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Abstract

Performance evaluation by benchmarking is one of the main approaches for measuring performance of a
computer system. However, it is important to measure parts of a system before they are even implemented.
This can be achieved through an analytical description of the system, allowing the analysis of the system
performance. Additionally, the analytical model can be extended to consider also reliability issues. This
paper presents a generic model for an Operating System (OS) scheduler using the Stochastic Automata
Networks (SAN) formalism. SAN are used to describe processes and processors in the OS and their behavior
when processes have to be migrated. Moreover, processor failures are also modeled in order to provide
reliability indices. The proposed model uses actual benchmarks results obtained from a 4-processor Itanium2
SMP machine and a 12-processor Itanium2 NUMA machine.

Keywords: performance evaluation, analytical models, stochastic automata networks, operating system
scheduling.

1 Introduction

Even with the recent advances on grids and clusters, large shared memory com-

puters are still required to solve some computational problems and run certain

applications. These applications need scalable operating systems to provide them

with an environment that can deal with all their computation needs. Usually the

performance of such parallel systems is measured through benchmarking. The main
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idea of benchmarking involves the running of a set of computer programs to measure

the performance of a machine. There have been several benchmarks developed to

measure different features of a computer system. Usually a benchmark can mea-

sure both machine and system characteristics. Examples of benchmarks are AIM

Multiuser Benchmark - Suite VII [1], LMBench [18], SPEC Benchmark Suite [24],

NAS Parallel Benchmarks [9] and LINPACK Benchmark [8]. The choice of bench-

mark depends on the features which someone wants to evaluate on a system or on

a machine.

Although benchmarks can be a very convincing way of measuring an actual

system, benchmarking and other monitoring techniques are often too inflexible as

analysis tools. In several situations it is important to modify a system configuration

and check whether the system behavior changes. The actual reconfiguration could

be very difficult and most of the time the obtained results do not clearly show an

advantage to justify all of the effort spent.

One solution to this problem is to produce a (theoretical) model of the system

under evaluation and analyze possible configurations. The use of simple models

describing small parts of the system under evaluation is frequently used by Marko-

vian modelers [25,14]. Another valid option is the use of high level formalisms, such

as Queueing Networks [11,12], which can provide insights about performance, but

sometimes it assumes too unrealistic behaviors, e.g., unlimited queues. Another

possible solution is the use of structured formalisms [22,6,10,13] to describe parts

of a system and then composing these parts to have the full system model. Fur-

thermore, with an analytical model it is possible to verify other types of indices,

typically performability indices [19], e.g., indices related to the way the performance

of a system is affected by the presence of faults.

Performance and reliability indices can be produced by different models and

tools. In this paper, we use the Stochastic Automata Networks (SAN) [21] formalism

to describe performance and reliability indices of some of the Linux operating system

algorithms. However, any other formalism, e.g., Stochastic Activity Networks (SAN)

[22], Process Algebra [13] and Stochastic Petri Nets (SPN) [6] could be employed.

The SAN formalism is usually quite attractive when modeling systems with

several parallel activities. It is also important to notice that SAN provides efficient

numeric algorithms to compute stationary and transient measures [10,2], taking

advantages of the structured and modular definitions. In such way, the SAN for-

malism allows the solution of considerably large models, i.e., models with more than

a few million states.

This paper shows how to model parts of the Linux operating system for NUMA

(Non-Uniform Memory Access) machines. We present a SAN model from which

performance and reliability indices of some parts of the Linux scheduling algorithm

can be extracted. Since a model considering all possible processes and processors

from a NUMA machine would be too large, we generalize the behavior of all pro-

cesses modeling the behavior of a single process in a multiprocessor machine. This

generic model considers the possibility of faulty processors, process migration and

process scheduling in the operating system. Furthermore, such a generic model is
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simplified according to the performance and reliability indices desired.

The rest of this paper is organized as follows. In Section 2, we briefly present the

Stochastic Automata Networks formalism. Section 3 describes the behavior of the

Linux scheduling and load balancing algorithms for NUMA machines. In Section

4, we show the proposed SAN model for those algorithms and, in Section 5, we

present the numerical results obtained from our proposed model. Finally, Section 6

assesses future work and emphasizes the main contributions of this paper.

2 Stochastic Automata Networks

The SAN formalism was proposed by Plateau [20] and its basic idea is to represent

a whole system by a collection of subsystems with an independent behavior (local

transitions) and occasional interdependencies (functional rates and synchronizing

events). The framework proposed by Plateau defines a modular way to describe

continuous and discrete-time Markovian models [21]. However, only continuous-

time SAN will be considered in this paper, although discrete-time SAN can also

be employed without any loss of generality.

The SAN formalism describes a complete system as a collection of subsystems

that interact with each other. Each subsystem is described as a stochastic automa-

ton, i.e., an automaton in which the transitions are labeled with probabilistic and

timing information. Hence, one can build a continuous-time stochastic process re-

lated to SAN, i.e., the SAN formalism has exactly the same application scope as

the Markov Chain (MC) formalism [23,5]. The state of a SAN model, called global

state, is defined by the cartesian product of the local states of all automata.

