
Structuring Integrated Web Applications for Fault Tolerance

     Alexander Romanovsky,      Panos Periorellis Avelino F. Zorzo
School of Computing Science

University of Newcastle upon Tyne, UK
{alexander.romanovsky,  panos.periorellis}@ncl.ac.uk

Faculty of Informatics
Pontifical Catholic University of RS, Brazil

zorzo@inf.pucrs.br

Abstract
This paper shows how modern structuring techniques can
be employed in integrating complex web applications such
as Travel Agency systems. The main challenges the
developers of such systems face are dealing with legacy
web services and incorporating means for tolerating errors.
Because of the very nature of such systems, exception
handling is the main recovery technique to be applied in
their development. We employ Coordinated Atomic actions
to allow disciplined handling of such abnormal situations
by recursively structuring the integrated system and by
associating handlers with such actions. We use protective
wrappers in such a way that each operation on legacy
components is transformed into an atomic action with a
well-defined interface. To accommodate a combined use of
several ready-made environments (such as communication
packages, services and run-time supports), we employ a
multilevel exception handling. We believe that these
techniques are generally applicable for both: structuring
integrated web applications and providing their fault
tolerance.

1. Introduction

Many researchers and practitioners realise that, to build
complex fault-tolerant applications, proper system
structuring is indispensable. It not only makes it possible
to deal with complexity of modern applications, but also
allows fault tolerance measures to be associated with the
system structure and helps apply them in a disciplined
fashion. This is why one of the main requirements to any
application-level fault tolerance technique is its recursive-
ness [12]; recovery blocks, exception handling, atomic
actions are recursive fault tolerance schemes. Each level of
system structure contains errors and is responsible for
dealing with them. If fault tolerance measures fail at this
level, then the responsibility for recovery is passed on to
the upper level (usually an attempt is made to leave the er-
roneous level in a consistent known state to facilitate the
recovery at the upper level).

In this paper, our focus is on exception handling as
the main and the most general application-specific
technique [3]. It allows system designers to build applica-
tions capable of tolerating several types of faults, including

software (design) faults, exceptions propagated from the
run-time support and from the hardware level, en-
vironmental faults, operators’ mistakes. At each system
structure level, it is important to distinguish between
internal exceptions specific to the level implementation
and external exceptions specified in the level interface. Ex-
ceptions of these two types serve different purposes and are
used in different ways. External exceptions are part of the
level interface and are signalled to the upper level to inform
it about the failure of the underlying level to deliver the
required service. Internal exceptions are to be handled
locally; both they and their handling are hidden from the
upper level.

There are different ways in which systems can be
structured to achieve fault tolerance via exception handling.
This depends on many factors including design paradigms,
computational models, application requirements, types of
structuring units available in libraries, programming
language used, etc. The general pattern common to all of
them is captured by the concept of Idealized Fault Toler-
ance Components [8], which encapsulates and separates
normal and abnormal activity of each structuring unit
(abnormal activity represents provision of fault tolerance
by exception handling) in such a way, that when faults
cannot be tolerated inside such a unit, it signals an
exception; otherwise it delivers a normal response.
Sequential systems are typically built either as a multilayer
structure or as a set of (nested) components (e.g. proce-
dures, classes). Associating exception handling with
component nesting is a straightforward task, and many
practical languages incorporate sequential exception
handling.

Concurrent systems require different structuring
mechanisms to capture their specific characteristics. To
this end atomic actions were proposed [4] as structuring
units to be used for developing cooperative concurrent
systems and for providing disciplined exception handling in
such systems. The concept of Coordinated Atomic (CA)
actions was introduced as a generalisation of atomic actions
which allows objects (resources, servers) to be shared by
different actions while guaranteeing transactional (atomic-
ity, consistency, isolation, durability - ACID) properties of
(nested) action access to such transactional objects [17].
Both atomic actions and CA actions are defined by a
number of action participants (e.g. threads, objects)
coming together to cooperate and to achieve a common

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



goal; in the CA action context each of such participants is
described as playing a role in an action. If any of them
detects an error when in an action, all participants are
involved in cooperative exception handling. CA actions
usually have several outcomes to allow developers to
report different situations when the required service cannot
be fully provided. These are used, for example, when all-or-
nothing semantics cannot be guaranteed. Actions can be
nested, and if participants of a nested action are not able to
handle an exception, an external exception is propagated to
the containing action. To guarantee action atomicity, all
action participants enter and leave actions at the same
(logical) time; they do not exchange information with any
processes outside the action scope.

