
Specifying Security Aspects in UML Models ?

Karine P. Peralta, Alex M. Orozco, Avelino F. Zorzo, Flávio M. Oliveira
{karine.peralta, alex.orozco}@cpph.pucrs.br
{avelino.zorzo, flavio.oliveira}@pucrs.br

Faculty of Informatics
Pontifical Catholic University of Rio Grande do Sul,
Av. Ipiranga, 6681, Building 32, Porto Alegre, Brazil

Abstract. Expansion of computer systems and the increasing number
of services provided by Internet has lead software engineers to worry
about security issues of their software. The reason is the short amount
of time dedicated to test these characteristics, which leads to release
insecure software to final users. To ease this problem, the use of model-
based testing is becoming popular. Several works propose standards to
model various elements, but a few related to security characteristics. This
article presents a technique to specify UML security stereotypes, aiming
to guide developers by annotating vulnerable model parts and to allow
the automatic security test case generation.

1 Introduction

Due to the evolution of computer systems and the amount of functionalities they
provide, software is becoming so complex that even to test them is a difficult task.
Besides, a short period of time uses to be dedicated to the test phase, resulting
in a deficient analysis of software correctness. Therefore, many software elements
are not thoroughly tested, for instance system security.

In this context, model-based testing approach is becoming popular [1]. The
goal of this technique is to generate test cases by extracting specific informa-
tion from a model, accordingly to the characteristic that must be tested. The
most common language used to support model-based testing is UML (Unified
Modeling Language) [2]. UML is easy to use, to understand and most of soft-
ware engineers had some training on it [3]. Other advantage is that UML can
be extended using stereotypes. Several works propose expansions to represent
various elements, but only a few of them are related to describing security char-
acteristics. In addition, existent works have different goals, such as guaranteing
a secure system behavior or modeling specific security criteria.

This work presents a set of UML stereotypes to specify some behaviors that
may compromise software security. The use of these stereotypes allows the soft-
ware engineer to annotate model parts that may contain vulnerabilities. It has

? This work was developed in collaboration with HP Brazil R&D

2

two main goals: to assist developers during the implementation process, em-
phasizing the functionalities that must be developed carefully; and, to provide
security information to allow the test case generation.

This paper is organized as follows. Section 2, 3 and 4 give a brief overview of
model-based testing, security taxonomies and relevant aspects of UML, respec-
tively. Section 5 presents some related work about security modeling. Section 6
introduces the proposed model to describe security issues, while in Section 7 we
illustrate a case study applying our proposal. Section 8 concludes the paper.

2 Model-based Testing

During the software testing phase, the test engineer must to analyze the system
and to define what test cases must be performed to detect undesired behaviors.
However, to define these cases manually requires time and effort from the engi-
neers, who must understand the application in deep. Furthermore, the tests may
not cover critical failures that may the system and that will be discovered only
when running in a real environment.

In this sense, model-based testing approach is becoming popular. It consists
of generating test cases based on the application model, which also includes the
specification of elements that will be tested [4]. The advantage of this approach
is the possibility to detect inconsistencies in the design phase, when to correct
problems is cheaper and faster than after the implementation [5]. However, even
with the expansion of model-based testing, this technique is not widely used
to analyze security characteristics. This is due to the fact that it is difficult to
specify security issues using models, since several details must be considered [6].

In order to propose a model that describes most part of security behaviors,
one of the strategies is to evaluate security taxonomies [7]. The use of these tax-
onomies helps to identify similar behaviors in attacks or vulnerabilities, allowing
the construction of precise models.

3 Security Taxonomies

Considering the lack of information about security metrics, the use of security
taxonomies as guide is a way to identify vulnerabilities or attacks that can com-
promise a system. The most common criteria used to categorize the taxonomies
are vulnerabilities and attacks, but some works also considerate security flaws.
The use of taxonomies based on attacks and vulnerabilities is important for sys-
tem administrators and testers, who want to know how their systems can be
exploited. In the other hand, taxonomies based on flaws are useful for software
engineers and developers, who must predict and avoid design and implementation
problems. Due to the focus in model-based testing, this work will concentrate
on flaw taxonomies.

Several security flaw taxonomies were analyzed [7–10], but most of them are
incomplete or out-of-date. In this sense, the work of Sam Weber et al. [7] was

3

selected as a suitable guide. As classification criteria, it uses flaw types, helping
to identify which attacks may derive from a specific flaw.