There are two types of events that change the global state of a model: local

events and synchronizing events. Local events change the SAN global state passing

from a global state to another that differs only by one local state. On the other

hand, synchronizing events can change simultaneously more than one local state,

i.e., two or more automata can change their local states simultaneously. In other

words, the occurrence of a synchronizing event forces all concerned automata to fire

a transition corresponding to this event. Actually, local events can be viewed as a

particular case of synchronizing events that concerns only one automaton.

Each event is represented by an identifier and a rate of occurrence, which de-

scribes how often a given event will occur. Each transition may be fired as the result

of the occurrence of any number of events. In general, non-determinism (probabilis-

tic choice) among possible different events is dealt with according to Markovian

behavior, i.e., any of the events may occur and their occurrence rates define how

often each one of them will occur. However, from a given local state, if the occur-

rence of a given event can lead to more than one state, then an additional routing

probability must be provided. The absence of routing probability is tolerated if only

one transition can be fired by an event from a given local state.

The other possibility of interaction among automata is the use of functional

rates. Any event occurrence rate may be expressed by a constant value (a positive

real number) or a function of the state of other automata. In opposition to syn-
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chronizing events, functional rates are one-way interaction among automata, since

it affects only the automaton in which it appears.

Fig. 1 presents a SAN model with two automata, four local events, one synchro-

nizing event, and one functional rate. In the SAN model of Fig. 1, the rate of event

e1 is not a constant rate, but a functional rate fe1 described by the SAN notation

employed by the PEPS software tool [3]. The interpretation of a function can be

viewed as the evaluation of an expression of non-typed programming languages, e.g.,

the C language. Each comparison is evaluated to value 1 (true) or value 0 (false).

0(1)

1(1)

e1e2

A(1)

e3

A(2)

0(2)

2(2) 1(2)

e2(π2)

e5

Type Event Rate

loc e1 fe1

syn e2 μ

loc e3 σ

loc e4 δ

loc e5 τ

e4 e2(π1)

fe1
=

[(
st A(2) == 0(2)

)
∗ λ

]
+

[(
st A(2) == 2(2)

)
∗ γ

]

Fig. 1. Example of a SAN model

The use of functional expressions is not limited to event rates. In fact, routing

probabilities also may be expressed as functions. The use of functions is a powerful

primitive of SAN, since it allows to describe very complex behaviors in a very

compact format. The computational costs to handle functional rates has decreased

significantly with the developments of numerical solutions for the SAN models, e.g.,

the algorithms for generalized tensor products [3].

3 Scheduling in NUMA OS

A system with shared resources needs to implement some policy to define who can

use a specific resource. In an operating system, the process scheduler is respon-

sible for managing the use of all system processors that are shared by processes.

Scheduling in single-processor machines has been studied thoroughly in the past

years. However, scheduling in multiprocessor machines still presents several chal-

lenges. Usually, shared memory multiprocessor machines can be classified as Sym-

metric Multiprocessor (SMP) or Non-Uniform Memory Access (NUMA) [15]. SMP

machines are multiprocessor systems in which each processor accesses any memory

area in constant time. NUMA systems are multiprocessor systems organized in

nodes. Fig. 2 shows an 8-processor NUMA machine organized in four nodes.

Node 1 Node 2 Node 3 Node 4

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

Memory Memory Memory Memory

Fig. 2. NUMA machine

Each node has a set of processors and part of the main memory. The distance
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between nodes is not the same, hence there are different access times from each

processor to different memory areas.

3.1 Linux scheduler

One of the operating systems that implements a scheduler algorithm for parallel

machines is Linux. Since version 2.5, the Linux scheduler has been called O(1)

scheduler because all of its routines execute in constant time, no matter how many

processors exist [17]. The current version of the Linux scheduler (kernel version

2.6.11) brought many advances for both SMP and NUMA architectures.

The Linux scheduler is preemptive and works with dynamic priority queues.

The system calculates process priority according to process CPU utilization rate.

I/O-bound processes, which spend most of their time waiting for I/O requests, have

higher priority than CPU-bound processes, which spend most of their time running.

Since I/O-bound processes are often interactive, they need fast response time, thus

having higher priority. CPU-bound processes run less frequently, but for longer

periods. Priority is dynamic; it changes according to process behavior. Process

timeslice is also dynamic and determined based on process priority. The higher the

process priority, the higher the process timeslice.

Although previous versions of Linux had only one process queue for the entire

system, the current O(1) scheduler keeps a process queue (called runqueue) per

processor. Thus, if a process is inserted in a runqueue of a specific processor, it

will run only on that processor. This property is called processor affinity. Since

the process keeps running in the same processor, the data of this process can be in

the cache memory, so the system does not need to retrieve this data from the main

memory, clearly an advantage. Since accessing cache memory is faster than accessing

main memory, processor affinity improves the overall system performance. Each

runqueue contains two priority arrays: active and expired. Priority arrays are data

structures composed of a priority bitmap and an array that contains one process

queue for each priority. The priority bitmap is used to find the highest priority

processes in the runqueue efficiently. It has one bit for each priority level. When

at least one process of a given priority exists, the corresponding bit in the bitmap

is set to value 1. Then, the scheduler selects a new process to run by searching for

the first bit equal to value 1 in the bitmap, which represents the highest priority of

the runqueue, and finding the first process on the queue with that priority. Fig. 3

depicts part of this algorithm [17].

