on All-nodes criterion. As can be seen
in the table, the searchCertification, checkName (ServietCer-
tification class), checkName (ServletSkill class), getUserEx-
periences, printResult, checkPassword, searchSkillNode and

TABLE I. Coverage Information for JaBUTi

Coverage Percentage (%)

Classes Methods One Two Three | Four

run runs runs runs

N searchCertification 100 100 100 100

ServletCer checkName 100 100 100 100

tification getProvider 69 75 89 100

- searchSKill 36 700 100 700

ServletSkill checkName 100 100 100 100

f;g‘e‘E" peri- gotUserExperiences 100 100 100 100

getUsers 80 85 93 100

ServletProfile printResult 100 100 100 100

Servlet checkPassword 100 100 100 100

Password changePassword 90 95 100 100

ServotTree searchSkillNode 100 100 100 100

searchCertificationNode 59 72 95 100

ServietIdus try- getRoleChildren 48 57 81 100
Domain

sendEmail 100 100 100 100

ServletForgot checkEmail 66 84 94 100

Password checkUser 48 63 86 100

getSelectedUsersCertifications 25 50 75 100

getSelectedUsersExperiences 71 82 100 100

ServietGen getSelectedUsersSkills 74 89 100 100

eralSearch printCertifications 75 100 100 100

printExperiences 62 100 100 100

printSkills 90 100 100 100

sendEmail methods were fully covered in one run; search-
Skill, printCertifications, printExperiences and printSkills in
two runs; and changePassword, getSelectedUsersSkills and
getSelectedUsersExperiences in three runs. However, all the
other methods could not obtain a fully coverage percentage
even after three runs. Four runs were required for all the other
methods achieve full coverage.

import servlets .x;
import java.io.x;
import java.util.StringTokenizer;

public class TestDriver {
static public void main(String args[]) throws Exception {

ServletCertification servletcertification = new
ServletCertification () ;

servletcertification.searchCertification (”ActiveX”, ”
BrainBench”);

servletcertification. getProvider (7 ActiveX”, "BrainBench
")

servletcertification .checkName(”ActiveX”, ”"BrainBench™)

5

Fig. 5. Code snippet of TestDriverjava class

In order to generate and execute Test Drivers using the
PletsCoverageEmma, we have used the same sequence di-
agram. However, we have not annotated it with test in-
formation, because this task had been done previously for
PletsCoverageJabuti. Furthermore, all test cases generated for
PletsCoverageJabuti were also used for our second tool. In
the same way as PletsCoverageJabuti, the user/tester has the
possibility of continuing to run the tool in order to generate
and execute more Test Drivers. The results for EMMA are
similar to the ones for JaBUTi presented in Table I.

These results show that our approach allowed the same
diagrams, and test cases to be used in different tools producing
similar results. Furthermore, our approach was able to generate
a second tool (PletsCoverageEmma) with less effort. The rea-
son is that our approach is based on an SPL, which allowed the
reuse of components (Parser and Test Case Generator) already
developed. Although we have developed different components
(Script Generator and Executor) for our both tools, this task
required less effort compared to development of the two first
components. In this case, we had to automate the calls of
internal routines and subcommands of JaBUTi and EMMA.
Furthermore, once familiar with the functional features of the
PletsCoverageJabuti tool, it was possible to perform tests with
little learning effort using PletsCoverageEmma, since both
tools share several features, e.g., GUI, test data generation
technique and the Abstract Structure format.

The results also show the importance of performing struc-
tural testing, since it covers faults that are difficult to meet
with other testing techniques, e.g., the functional testing. For
instance, if a test team does not ensure that all methods
were fully covered during the structural testing activity, it is
possible that when applying the functional testing, a specific
functionality cannot be assessed (unreachable statement) due
to a code inconsistency, e.g., infinite loops or conditions
that never occur. Therefore, structural testing is useful in
combination with functional testing, since it helps to reveal
faults that may not be evident with black-box testing alone.

V. RELATED WORK

There has been some work in the past years related to MBT,
UML and structural testing, but to the best of our knowledge
none of them has integrated all of them. Furthermore, our work
also uses code coverage tools and it is integrated into an SPL.