4 UML and OCL

UML [2] is a standard modeling language widely used to specify object-oriented
systems. It defines notations to build several diagrams, each one representing a
particular view of a specific artifact to be modeled. The flexibility provided by
UML allows to extend its modeling capacity using profiles, which facilitates the
performing of model-based testing. Besides, it is also possible to add constraints
to the UML models by using OCL (Object Constraint Language) [11], which
specifies pre and postconditions to formalize operation behaviors.

Although using OCL it is possible to represent different characteristics of
a system, it is difficult to comprehend, leading software engineers to extend
UML using stereotypes and tags. Considering the security taxonomies analyzed
and the complexity associated to the OCL descriptions, this paper presents a
set of stereotypes created to describe some security elements. The goal of these
stereotypes is to easily annotate the parts of the model where a flaw may happen,
aiming to guide developers and to generate security test cases.

5 Related Work

Even though being possible to describe security characteristics only with UML
and OCL, several works propose profiles and frameworks to expand UML mod-
els. Jürjens proposes UMLsec [12], a UML profile for modeling and evaluating
security characteristics in order to guarantee basic principles in the whole sys-
tem, for instance to describe a fair exchange operation or to mark secure links.
It is different from our work in that we do not focus on to guarantee a correct
and secure system behavior, but to propose a strategy to emphasize parts of the
model that may become vulnerable if developers are not careful enough. How-
ever, considering that some UMLsec stereotypes could also be used to represent
a vulnerability, they were reused or adapted to our work. Other relevant work
proposed by Jürjens is [13], that is a case study describing how UMLsec can
be used to model-based security testing. However, even being about security
testing, the focus of the work is still to assure security properties of the system.

Lodderstedt et al. propose SecureUML [14], an extension of the UML lan-
guage to specify security policies for RBAC (Role-based Access Control). It
combines the graphical notation for RBAC with the power of logical constraints
on models. The problem is that SecureUML describes only RBAC policies, which
consists of a specific type of vulnerabilities. The same restriction was found in
the works presented by Ahn and Hu [15] and Ray et al. [3], which also refer
to RBAC policies. The former proposes a framework to integrate security poli-
cies and access validation in the model, in order to guide developers. The latter
employs visualization techniques to represent the violation of RBAC constraints
instead of describing them in OCL.

4

We also expect to automatically generate security test cases based on model
information, assisting the tester. Blackburn et al. [6] present a methodology to
automate security functional testing. However, they are interested in to provide
a way to perform security tests based on the model, while our purpose is to
generate test cases based on it.

Percy et al. [16] proposed a work similar to ours, which also aims to support
automatic test case generation. However, they use OCL statements to insert
information in the model, while we use stereotypes, which are easier to under-
stand. Besides, Percy’s work demands to model the scenario of the attack before
generating test cases, while in our we insert security stereotypes in the original
model, without the need to describe other models.

6 Proposed Model for Security Specification

The analysis of the security taxonomies allows us to conclude that there are
several types of vulnerabilities that may affect an application. In addiction, the
study of related works showed that most of the authors are focused on some spe-
cific security characteristic, for example access control or secure communication.
Hence, we propose some security stereotypes to emphasize parts of the model
that may contain a flaw. The insertion of these stereotypes aims to guide devel-
opers to avoid flaws, as well as to provide information to allow the automated
test case generation.

According to the type of application that will be analyzed, a different set
of tests must be performed. This knowledge can be extracted from the security
databases [17–19], that present the most critical situations that may compromise
a software. The association between the flexibility supplied by UML stereotypes
and the consistent knowledge provided by the security databases allows the def-
inition and insertion of security stereotypes in the original UML model.

In order to support the definition of the stereotypes, we analyzed the database
provided of OWASP (Open Web Application Security Project) [17]. This project
maintains a list of the ten most critical web application vulnerabilities, named
Top Ten (last version released in 2007). The list was used, in this work, to
verify which vulnerabilities could be represented with stereotypes, and which
ones would require a more complex structure.

Considering the categories presented by Weber’s taxonomy and the set of
vulnerabilities extracted from OWASP, the following stereotypes were defined:

1. Case 1 - Buffer Overflow: this vulnerability consists of assigning a value
larger than the target variable may handle. The stereotype must be inserted
in the diagram part that is responsible for catching the user data.
Stereotype: ¿BufferOverflowÀ
Tag: {BOFlow = {<field>, <size>}}
where <field> corresponds to the name of the field in which data will be
inserted and <size> is the maximum number of characters allowed for that
structure.