2. Travel Agency Case Study

Modern web applications are typically built by integration
of existing web services. Their developers face a number of
serious challenges, one of which is providing high level of
dependability of the composed applications. Such applica-
tions have to deal with a big number of abnormal situa-
tions, belonging to different types and often happening
concurrently, in an adequate and effective way, satisfying
the client’ expectations. These characteristics of modern
web applications are becoming increasingly important as
our society puts more and more reliance on e-services of
different types. It is our intention in this paper to investi-
gate how modern fault tolerance techniques can be applied
in a disciplined and systematic fashion to guarantee fault
tolerance of the applications of this particular type. To
demonstrate our approach we have chosen a very typical
system, a web Travel Agency (TA), which, as our analysis
shows, has main characteristics of many real-life applica-
tions of this type. We assume that there is a number of
web services in place that make it possible for the client to
book some parts of trips (e.g. a hotel room, a car, a
flight), so the goal of the exercise is to apply fault
tolerance techniques in building a new service that allows
the client to book whole journeys. By doing this we will
be building a new emerging service, which none of the
existing services is capable of delivering [10].

The main challenges related to provision of fault tol-
erance of the integrated web applications are as follows.
The legacy components are web servers that are controlled
by different organisations and are not developed for
integration, because of this there is often not enough
information which the integrators might need (including,
for example, component complete and correct specifica-
tion). Another consequence of this is that system integra-
tors have to treat these components as black boxes which
can only be accessed via standard interfaces. With respect
to the dependability of the integrated application there are
two factors to be taken into account: a well-known fact
that the quality of many web services is very low [6] and
absence of evidence supporting any reasonable claims
about their reliability. While integrating dependable web
applications it is important to realise that it is impossible

to develop or rely on features for locking web services and
for aborting (sequences of) operations on them. Another
set of the problems specific for such systems is related to
the Internet as the only communication media and the only
environment in which composed systems operate. Web
services are autonomous entities oriented mainly towards
interactions with clients and they often take liberty to send
replies that do not exactly fit the requests as a way of
helping the clients or promoting their service. Moreover,
because of their nature they offer a very specific type of
interface suitable for browsing only (HTML interfaces). It
is a well-known fact that the Internet is not a very reliable
media and that there is a high number of Internet-specific
faults such as delays, lost requests, services switched
down (because of either their faults or regular shutdowns)
[6, 9]. Integrated applications of the TA type have to meet
high dependability requirements including consistency of
money transfers and clients’ satisfaction. One more
problem that the designers of such systems have to deal
with is that they have to preserve the right level of
abstraction while composing the system: such web
applications are typically built using complex composite
middleware consisting of several levels with an ability to
deal with exceptions at different levels, so there is a need
for a unified approach and for a proper exception handling
encapsulation. One more characteristic worth mentioning
is the fact that people are involved in execution of such
systems and they can both cause errors and be involved in
recovery; in the context of TA clients, the integrated
system support and the legacy component support can be
included into consideration.

Our choice of the fault tolerance and structuring tech-
niques to be used is defined by these characteristics. In our
design we will be developing and applying the techniques
that allow system integrators to meet high dependability
requirements by incorporating measures for disciplined
tolerance to the faults of several types. First of all, TA
should tolerate errors caused by hardware failures in
communication (mainly delays) or in legacy components
(mainly crashes), which should not cause failures of the
whole TA. Secondly, the client’s mistakes and client side
machine crashes should be tolerated without affecting either
TA or the legacy components. Thirdly, TA should tolerate
situations when legacy components cannot provide the
required service or when they behave abnormally. Besides,
the clients should be informed about the situations when
the machines on which TA is executed crash and these
crashes should not affect the legacy components. The
design should guarantee that all components, including
legacy servers, TA and clients, stay in a consistent known
state even when faults happen.

3. A ssum ptions

Development of an integrated system, in general, and
provision of its fault tolerance, in particular, is not
possible without understanding the assumptions we can

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



make about the legacy components and about the environ-
ment in which the system will operate.

We assume that component systems are black boxes
with known call interfaces. TA handles exceptions that
they can propagate and it can access component systems
during exception handling only through those interfaces.
Exceptions that these systems propagate to TA can be
caused by many reasons, for example, by erroneous,
incomplete or insufficient input data that TA sends to these
component systems during calls.