Each runqueue has two pointers to the priority arrays. When the active array is

empty, the pointers are switched: the expired array becomes the active array and

vice-versa. The main advantages of this operation is to avoid moving all processes

to the active priority array; executing in constant time; and keeping the scheduling

algorithm with O(1) complexity.

When a process finishes its timeslice, its priority and timeslice are recalculated

and it is moved to the expired priority array. This process will run again only when

the active array is empty, that is, when all processes of the runqueue have finished

their timeslices.
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Bit 0 (priority 0)

schedule()

Bit 7 (priority 7)

List of all runnable tasks for priority 7

sched_find_first_set()

Bit 139 (priority 139)

List of all runnable tasks, by priority

140−bit priority bitmap

run the first process in the list

Fig. 3. Selecting a new process to run

When a process is created, it is inserted in the same runqueue and has the

same priority of its parent. The timeslice of the parent is split equally between the

new process and its parent. However, always inserting new processes in the same

runqueue can overload a processor, while other processors in the system may be idle

or have a smaller number of processes to execute. This is not a desirable scenario

because it increases the average execution time of processes. To avoid this situation,

the Linux scheduler implements a load balancing algorithm. This algorithm tries

to keep the load of the system fairly distributed among processors. To accomplish

this goal, the Linux load balancer migrates processes from an overloaded processor

to another processor with fewer processes to execute.

In SMP systems, the choice of migrating processes from an overloaded processor

to an idle processor does not cause any major side-effect. Since the distance between

all processors and memory is the same, migrating a process from any processor to

another processor does not affect the overall performance of the process. This does

not happen in NUMA machines; migrating a process from a processor in the same

node is better than migrating it from a processor in another node. As described

before, this is due to the different memory distances between processors that are in

different nodes.

The Linux load balancing algorithm uses a data structure, called sched domain,

to perform load balancing [4]. Basically, a sched domain contains CPU groups that

define the scope of load balancing for this domain. The sched domains are organized

hierarchically, trying to represent the topology of the system. Fig. 4 shows sched

domains created by Linux to the NUMA machine of Fig. 2.

CPU: 1, 2 CPU: 3, 4 CPU: 5, 6 CPU: 7, 8

CPU Domain 2

CPU: 3 CPU: 4

CPU Domain 3

CPU: 5 CPU: 6

CPU Domain 4

CPU: 7 CPU: 8

CPU Domain 1

CPU: 1 CPU: 2

Node Domain

Fig. 4. sched domains for a NUMA machine

The domains in the lowest level represent nodes of the system. These domains

are called CPU domains because processes can be migrated only among CPUs, not

among nodes. Each CPU group in the CPU domains is composed of only one CPU.

The higher level domain represents the entire system and is called node domain
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because processes can be moved among nodes. In the node domain, each CPU

group represents one node, thus being composed of all CPUs of that node.

Usually, the Linux O(1) scheduler tries to keep the load of all processors as

balanced as possible by reassigning processes to processors in three different situa-

tions: (i) when a processor becomes idle; (ii) when a process executes the exec or

clone system calls; and (iii) periodically at specific intervals defined for each sched

domain.

When a processor becomes idle, the load balancer is invoked to migrate processes

from another processor to the idle one. Usually only the CPU domains accept load

balancing for this event, in order to keep the processes in the same node and closer

to the memory allocated to it. When a process executes the exec or clone system

calls, load balancing can be executed for the node domain, because a new memory

image will need to be created for the cloned process and it can be allocated on a

new node.

Because idle processor events usually trigger load balancing at the node level only

and exec or clone system calls may not be invoked soon, periodical load balancing

at regular intervals is performed to prevent imbalances among CPUs on different

nodes. In this periodical load balancing, at each rebalance tick, the system checks

if load balancing should be executed in each sched domain containing the current

processor, starting at the lowest domain level.

Load balancing is performed among processors of a specific sched domain. Since

load balancing must be executed on a specific processor, the balancing will be

performed in sched domains that contain this processor. The first action of the load

balancer is to determine the busiest processor of the current domain (all domains

are visited, starting at the lowest level) and to verify if it is overloaded with respect

to the current processor.

The choice of which processes will be migrated is simple. Processes from the

expired priority array are preferred and are moved according to three criteria: (i)

the process should not be running; (ii) the process should not be cache-hot ; and

(iii) the process should not have processor affinity.

This load balancing algorithm is part of the O(1) scheduler and its goal is to

keep the load of all processors as balanced as possible, minimizing the average time

of process execution.

4 Proposed Model

The use of benchmarks can be very useful to measure features in complex systems,

e.g., the Linux scheduling algorithm. However, as mentioned before, it can be very

expensive to modify such systems in order to check them again and realize that

all of the effort has been wasted. Instead, analytical modeling could be used to

describe and evaluate those systems, and only if new modifications of the system

are predicted to be better than the previous one, actual implementation is realized.

In this section we describe how the Linux scheduling algorithm can be modeled using

the SAN formalism. The modular approach allowed by SAN is quite attractive to
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model such system due to its parallel behavior.

The main idea of our approach is to model the behavior of only one process in

the Linux system, but considering the influence of other processes. We propose a

system model consisting of P (i) processors and one process.

4.1 Process

Fig. 5 shows the SAN model of a process in a 2-processor machine and its transition

rate table. Table 1 shows all possible events that change the automata states.