5

2. Case 2 - Connection Flooding: this vulnerability consists of starting,
simultaneously, more connections than the service provider supports. The
stereotype must be inserted in the diagram part that represents the success-
fully established connection.
Sterotype: ¿FloodingÀ
Tag: {FDMaxConn = {<max connection>}}
where <max connection> corresponds to the maximum number of simulta-
neous established connections.

3. Case 3 - Encrypt (Connections): this vulnerability consists of sending
sensible data through the network without encryption. The stereotype must
be inserted in the diagram part that is responsible for sending the data
through the network.
Stereotype: ¿EncryptÀ
Tag: {CRField = {<field>}} where <field> corresponds to the name of the
field that must be encrypted.

4. Case 4 - Access Control (By Passing): this vulnerability consists of
asking for user’s login information only in the first page of a session, not
asking for it when the user access a directly internal link. In order to help
the test case generation process, the software engineer must insert three
types of tags, all of them derived from the ¿ByPassingÀ stereotype. The
first step is to identify the system users by inserting the tag {BPRole} in
the actors of the use case diagram. The second step is to inform the links of
each page accessed by the user, using the tag {BPLink}. The last step is to
mark the user roles who can access the system. The software engineer may
choose between to represent the users who can access the system, through
the tag {BPAllowed}, or the users who cannot access the system, using the
tag {BPDenied}. The definition of each tag is as follows.

Stereotype: ¿ByPassingÀ
Tag: {BPRole}
without tag value because it is only to mark the system actors.

Stereotype: ¿ ByPassing À
Tag: {BPLink = {<link>}}
where <link> is the path of the accessed page.

Stereotype: ¿ ByPassing À
Tag: {BPAllowed = {<role>}}
where <role> means the actor that can access the system.

Stereotype: ¿ ByPassing À
Tag: {BPDenied = {<role>}}
where <role> means the actor that cannot access the system.

6

5. Case 5 - Access Control (Session Expiration): this vulnerability con-
sists in not to expire the user session after an amount of time. The stereotype
must be used in the diagram part that represents the successful user’s login.
Stereotype: ¿ExpirationÀ
Tag: {ExpTime = {<time>, <unit>}}
where <time> represents the maximum time to expire the user’s session and
<unit> means the time measure unit, which may be ‘ms’ (milliseconds), ‘s’
(seconds), ‘m’ (minute), ‘h’ (hour) or ‘d’ (day).

6. Case 6 - SQL Injection: this vulnerability does not validate the input
data before assigning it to a SQL query. This way, a malicious user may
insert another SQL query instead of his username or password, for example.
This test tries to detect two vulnerabilities: the susceptibility of the system
to malicious SQL codes and the existence of information leakage, which may
expose sensible data. The stereotype must be inserted in the diagram parts
that catch information provided by the user.
Stereotype: ¿SqlInjectionÀ
Tag: {SQLField = {<field>}}
where <field> corresponds to the name of the field in which data will be
inserted.

Considering the amount of existent vulnerabilities, we have created stereo-
types to represent only a few of them. The used criteria were the easiness to
represent the vulnerabilities and to generate test cases from the model. Besides,
we have used only activity diagrams to insert the information, in order to make
it more simple to understand (except in the By Passing case, which also needs
the use case diagram). After inserting the stereotypes in the model, the next step
is to generate the correspondent XMI (XML Metadata Interchange) file, which
will be used as input for the test case generator that is still under development.

7 Case Study

In this section, we present a case study to evaluate the viability of our approach
using a well-known application, named TPC-W [20]. TPC-W is a transactional
web benchmark specially designed for evaluating the performance of e-commerce
systems. It models an e-commerce site in the form of an online bookstore, pro-
viding operations such as searching, buying and adding new books. According
to Sopitkamol and Menascè [21], it is very difficult, if not impossible, to conduct
experiments on commercial e-commerce sites, which makes the testing of TPC-
W a good choice. Besides, there is a lot of information about the software, that
includes a complete specification and some UML models. Finally, the analyzed
Top Ten list refers to web applications, what has contributed in choosing TPC-
W as an experimental application to our proposal. Therefore, it is important to
note that TPC-W will not be used here as “benchmark”, but as a commercial
web application in which some security elements will be evaluated.