We assume that legacy components fail in a fail-stop
fashion and that such crashes can be detected by timeouts.
It is further assumed that legacy components have all-or-
nothing semantics for each individual request (call) TA
sends them. Another assumption is that if TA crashes
without receiving a result for a request that was sent to a
legacy component this request gets cancelled. It is assumed
that messages can be neither lost nor corrupted. We further
assume that each legacy component identifies the requests
from TA using an id that it sends to TA the first time TA
contacts the component.

Our assumption is that the legacy components can be
concurrently accessed (using TA or directly) by a number
of clients, and that they execute individual requests when
they are delivered one at a time (or, as if they were executed
one at a time). Clearly we cannot assume that TA can lock
those components.

4. Fault Analysis

TA system should be able to tolerate the situations when
legacy services are down or crash. These errors can be
detected by timeouts or by catching exceptions signalled by
the underlying communication and middleware software. In
a similar way TA will be able to detect client computer
crashes.

Mistakes made by clients can be tolerated after they are
detected by TA. One more type of abnormal situations is
application exceptions propagated from legacy components
(e.g. trip is not available or credit card is not valid). Any
other problem that the underlying software (OS, middle-
ware, communication packages) detects and propagates as
an exception to the application level will be handled at the
application level as well.

Another possible source of errors are misbehaving
legacy components. Dealing with them is complicated by
the fact that TA integrators do not have complete or correct
specification of such services. Possible solutions rely on
developing protective wrappers incorporating executable
assertions; such assertions are built using several sources
of information [11]. The wrappers signal an exception
when they detect an abnormal behaviour of a legacy
component (we do not discuss the issues of developing
such protectors any further in the paper, as it is a separate
strand of our research).

Error recovery at the level of TA has several important
characteristics. First of all, it is clear that simple abort is
not applicable here because the system is built out of

legacy components that do not have abort semantics
(actually web services often have a very complicated
cancellation policies) and because humans are involved in
its operation. This is why we need application-level
exception handling as the main means of recovery which
supports moving TA and its components into a known
consistent state and continuous delivery of the service.
Another typical characteristic is that several components
have to be involved in cooperative recovery because several
of them are always involved in execution of any request
coming from the client. One more complication is the fact
that several exceptions can happen concurrently in such
systems and they have to be dealt with properly without
ignoring any of these exceptions. In the systems like this
human beings (i.e. clients) have to be involved in handling
of many abnormal situations.

5. Design
5.1. General architecture

The general architecture of the TA (Figure 1) is typical for
many web services [10]. There is a dedicated TA server (or,
servers) that can be accessed by clients via the Internet.
When a client accesses the TA service, some part of TA is
dynamically loaded to the client computer and a session
starts. While executing client’s requests within a session
TA is split into two parts: TA server side (SS) and TA cli-
ent side (CS). TA CS provides a web front-end to the
client and performs initial checks of the information she
inputs. TA CS and TA SS are executed on the TA server.
Web requests from the client are passed from TA CS to the
TA SS, where they are executed and from where the
existing legacy components are accessed (this is effectively
hidden from the client). A number of clients can access TA
concurrently: TA creates a copy of TA CS and a session
for each client.

Our principle approach to achieving application-level
fault tolerance in such a system is by structured exception
handling. As we have discussed in Section 1, the choice of
the structuring technique depends on many factors. In
designing TA we employ two such techniques: CA actions
and layering.

Fig u re  1. Arc h ite c tu re  o f Tra ve l Ag e n c y

The overall TA execution is structured using CA ac-
tions. TA is a complex concurrent distributed application
with a considerable number of exceptions to be handled.
Several interacting components of different types are to be
involved in this execution and there is a need in consistent
cooperative application-specific handling of all abnormal
situations. Layering is used for structuring the execution of

clients

TA CS

TA CS

TA SS
legacy
components

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



individual web requests passed between TA SS and TA CS.
Such requests encompass complex activity at different
levels with well-defined interfaces: we use several middle-
ware services to offer clients a standard browser interface.
An exception of each level is to be either handled or
transformed to an exception of the above level and
propagated further.