Event Description

sioi the process is going to perform an I/O operation

fioi
the process has finished its I/O operation and it has been moved to

the ready queue in the ith processor

sei the process has been scheduled in the ith processor

ftsi the process has finished its timeslice in the ith processor

ri the process has been “moved” to the ready queue in the ith processor

fei the process has finished its execution

mpeij
the process was in the expired queue in the ith processor and it has

been migrated to the jth processor by the periodical load balancing

mieij
the process was in the expired queue in the ith processor and it has

been migrated to the jth processor by the idle load balancing

mprij
the process was in the ready queue in the ith processor and it has

been migrated to the jth processor by the periodical load balancing

mirij
the process was in the ready queue in the ith processor and it has

been migrated to the jth processor by the idle load balancing

epi the ith processor has failed

moNi other processes have been migrated through the idle load balancing

spi periodical load balancing is going to be performed

fpi periodical load balancing was performed but did not affect Process

idi the scheduler could not find a process to schedule

sni the scheduler algorithm has chosen another process to execute

fni some other process has finished its timeslice or its execution

Table 1
All possible automata events

The Process automaton is composed of the following states: R(i) representing

that the process is in the ready queue (waiting to be scheduled) in the ith processor;

Ep(i) representing that the process is in the expired queue (it has finished its times-

lice and is waiting to be “moved” to the ready queue) in the ith processor; Ex (i)

representing the situation in which the process is executing in the corresponding

processor; IO (i) representing the situation in which the process is waiting for an

input/output operation; En representing that the process has finished its execution

and it is not part of the system anymore.

It is important to notice that Fig. 5 shows the behavior of the process in a

computer with two processors (P (1) and P (2)). This was done to reduce the number

of states in the figure for simplicity; to represent a greater number of processors it

is necessary to replicate states R(i), IO (i), Ex (i) and Ep(i) and their corresponding

transitions.
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IO (1)

R(1) Ex (1)

Ep(1)

Ep(2)

R(2) Ex (2)

IO (2)

En

P (1)

P (2)

sio1

fts1r1

fio2

fts2

fe2

fe1

mir12
mpr12mpr21

mir21

r2

se1

se2

sio2

fio1

Process

mie12

mpe12

mpe21
mie21

Type Event Rate Type Event Rate

syn sio1 rsio1
syn fe1 rfe1

syn sio2 rsio2
syn fe2 rfe2

syn fts1 rfts1
syn mpr12 rmpr12

syn fts2 rfts2
syn mpr21 rmpr21

syn mpe12 rmpe12
syn mir12 rmir12

syn mpe21 rmpe21
syn mir21 rmir21

syn mie12 rmie12
loc fio1 rfio1

syn mie21 rmie21
loc fio2 rfio2

syn se1 rse1
loc r1 rr1

syn se2 rse2
loc r2 rr2

Fig. 5. Automaton Process and its events

The transitions represent the events that might happen during a process lifetime.

For instance, transition from Ex (i) to Ep(i) means that the process has finished exe-

cuting its timeslice and will be stored in the expired queue. Some of the transitions

represent the load balancing algorithm being executed. For example, transitions

from Ep(1) or R(1) to R(2) represent that the process was in one of the queues from

processor 1, and the load balancer chooses to move that process to the ready queue

of processor 2. This moving represents that processor 1 was not balanced with

respect to processor 2. The way the load balancer works was described in Section

3.

An important remark is that our approach allows different types of process

configuration; if we want to analyze the behavior of an I/O-bound process, for

instance, it is only necessary to adjust the rates appropriately. In this case, the

transition rate from Ex (i) to IO (i) will be higher than the transition rate from

Ex (i) to Ep(i) because the process will perform more I/O operations. As an I/O-

bound process receives a greater priority than a CPU-bound process, the transition

rate from R(i) to Ex (i) will increase as well. Besides process types (I/O-bound

and CPU-bound), it is also possible to define other process features, e.g., process

priority, process execution time, etc.

As we mentioned before, each set R(i), Ex (i), Ep(i) and IO (i) is included for each

processor in the system. It is necessary to have one IO (i) state for each processor

modeled even though they represent exactly the same situation. If the Process

automaton had only one global IO state, it would be impossible to know in which

processor queue the process should be inserted, when the I/O operation finishes.

4.2 Processor

Fig. 6 shows the modeled processors using SAN and the corresponding transition

rate table.

A processor might be in one of the following states: IB (i) representing that the
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Sc(2)

EN (2)

Ex (2)IB (2)

Er (2)

PB (2)

P (2)

ep2 ep2 ep2

id2

mie12 fts2 sio2 fe2

sp2

fn2

ep2

sn2

se2

moN2

mpr12

mir12

fp2

mpe12

ep2

Sc(1)

EN (1)

Ex (1)IB (1)

Er (1)

PB (1)

P (1)

ep1
ep1 ep1 ep1

id1

mie21 fts1 sio1 fe1

sp1

fn1

ep1

sn1

se1

moN1

mpr21

mir21

fp1

mpe21

fid1 =
[
(st Process != R(1)) && (st Process != Ep(1))

]
∗ rid1

fid2 =
[
(st Process != R(2)) && (st Process != Ep(2))