7

7.1 System Modeling

The TPC-W application reproduces the main user’s actions during the visit of
a bookstore e-commerce site. Based on the information provided in the TPC-W
specification, we have built the UML model of some features in that it could be
possible to insert security information. Analyzing the TPC-W specification, four
essential security requirements were extracted. They are as follows:

– Requirement 1: The user’s first name field (FNAME), completed during the
user’s registration, must have at most 15 characters.

– Requirement 2: The page that contains the order information must encrypt
the user’s credit card number (CX NUM) during the data sending process.

– Requirement 3: To update books prices, the user must be an administrator
logged in the system.

– Requirement 4: The databases must be protected from unauthorized users.

Considering the stereotypes proposed in Section 6, we have modeled the
TPC-W security requirements. Figure 1 presents the use of ¿BufferOverflowÀ
and ¿EncryptÀ stereotypes in the activity diagram. Figure 2 exhibits the
¿ByPassingÀ and ¿SqlInjectionÀ stereotypes, also in the activity diagram.
Finally, Figure 3 complements the description of the ¿ByPassingÀ stereotype
by marking the actors in the use case diagram. Note that none of these require-
ments have demanded the use of ¿FloodingÀ or ¿ExpirationÀ. To comple-
ment the case study, suppose that the following requirements were also part of
the TPC-W specification:

– Requirement 5: At most 30 users can be logged in the system.

– Requirement 6: The user’s session must expire after 5 minutes of inaction.

Figure 4 represents the modeling of the new requirements in the activity
diagram previously used to insert ¿BufferOverflowÀ and ¿EncryptÀ stereo-
types.

To evaluate the efficiency of the stereotypes inserted in the diagrams, some
manual tests were applied to TPC-W. The performed cases were the ones ex-
tracted from the TPC-W specification. The obtained results are as described in
Table 1.

Analyzing the obtained results lead us to conclude that TPC-W is not a
secure application. If it was a real e-commerce system, user’s personal informa-
tion would be exchanged without encryption and a malicious user could crack
the application. A good point about TPC-W is that it uses precompiled SQL
statements, which when used correctly makes impossible to modify the actual
SQL statement, avoiding the SQL Injection attack.

8

Select book

Add to cart

User’s registration

Payment information

Finalize order

 [login ok]

<<BufferOverflow>>
 {BOFlow={FNAME,15}}

<<Encrypt>>
 {CRFiled={CX_NUM}

Fig. 1. Application of
¿BufferOverflowÀ and ¿EncryptÀ
stereotypes

Select book

Update book page

Insert new
information

Confirm update

<<ByPassing>>
 {BPLink={/Details.htm}}
 {BPAllowed={/Admin}}

<<ByPassing>>
 {BPLink={/Home.htm}}

<<Sqlnjection>>
 {SQLField={PRICE}}

<<ByPassing>>
 {BPLink={/Update.htm}}
 {BPAllowed={/Admin}}

<<ByPassing>>
 {BPLink={/Confirm.htm}}
 {BPAllowed={/Admin}}

Fig. 2. Application of ¿ByPassingÀ
and ¿SqlInjectionÀ stereotypes

Admin

<<ByPassing>>

Add to cart

Select books

Registration

Change books price

Change books image

1
1

1
1

1
1

1 1

1 1

User

<<ByPassing>>

Fig. 3. Application of ¿ByPassingÀ
stereotype in use case diagram

. . .

Add to cart

 User’s registration

Payment information

. . .

 [login ok]

<<Flooding>>
 {FDMaxConn={30}}

<<Expiration>>
 {ExpTime={5, m}}

Fig. 4. Application of ¿ExpirationÀ
and ¿FloodingÀ stereotypes

8 Conclusions and Future Works

Based on the Weber’s taxonomy and on the vulnerability list provided by OWASP
project, we have defined some stereotypes to represent the most common security

9

Table 1. Test case results

Test Case Results

¿BufferOverflowÀ TPC-W has accepted the registration with a user’s first name

larger than 15 characteres, but no abnormal situation was de-

tected

¿EncryptÀ TPC-W does not encrypted the user’s credit card number,

which could be stolen using a packet sniffer

¿ByPassingÀ TPC-W did not ask for the user’s login before updating the

books price, accepting a new price

¿SqlInjectionÀ TPC-W was not vulnerable to SQL Injection

flaws. The insertion of these stereotypes allows representing security character-
istics since the design phase, guiding developers to avoid vulnerabilities.