5.2. Structured system design using CA actions

In our design, execution of the entire client session is
structured as a top-level CA action encompassing all
possible activity the client may wish to perform. This ac-
tion has a specific and important task because it encapsu-
lates all TA execution with respect to one particular client.
As a top-level action it cannot propagate any exception
outside because action-level exception handling outside
such action is not applicable. When the client decides to
complete the session she informs TA by logging off and
the session  action completes. In our design this action
has three cooperating participants represented as concurrent
cooperating threads: client controller, TA CS controller and
TA SS controller. The first participant is located on the
client computer; it is a client’s proxy and is responsible for
interacting with the client. The remaining two participants
are executed on the TA computer. These threads are
(logically) created when a client logs into TA. Introducing
such threads allows us to make the system structure
cleaner, to reduce the design complexity by separating
concerns and to improve system performance.

Inside the session  action the client can choose the
activity among the following: checking availability of a
trip, booking a trip, cancelling a trip, and paying for a trip.
They correspond to four actions which are nested into the
session  action: the ava ilability, bookin g , cancella -
t ion  and pa ymen t  actions. These four actions have the
same three participants as the containing session  action.
The client may choose to perform any of these actions in
any possible order but within a restriction imposed by the
menu presented to her (e.g. it is not possible to cancel a
trip if it has not been booked before). One of the possible
scenarios is shown in Figure 2.
If any of those four actions is not able to deliver the
service required, it completes abnormally and propagates an
interface exception to the session  action. When possible
all three participants of this action are involved in handling
of such exception. Let us consider the a va i la bi l i ty
action that has the following interface exceptions: no trip
available, TA is down (this exception is propagated to only
the client controller as the remaining two participants of
action session  are down), client timeout (when client is
not responding for a predefined period of time – this ex-
ception is propagated to only two participants of the
session  action), client site is down (this exception is
propagated to the TA SS controller and TA CS controller),
new offers (this exception is raised to inform the client
about the following situation: TA is not able to find exact
matches to all client’s requirements and it offers several

“similar” trips that the client might like). Note that when
the a va ila bil i ty action completes without exceptions it
produces a normal result consisting of a description of a
number of trips meeting all client’s requirements: in the
scenario shown in Figure 2 the client chooses one of these
trips and proceeds with booking.

Figure 2. Top-level v iew on TA s tructuring

Let us consider now the internal structure of the
a va ila bil i ty action. In our design it has two nested
actions: request and con su lt_ser vices . They imple-
ment distributed browser access to the TA service. Within
the request action client’s information is passed from the
client computer to the TA server and checked. If during this
checking the TA CS controller finds that some part of the
information is incorrect (e.g. city name, days of travel,
length of the stay, etc.) it raises a corresponding internal
exception in the action to alert the client and to advise her
to correct this information. After such correction the action
continues. If the TA server is down or crashes, the
corresponding action is aborted and an external exception is
propagated to the a va ila bil i ty action level. This action
is aborted in its turn and an external exception is signalled
to the session  level to inform the client and to advise her
to close the session. If one of these two actions (request
or con su lt_ser vices) detects that the client is not on-
line or her computer crashes, the action itself and the
containing action a va ila bil i ty are aborted, and the
session  action completes.

Our analysis shows that there are situations when the
canonical atomic action scheme (e.g. from [4, 8]) has to be
modified for practical reasons and to reduce the complexity
the system designers have to deal with while applying this
fault tolerance scheme. Canonical action nesting is defined
in such a way that a subset of participants of the contain-
ing action takes part in a nested action. This is a straight-
forward rule that guarantees absence of information
smuggling and facilitates the action support. In our design
of TA we use another type of atomic action: these actions
are executed as a method call the body of which has several
threads forked and joined when the action starts and
completes. All forked threads are involved in cooperative
exception handling when any of them raises an exception.
If there are several concurrent exceptions they are resolved
in the way this is done in the canonical atomic action
scheme [4]. Such method call either returns a result or
signals an interface exception to the containing action. It is
not difficult to see that such atomic actions have all main
properties of the atomic actions with respect to fault
tolerance and complexity encapsulation because there is no
information smuggling outside such actions. Actions with

client controller

action sess ion

action
a va i l a b i l i t y

action
b o o k i n gTA CS controller

TA SS controller

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



this type of nesting can be freely mixed with the canonical
atomic actions. There are two action schemes that have
some properties of these atomic actions. In Argus [7] a
method call can have a number of internal threads forked
and joined inside, such method has transactional properties
and it can signal exceptions to the caller context. This
approach is not suitable for programming cooperative
systems because internal threads handle their exceptions
separately (which is not applicable for the cooperative
systems the essence of which is that all action participants
are always involved in dealing with any abnormal situa-
tion). In the Concurrent Recovery Block scheme [5] each
alternate of the recovery block [14] is designed as a set of
cooperating processes that are forked and joined inside it. If
such alternate cannot ensure the acceptance test it is aborted
and the following alternate starts. Although the conversa-
tion scheme does not support forward error recovery by
cooperative exception handling this scheme is suitable for
designing cooperative systems.