]
∗ rid2

Type Event Rate Type Event Rate Type Event Rate

syn mie12 rmie12 syn se1 rse1 loc fp1 rfp1

syn mie21 rmie21 syn se2 rse2 loc fp2 rfp2

syn mpr12 rmpr12 syn fe1 rfe1 loc id1 fid1

syn mpr21 rmpr21 syn fe2 rfe2 loc id2 fid2

syn mir12 rmir12 syn sio1 rsio1 loc ep1 rep1

syn mir21 rmir21 syn sio2 rsio2 loc ep2 rep2

syn mpe12 rmpe12 loc moN1 rmoN1
loc sn1 rsn1

syn mpe21 rmpe21 loc moN2 rmoN2
loc sn2 rsn2

syn fts1 rfts1 loc sp1 rsp1 loc fn1 rfn1

syn fts2 rfts2 loc sp2 rsp2 loc fn2 rfn2

Fig. 6. Processors automata and their events

processor is not being used and it is performing the load balancing algorithm; Sc(i)

representing that the processor is executing the scheduling algorithm; PB (i) rep-

resenting that the processor is executing the periodical load balancing algorithm;

EN (i) representing that the processor is executing any other process; Ex (i) represent-

ing that the processor is executing the process showed in Fig. 5; Er (i) representing

that some error has occurred and the processor is not working.

It is important to remember that as we are describing a system in a NUMA

machine, memory latency is different for each node. Memory latency is represented

in our model by event rate fe and it can be different for each modeled processor.

This allows to evaluate the system with different memory latencies values. For

example, migrating processes from one node to another will cause the process to

have different memory access times. This will be very important to check whether

migrating processes can improve the system performance. If a processor is idle and

another one is overloaded, it is probably better to move some processes even if it

will take longer to access its data from memory. Our model can show the types

of systems in which migration is better than leaving a processor overloaded, or

vice-versa.

4.3 Performability

With respect to the performability indices, we included the Er (i) state to represent

a fault in a processor. Our fault model considers only fail-silent behavior, i.e.,

when the processor fails, it will not produce any result and will stay in that state

forever. Because we can have several processors in the system, we are interested in

the situation in which the system continues working normally. Our aim is to verify

the behavior of the system in the presence of faults (performability) [19]. One

consequence of this approach is that we cannot calculate the stationary solution

of the model because of the absorbing states (Er (i)). The Process automaton has
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the same characteristic. The En state is an absorbing state. A possible solution to

avoid absorbing states is to assume that the processor can be fixed, returning to its

normal operation, and the process could start its execution again.

4.4 Assigning Parameters

This section shows the numerical values that were assigned to the event rates.

Some parameters were taken from benchmarks, whereas others are Linux variable or

constants, e.g., timeslice values. The benchmark used was LMBench [18], performed

on a 4-processor Itanium2 computer and on a 12-processor HP Superdome. The

Linux kernel version used was 2.6.11 (with the ia64 patch applied). We also applied

another patch that adds extra scheduling information to the /proc directory [16].

Using LMBench and Linux patches, we assigned the following values to event rates

(all rates are given in milliseconds):

• rftsi
and rfni

: 1
timeslice

. Linux considers a timeslice varying from 10 to 300 ms. In

our models, we defined I/O-bound timeslice as 200 ms and CPU-bound timeslice

as 100 ms;

• rspi
: 1

200 . Linux default value in kernel 2.6.11 for balance interval is 200 ms;

• rsni
: 1 − rsei

. Considering scheduling time as 1 ms. Because either the modeled

process is selected to execute or any other process is scheduled to run, this value

depends on the rsei
value;

• rfpi
and rmoNi

: 1
0.8 . Considering 0.8 ms to perform the load balancing algorithm.

When this algorithm is executed, it does not mean that migration will occur.

Migration will happen only if the system is not balanced;

• rmprij
, rmirij

, rmpeij
and rmieij

: 1
0.8 ∗

1
N

NP

. Considering N the number of processes

and NP the number of processors in the system;

• rri
: 1

timeslice∗ N
NP

. The modeled process must wait until all other processes finish

their timeslices before it moves to the R(i) state.

Besides, some rates and parameters are chosen according to an actual process

implementation:

• rsioi
: This rate must be greater than rftsi

if the process is I/O-bound, otherwise

it means that the process might be a CPU-bound one;

• rfioi
: 1

1,000 . In almost all models, we considered that an I/O operation takes 1

second to be performed;

• rsei
: 1

0.2 for a CPU-bound process and 1
0.7 for an I/O-bound process. It is nec-

essary to define how many processes have higher, lower or equal priority than

the modeled process. Therefore, the rsei
rate is the sum of the execution proba-

bility of the lower priority processes and the exponentially distributed execution

probability of the equal priority processes;

• repi
: 1

1 . This rate is used for performability analysis, i.e., when we want to analise

the behavior of the system if one or more processors fail;
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• ridi
: 1

10,000 . In order to trigger the event for this rate, the modeled process cannot

be either in the R(i) or in the Ep(i);

• rfei
: 1

600 . This rate is used to change the total lifetime of the process. Average

duration of a process is calculated as
rfei

rsioi
+rftsi

∗ timeslice.

5 Performance and Reliability Indices

As mentioned in Section 4, the proposed model is a generic approach that describes

part of the Linux scheduling algorithm. Depending on the size of the system being

modeled, the final automata could be quite big. However, it is possible to develop

less complex models, which can be solved faster, based on the generic one. Therefore,

specific performance and reliability indices can be obtained in a straightforward

manner.