Furthermore, the stereotypes also allow the automatic generation of security
test cases. This process will be performed by extracting information from the
XMI file, which represents the system UML model. For each security information
inserted in the model, one test case will be generated, describing the steps to
verify the occurrence of the vulnerability.

The efficiency of the security stereotypes has been proved when it was possible
to perform tests and to detect some security vulnerabilities in TPC-W, our case
study. Although the presented cases may be considered basics, we are working
to support the generation of more elaborated test cases, as well as to expand
our model to describe more critical web application vulnerabilities. Therefore, it
will be possible to perform tests that demand the use of other UML diagrams,
such as XSS (Cross-site Scripting) and Malicious File Execution.

References

1. Marick, B.: “New Models for Test Development”. 12th International Software
Quality Week Technical Program, 1999.

2. “OMG’S Unified Modeling Language (UML)”. Available in
<http://www.omg.org/gettingstarted/what is uml.html>. July 2008.

3. I. Ray, N. Li, D. Kim and R. France. “Using UML to Visualize Role-based
Access Control Constraints”. 9th ACM Symposium on Access control Models
and Technologies (SACMAT ’04), pages 115 - 124, 2004.

4. Popovic, M., Velikic, I.: “A Generic Model-Based Test Case Generator”.
12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems, pages 221 - 228, 2005.

5. Hailpern, B., Santhanam, P.: “Software debugging, testing, and verification”.
IBM Systems Journal, vol. 41, no 1, pages 4 - 12, 2002.

10

6. Blackburn, M., Chandramouli, R.: “Model-based Approach to Security Test Au-
tomation”. 13th International Symposium on Software Reliability Engineering,
Industry Track, 2002.

7. Weber, S., Karger, P. A., Paradkar, A.: “A Software Flaw Taxonomy: Aiming
Tools at Security”. Workshop on Software Engineering for Secure Systems,
pages 1 - 7, 2005.

8. Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., Mc-
Clung, D., Weber, D., Webster, S. E., Wyschogrod, D., Cunningham, R. K.,
Zissman, M. A.: “Evaluating Intrusion Detection Systems: The 1998 DARPA
Off-line Intrusion Detection Evaluation ”. DARPA Information Survivability
Conference and Exposition, 2000.

9. Aslam, T.: “A Taxonomy of Security Faults in the Unix Operating Systems”.
Master Thesis, University of Purdue, 1995.

10. Bazaz, A., Arthur, J. D., Tront, J. G.: “Modeling Security Vulnerabilities: A
Constraints and Assumptions Perspective”. 2nd IEEE International Sysmpo-
sium on Dependable, Autonomic and Secure Computing, pages 95 -102, 2006.

11. “Object Constraint Language Specification (OCL)”. In OMG Unified Modeling
Language Specification, version 1.3, June 1999.

12. Jürjens, J.: “UMLsec: Extending UML for Secure Systems Development”. 5th
International Conference on the Unified Modeling Language, pages 412 - 425,
2002.

13. Jürjens, J.: “Model-based Security Testing using UMLsec: A case-study”. 11th
European Joint Conferences on Theory and Practice of Software, 2008.

14. Lodderstedt, T., Basin, D. A., Doser, J.: “SecureUML: A UML-based Modeling
Language for Model-Driven Security”. 5th International Conference on the
Unified Modeling Language, pages 426 - 441, 2002.

15. Ahn, G. J., Shin, M. E.: “Role-based Authorization Constraints Specification
using Object Constraint Language”. 10th IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 157
- 162, 2001.

16. Salas, P. A. P., Krishnan, P., Ross, K. J.: “Model-based Security Vulnerability
Testing”. Australian Software Engineering Conference, pages 284 - 296, 2007.

17. The Open Web Application Security Project. “The Ten most Critical Web
Application Security Vulnerabilities”. Available in <http://www.owasp.org>.
July 2008.

18. National Institute of Standards and Technologies. “National Vulnerability
Database”. Available in <http://nvd.nist.gov>. July 2008.

19. Sans Institute. “SANS Top 20 List”. Avaliable in
<http://www.sans.org/top20>. July 2008.

20. TPC-W Benchmark (TPC-W). Available in <http://www.tpc.org/tpcw>.
July 2008.

21. Sopitkamol, M., Menascè, D.: “A Method for Evaluating the Impact of Software
Configuration Parameters on e-commerce Sites”. 5th International Workshop
on Software Performance, pages 53 - 64, 2005.