With respect to test case generation using UML sequence
diagram, the work of Khandai et al. [17] proposes a new
approach for generating test cases for concurrent systems using
sequence diagrams. Our approach, on the other hand, aims
to generate tools that automatically generate and execute test
cases based on source code of applications. A strategy similar
to Khandai er al. can be applied to extend our approach for
concurrent systems.

Similarly, Sharma et al. [18] convert the UML sequence di-
agram into Sequence Diagram Graph (SDG), and then traverse
the SDG to generate the test cases. Other UML diagrams are
also used to collect information that is stored in the SDG.
Their approach was extended to combine sequence and use
case diagrams to generate system test cases. This extended
approach consists of converting UML use cases into a Use
Case Diagram Graph and UML sequence diagrams into SDG.
Our work, on the other hand, focus on structural testing with
coverage criteria based on commands, decisions, classes, and
methods, which is not addressed by Sharma et al.. Thus,

both approaches are complementary since our approach can
be used to generate test cases in order to cover interactions
and scenarios faults.

A work from Swain and Mohapatra [19] uses UML se-
quence and activity diagrams to generate test cases by con-
verting the UML diagrams into an intermediate representation
called Model Flow Graph (MFG). This MFG is traversed to
generate test sequences that are instrumented in the test case
to satisfy a message-activity path test adequacy criteria. Our
approach differs from [19] since it is embedded in an SPL and
go further than only generating the test cases, i.e., our approach
actually executes the test cases in two code coverage tools.

Different from the existing works in test case generation
presented in this section, our approach consists not only in
the test case generation through the MBT technique, but also
on the generation and execution of 7est Drivers for several
code coverage tools. Furthermore, we applied our approach
to a detailed use case in an actual company environment.
Moreover, our approach is based on an SPL, which make
it easy to reuse code that was not developed for a specific
tool. This has happened in the two tools we presented in
this paper and also in previous tools for performance and
functional testing [14]. Furthermore, the approach presented
in this paper distinguishes from [14] in two aspects: first, as
mentioned in Section III, our approach generates test cases
from UML sequence diagrams, while their work use UML
use cases and activity diagrams; second, our approach uses
a random test data generation technique to select a set of
input values from a specific domain, while their work use
sequence test case generation methods, e.g., Harmonized State
Identification (HSI) [20].

VI. CONCLUSION AND LESSONS LEARNED

This paper presented an approach for automating the test
case generation process for several coverage tools from UML
sequence diagrams. Based on this approach we incremented an
SPL called PLeTs. This SPL is able to generate testing tools
that use academic or commercial tools to execute performance,
functional or structural test. One of the advantages of our
approach is related to the possibility of reusing test information
described in UML sequence diagrams. Hence, it is possible
to easily migrate to a different testing tool and reuse the
test cases previously defined. The tools used to exemplify
our approach were two coverage tools: JaBUTi and EMMA.
However, commercial tools such as Semantic Designs Test
Coverage and Rational PurifyPlus or other academic tools such
as Poke-Tool could be used for this purpose. Basically, the
main lessons we have learned were:

1. Coverage analysis based on bytecode and source code.
Although we have presented a use case, in which we used two
code coverage tools (JaBUTi and EMMA) to perform coverage
analysis based on bytecode, our approach is able to deal with
tools that perform tests based on the analysis of source code,
e.g., Semantic Designs Test Coverage [2]. Some minor tools
related changes should be performed, however. For example,
the @classPath parameter must indicate the path of source
code files instead of the path of class files (bytecode). We
decided to use bytecodes because it is not always the case
that source code will be available to test an application.

2. The choice of test data generation technique. When
performing structural testing, it is very important to choose
an efficient technique for generating testing data. An efficient

technique increases the likelihood of meeting the requirements
of structural testing. In our approach we have applied a ran-
dom testing data generation technique to select the parameter
values that will be used to instantiate the TestDriverjava file.
However, our approach could implement other data generation
techniques such as symbolic execution [11] and dynamic
execution [12]. These two techniques are more effective than
random generation and guarantee data selection with a higher
probability to reveal faults. Nevertheless, a random test data
technique is practical and easier to automate.

3. The needed knowledge on the code coverage tools.
Although there are several ways to automate the generation
and execution of tests for different tools, it is still necessary
a detailed study of the code coverage tools that will be
used. Sometimes this study may reveal that is not possible
to automate the generation and execution of test cases for
a particular code coverage tool. For example, open source
tools such as JaBUTi and EMMA are easier to automate than
commercial ones, because it is possible to get access to their
internal functioning. Another point is related to the way tools
are executed, i.e., throughout command line or GUI. Command
line tools are easier to automate because they, usually, provide
a set of subroutines/programs that can be easily parameterized.