For instance, in order to obtain some migration information, such as how long

does it take to a process to migrate for the first time, we can adapt the generic

model. In the generic model (see Fig. 5), the set of states R(i), Ep(i) Ex(i), and

IO(i) represents the behavior of Process in the ith processor. However, sometimes

it is not necessary to model the behavior of Process in all processors. For this

example, it is desirable to have just migration information. In Fig. 7, we present a

reduced model that represents Process in processor 1, and processor 2 is modeled

as only one (absorbing) state (M (2)).

IO (1)

R(1) Ex (1)

Ep(1)

EnM (2)

P (1)

fts1r1

fe1

se1

Process

fio1 sio1

me12

mr12

Type Event Rate

syn sio1 rsio1

syn se1 rse1

syn fe1 rfe1

syn fts1 rfts1

loc fio1 rfio1

loc r1 rr1

loc me12 rme12

loc mr12 rmr12

Fig. 7. Simplified automaton Process

In Fig. 7, state M (2) represents that Process have migrated from processor 1 to

processor 2. Note that both synchronizing events mir12 and mpr12 become only

one local event mr12. Analogously, events mie12 and mpe12 also become only one

local event me12. Such change occurs due to the fact that, as mentioned before,

there is no need to model all processors. Hence, those synchronizing events are not

represented in the new processor automaton (Fig. 8).

However, if there are other processors in the system, there is no need to add

new states to represent the new processors if their migration rates are the same.

Otherwise, one state for each new processor must be created (different migration

rates).

Note that this new approach reduces significantly the number of states in the
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EN (1)

Ex (1)IB (1)

Er (1)

PB (1)

Sc(1)

P (1)

ep1
ep1 ep1 ep1

id1

fts1 sio1 fe1

sp1

fn1

ep1

sn1

se1

moN1

fp1

fid1
=

[
(st Process != R(1)) && (st Process != Ep(1))

]
∗ rid1

Type Event Rate Type Event Rate

syn se1 rse1
loc sp1 rsp1

syn fe1 rfe1
loc fp1 rfp1

syn fts1 rfts1
loc id1 fid1

syn sio1 rsio1
loc moN1 rmoN1

loc sn1 rsn1
loc ep1 rep1

loc fn1 rfn1

Fig. 8. Simplified automaton P (1) and its events

model. In the generic model, the Process automaton has (4 ∗ NP ) + 1 states and

the Processors automata (P (i)) have 6 ∗ NP states, whereas in the new model

the Process automaton has 4 + (NP − 1) + 1 states (for processors with different

migration rates) or 4 + 1 + 1 states (for processors with the same migration rate),

and a single Processor automaton with 6 states. Any other model based on the

generic one can cause bigger or smaller reduction.

5.1 Numerical Results

In this section, we have applied the analytical model presented in Section 4 to

different NUMA machines. First of all, the results we obtained and present at

the beginning of this section were applied to a 4-processor NUMA machine that

is organized in four nodes and two memory access levels. Each node is composed

of only one processor. A process executed in a processor (node) different from the

one in which it was initially created will execute 25% slower 8 than it would in the

processor in which it started its execution. Slower execution is due to time spent

by the process to access its data, which is stored in a different node.

Fig. 9 shows the migration probability of an I/O-bound and a CPU-bound pro-

cess. I/O-bound processes perform more I/O operations (IO state), while CPU-

bound processes execute for a long time and go to the expired queue (Ep state)

more frequently. As mentioned in Section 3, processes from the expired queue are

preferred to be migrated to other processors. Therefore, a CPU-bound process tends

to migrate earlier than an I/O-bound process (see Fig. 9).

As an I/O-bound process spends more time performing I/O operations and less

time in the expired queue, it takes longer to be moved to another processor. Such

phenomenon occurs because I/O-bound processes tend to spend less time in the R

and Ep states, consequently having less chance to be migrated. Note, however, that

after a long period, I/O-bound and CPU-bound processes have a similar behavior.

Such situation occurs because an I/O-bound process will execute (go to Ex state)

more frequently. Hence, in a long period, an I/O-bound process will finish its

timeslice faster, therefore this type of process will be moved to the expired queue

(Ep state) faster. This will result in a higher migration probability for an I/O-bound

process after a long period of time.

8 We based this assumption on an actual NUMA machine memory latency.
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Time CPU I/O Time CPU I/O

0 0.00000 0.00000 50 0.72188 0.24230

1 0.01527 0.00722 100 0.87920 0.41462

2 0.04029 0.01463 150 0.91270 0.54217

3 0.06656 0.02146 200 0.91984 0.63660

4 0.09247 0.02785 300 0.92168 0.75824

5 0.11769 0.03390 400 0.92176 0.82489

10 0.23289 0.06140 500 0.92177 0.86142

15 0.33161 0.08675 600 0.92177 0.88143

20 0.41618 0.11109 700 0.92177 0.89240

25 0.48863 0.13465 800 0.92177 0.89841

30 0.55070 0.15750 900 0.92177 0.90171

40 0.64942 0.20117 1000 0.92177 0.90351

Fig. 9. Process migration behavior

Using the same machine, we verified the probability of an I/O-bound process

to finish its execution (normal end probability) without migrating to any other

processor. Fig. 10 shows the results for a low priority and for a high priority I/O-

bound process. Although someone would expect a high priority process to finish

first, observe that the low priority process has the highest normal end probability

when migration is possible. It occurs because as the high priority process tends to

execute more frequently, it also tends to migrate earlier. This situation would not

happen if processes could not be migrated.
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I/O-bound (high priority)

Time Low High Time Low High

0 0.00000 0.00000 50 0.02499 0.02617

1 0.00231 0.00315 100 0.04383 0.04357

2 0.00301 0.00371 150 0.05940 0.05646

3 0.00366 0.00425 200 0.07228 0.06600

4 0.00417 0.00479 300 0.09172 0.07828

5 0.00467 0.00533 400 0.10501 0.08502

10 0.00711 0.00794 500 0.11409 0.08871

15 0.00950 0.01047 600 0.12030 0.09073

20 0.01184 0.01292 700 0.12454 0.09184

25 0.01414 0.01529 800 0.12744 0.09244

30 0.01639 0.01760 900 0.12942 0.09278

40 0.02077 0.02201 1000 0.13078 0.09296

Fig. 10. End probability without migration

Fig. 11 presents the normal end probability of the generic model applied to

our example machine. In this model, we introduce the concept of fault in one or

more processors. We have verified seven possible faulty scenarios: (i) K = 0 (all

processors working); (ii) K = 1 (processor 1 fails); (iii) K = 1∗ (one processor fails,

except processor 1); (iv) K = 2 (processor 1 and 2 fail); (v) K = 2∗ (two processors

fail, except processor 1); (vi) K = 3 (processor 1, 2 and 3 fail); and (vii) K = 3∗

(processors 2, 3 and 4 fail).

We assume that a process was created in processor 1, i.e., it executes slower

in other processors (2, 3 or 4). As mentioned before, the process executes 25%

slower in processors 2, 3 and 4 than in processor 1, due to memory latency. When a

processor fails, its respective processes are moved to another processor. No process
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K=0
K=1
K=1*
K=2
K=2*
K=3
K=3*

Time K = 0 K = 1 K = 1∗ K = 2 K = 2∗ K = 3 K = 3∗

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 0.04437 0.02918 0.04437 0.02505 0.04436 0.01698 0.04436

0.2 0.06985 0.04896 0.06984 0.04253 0.06983 0.02926 0.06982

0.3 0.08932 0.06496 0.08931 0.05682 0.08929 0.03944 0.08927

0.4 0.10599 0.07884 0.10598 0.06924 0.10596 0.04832 0.10593

0.5 0.12079 0.09117 0.12077 0.08029 0.12074 0.05622 0.12069

1 0.17652 0.13750 0.17648 0.12169 0.17642 0.08574 0.17626

2 0.24444 0.19397 0.24440 0.17188 0.24425 0.12121 0.24374

3 0.29255 0.23450 0.29254 0.20768 0.29230 0.14627 0.29129

4 0.33368 0.26972 0.33372 0.23872 0.33337 0.16787 0.33178

5 0.37108 0.30226 0.37117 0.26734 0.37070 0.18772 0.36844

10 0.52486 0.44184 0.52523 0.38982 0.52392 0.27214 0.51748

15 0.63927 0.55310 0.63987 0.48718 0.63746 0.33868 0.62602

20 0.72515 0.64217 0.72593 0.56497 0.72224 0.39149 0.70552

25 0.78989 0.71349 0.79077 0.62718 0.78573 0.43351 0.76383

30 0.83888 0.77058 0.83980 0.67698 0.83342 0.46703 0.80664

Fig. 11. Process execution behavior

is lost.

In the faulty scenarios K = 0, K = 1∗, K = 2∗, and K = 3∗, process performance

is almost the same. As processor 1 does not fail, the process can execute faster in

this processor because there is no need to migrate to another processor. However,

in the scenarios K = 1, K = 2, and K = 3, performance decreases as there are less

processors working. It occurs due to overload caused by migration from the failed

processor to other processors. Besides, the process will run in a processor that is

far from the process memory area. Hence, it will take longer to finish its execution.

As mentioned at the beginning of this section, we applied our model to different

NUMA machines. In order to compare the current load balancing algorithm with a

new strategy that is being developed by our research group, we applied our model to

a 4-processor NUMA machine composed of four 1-processor nodes, but with three

memory access levels.

The current version of the Linux load balancing algorithm creates, for this ma-

chine, two Linux sched domain levels. In order to better represent actual computer

architectures, we have proposed to change the Linux sched domains implementa-

tion to take several memory access levels into consideration [7]. In our proposal,

the Linux load balancing algorithm creates three Linux sched domain levels for this

machine.
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3 memory access levels - 3 Linux sched domain levels

Time 3 levels 2 sched 3 levels 3 sched

0.1 0.04438 0.04438

0.3 0.08937 0.08937

0.5 0.12091 0.12091

1 0.17689 0.17687

3 0.29427 0.29417

5 0.37410 0.37407

10 0.52999 0.53093

15 0.64509 0.64755

20 0.73065 0.73473

25 0.79444 0.79997

30 0.84216 0.84885

Fig. 12. 3-level NUMA machine

Fig. 12 shows the performance of a process running when Linux recognizes just

two memory access levels (3 memory access levels - 2 Linux sched domain levels) and

when Linux recognizes the actual computer’s topology (3 memory access levels - 3
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Linux sched domain levels). Note that our approach presents a better performance

depending on the time the process takes to execute (around 0.8% for a thirty second

process). Such phenomenon occurs due to the fact that the longer the process

takes to execute, the greater the chance for the process to migrate from one node

to another. When migration takes place, the current Linux algorithm does not

consider the different distances among different nodes. Therefore, the process could

take more time to finish when moved to a more distant node.