4. The advantage to generate testing tools from an
SPL. During the development of this work, we have learned
that SPL concepts were useful to develop testing tools with
less effort. A reason for that is related to the possibility to
reuse components already developed to generate other testing
tools. Furthermore, an SPL can provide other advantages,
such as: quality improvement, since it is possible to reuse
components already developed and tested; higher productivity,
since it is not necessary to develop tools from scratch; and cost
reduction, since it is possible to develop tools in large scale.

Despite the advantages of our approach, we identified the
following limitations and opportunities of future work: an
open issue in our approach concerns the lack of a step
to automate the result analysis. For instance, our approach
could provide components that implement functions that act
as oracles, showing to the tester whether the specified test
requirements were met or not. As a future work, we intend to
perform an experimental study to better evaluate our approach
and understand the required effort (time spent) to generate
structural test cases when compared with other structural MBT
tools.

REFERENCES

[1] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong,
“Establishing structural testing criteria for Java bytecode,” Software:
Practice and Experience, vol. 36, no. 14, pp. 1513-1541, 2006.

[2] Semantic Designs, “Semantic Designs Test Coverage,” URL: http://
www.semdesigns.com, [retrieved: July, 2014].

[3] IBM, “IBM Rational PurifyPlus,” URL: http://www.ibm.com/software/
awdtools/purifyplus/, [retrieved: July, 2014].

[4] V. Roubtsov, “EMMA: a Free Java Code Coverage Tool,” URL: http:
/lemma.sourceforge.net, [retrieved: July, 2014].

[5]1 S. R. Mallepally, QuickTest Professional (QTP) Interview Questions
and Guidelines: A Quick Reference Guide to QuickTest Professional.
Parishta, 2009.

[6] P. Krishnan, “Uniform Descriptions for Model Based Testing,” in Proc.
ASWEC, 2004, pp. 96-105.

[7]1 A. Kerbrat, T. Jéron, and R. Groz, “Automated Test Generation from
SDL Specifications,” in Proc. SDL Forum, 1999, pp. 135-152.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Addison-Wesley Professional, 2005.

[9]
[10]

(11]
(12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

CePES/PUCRS, “PLeTs SPL,” URL: http://www.cepes.pucrs.br/plets,
[retrieved: July, 2014].

D. Hamlet and R. Taylor, “Partition Testing does not Inspire Confi-
dence,” IEEE Transactions on Software Engineering, vol. 16, no. 12,
pp. 1402-1411, 1990.

M. Lin, Y. Chen, K. Yu, and G. Wu, “Lazy Symbolic Execution for Test
Data Generation,” IET Software, vol. 5, no. 2, pp. 132-141, 2011.

R. Dara, et al., “Using Dynamic Execution Data to Generate Test Cases,”
in Proc. ICSM, 2009, pp. 433-436.

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing, 2001.

M. B. Silveira, et al., “Generation of Scripts for Performance Testing
Based on UML Models,” in Proc. SEKE, 2011, pp. 258-563.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed
Random Test Generation,” in Proc. ICSE, 2007, pp. 75-84.
CePES/PUCRS, “PLeTs Guide,” URL: http://www.cepes.pucrs.br/plets/
Ta=guide, [retrieved: July, 2014].

M. Khandai, A. Acharya, and D. Mohapatra, “A Novel Approach of
Test Case Generation for Concurrent Systems Using UML Sequence
Diagram,” in Proc. ICECT, 2011, pp. 157-161.

M. Sarma, D. Kundu, and R. Mall, “Automatic Test Case Generation
from UML Sequence Diagram,” in Proc. ADCOM, 2007, pp. 60-67.
S. K. Swain and D. P. Mohapatra, “Test Case Generation from Behav-
ioral UML Models,” International Journal of Computer Applications,
vol. 6, no. 8, pp. 5-11, 2010.

A. Petrenko, et al., “Nondeterministic State Machines in Protocol
Conformance Testing,” in Proc. PTS, 1993, pp. 363-378.

https://www.researchgate.net/publication/301564193