In order to verify whether our load balancing strategy would improve perfor-

mance in machines with several memory access levels, we have applied our model

to two other machine configurations:

a) four 1-processor nodes and four memory access levels: Fig. 13 shows the normal

end probability of a process when Linux recognizes only two memory access levels

(4 memory access levels - 2 Linux sched domain levels) and when Linux recognizes

the actual computer’s topology (4 memory access levels - 4 Linux sched domain

levels). Compared to the first example (Fig. 12), the performance in this case

is even better (around 1%). As there is one more memory access level, there is

a higher chance for the process to be migrated to the more distant node in the

current Linux algorithm than in our approach.
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Time 4 levels 2 sched 4 levels 4 sched

0.1 0.04438 0.04438

0.3 0.08937 0.08937

0.5 0.12091 0.12091

1 0.17688 0.17687

3 0.29422 0.29416

5 0.37399 0.37407

10 0.52968 0.53098

15 0.64455 0.64768

20 0.72988 0.73495

25 0.79346 0.80027

30 0.84099 0.84921

Fig. 13. 4-level NUMA machine

b) six 1-processor nodes and six memory access levels: Fig. 14 shows the normal end

probability of a process when Linux recognizes only two memory access levels (6

memory access levels - 2 Linux sched domain levels) and when Linux recognizes

the actual computer’s topology (6 memory access levels - 6 Linux sched domain

levels). In this case the performance is better than in the other two models

(around 2.4%). In this example, we have two more memory access levels than in

the last example. Therefore, the chance for a process to be migrated to the more

distant node in the current Linux algorithm is even higher.

Although the improvement showed in Fig. 12, 13 and 14 for our proposal seems

to be small, it is important to point out that for bigger machines this difference can

become greater. We can notice that as the number of levels increases, the difference

between our approach and the current Linux algorithm increases. Besides, the

improvement increases as the time the process takes to finish its execution increases.

We modeled a process that would take only thirty seconds to execute, and clearly

R. Chanin et al. / Electronic Notes in Theoretical Computer Science 151 (2006) 131–149146



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

N
or

m
al

 E
nd

 P
ro

ba
bi

lit
y

Time (sec)

6 memory access levels - 2 Linux sched domain levels
6 memory access levels - 6 Linux sched domain levels

Time 6 levels 2 sched 6 levels 6 sched

0.1 0.04437 0.04438

0.3 0.08937 0.08937

0.5 0.12091 0.12091

1 0.17688 0.17687

3 0.29416 0.29416
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20 0.72269 0.73494

25 0.78398 0.80026

30 0.82962 0.84920

Fig. 14. 6-level NUMA machine

our results showed that the difference between our approach and the Linux one

would increase as the time the process takes to finish increases. In addition, we still

have to apply our model to bigger machines 9 .

6 Conclusion

This paper has presented an analytical model for the scheduling algorithm of the

Linux operating system (kernel version 2.6.11). The main objective of this work is to

show that analytical modeling can help in answering whether a possible modification

in an algorithm should be implemented or not. We showed some of the results we

obtained through the use of an analytical tool, for example, probabilities of processes

migration. This model was developed as part of a research project to modify the

Linux operating system in NUMA computers. The main goal of this project is to

make Linux more scalable. The model will help in providing Linux with a new load

balancing strategy and new page migration for the Linux memory manager.

In order to model the parallel features existing in the operating system, we had

to use a formalism that would allow us to express this parallelism. We studied

several formalisms to describe the Linux algorithms, and the one that seemed more

attractive was the SAN formalism. Using SAN was very straightforward to de-

scribe parallelism in the Linux operating system. Maybe modelers with different

backgrounds (e.g. SPN) could be more confortable with other formalisms.

Although SAN has been used to describe the Linux algorithms, we used several

benchmarks to obtain some of the rates for the analytical model. The main bench-

mark used was LMBench and some information provided in the /proc directory of

the Linux operating system. Based on the results obtained from our model, we

have implemented a new version of the Linux load balancing algorithm [7] to take

several memory access levels into consideration. We developed also a simulation

model that showed similar results, for our load balancing strategy the simulation

results showed an improvement of 2.5%. One next step is to compare the simulation

and analytical results we obtained with actual results provided by benchmarks.

In this paper, we did not tackle several issues related to the Linux scheduling, e.g,

9 We have already studied an actual machine with 64 processors (32 nodes) in which our proposal creates
ten Linux sched domain levels.
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realtime issues. The Linux scheduler provides some facilities for realtime processes.

The scheduling policies for realtime processes in the Linux operating system are

different from ordinary processes. For example, a realtime process is never moved

to the expired queue. Consequently, it is necessary to adjust our model (removing

the Ep(i) state) to analyze realtime processes.

Generally speaking, we may summarize our contribution as an initial effort to

describe a quite complex reality and extract performance and reliability indices.

However, the obtained indices already can furnish useful information about the

expected behavior of the Linux operating system.
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