Fig u re  3. Ac tio n  c o m p o s e _ t r ip s  is  n e s te d  in
a c tio n  c o n s u lt _ s e r v ic e s

The TA SS controller, a participant of action con -
su lt_services , calls method com pose_trips  that is
designed as an atomic action of this type (Figure 3). The
execution of this method is an atomic operation executed
by the TA SS controller process. Atomic action com -
pose_trips has four cooperating participants: the ct
controller (a service thread coordinating the execution of
the remaining three participants) and three participants:
flight, car and hotel, which are responsible for providing
respective information for composing the whole trips.

If any of these participants raises an exception all of
them are involved in cooperative handling. For example, if
there is no car available for the date of travel the ct
controller may decide to find another airport nearest to the
destination city, or to check a more expensive or cheaper
option for car rental, or to search for the hotels offering car
rental. When handling is not possible at the level of action
com pose_trips  a corresponding exception is propagated
to the TA SS controller and raised in all participants of ac-
tion con su lt_services.

5.3. Actions accessing legacy components

We use the f l igh t_availabil i ty  action to show how
low-level actions – the f l igh t_availabil i ty , h o-
tel_availability, car_availability actions – are built.
The flight process participating in action com pose_tr ips
is responsible for collecting all information about flights.
To do this it calls method f l igh t_availabil i ty ,
constructed as a nested action with a number of participants
forked and joined inside. This solution allows us to
completely separate all actual access to legacy components
from action compose_trips and to make it transparent to
this action: this includes dealing with component crashes,
composing and filtering information coming from different
legacy components, etc.

Each participant of action f l igh t_availabil i ty  (ex-
cept for the fa controller) is responsible for interaction with
only of legacy component (an airline booking service). In
our design the controller collects all information coming
from the rest of action participants, filters and sorts it, and
manages the whole action. Each action participant
accessing a legacy component (e.g. KLM, BA, AF)
implements protective functions by wrapping each request
(Section 4): all information going to and from the legacy
componpent is checked using executable assertions
reflecting the TA integrators’ view on the correct behaviour
of TA and of the legacy component [10]. In addition, it
implements timeouts to detect communication problems
(delays, traffic jams, lost connections) or legacy compo-
nent failures (crashes, overloading, etc.). In our design each
remote request issued by the action participant is structured
as a simple atomic action which incorporates the error
detection features discussed above and allows local handling
of some situations typical for the Internet: analysis in [6]
shows that for many web servers it makes sense to re-try
after a short delay. If there is no reply after the second
attempt, an exception is propagated to the action level.

We consider two types of internal action exceptions:
exceptions signalled by individual component systems and
exceptions detected at the level of actions. The component
systems can return the following exceptions: no flights
available, the component server is down. Possible ways of
(cooperative) handling are ask for more expensive tickets,
check spelling, check flights to the nearest airport, use an-
other (redundant) service, ask the remaining services for
more flights (if the action aims at providing a sufficient
number of flights to the higher level action). If handling is
not possible, an exception is signalled to the com -
pose_trips action.

Exceptions of the second type are caused by the fact
that component systems can return data that although
correct from the component system point of view, do not
exactly fit the requests. For example, some airlines
regardless of the date you specify return offers a day or two
before or after the specified date. These replies are filtered
by the fa controller, and action participants may coopera-
tively decide to issue additional requests to some of the
component servers.

client controller

action com pose_ t r ips

action
c o n s u l t _ s e r v i c e sTA CS controller

TA SS controller

ct controller
flight
car
hotel

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



5.4. Action request: multilevel exception handling

The request action includes typical activity accompanying
remote information passing between the client and the TA
CS. This information goes through multiple service and
communication levels with known interfaces. Each of
these levels represents a distinct environment, so error de-
tection and exception handling are possible at each of
them. In spite of the fact that these levels do not follow
the same exception handling policy and often are not
developed for use in dependable systems, it is important for
TA to impose the unified approach to exception handling
at all these levels: at each of them all exceptions thrown
by the underlying level have to be caught and, if handling
is not possible, signalled in the new context as the
exceptions of the next level. These exceptions are param-
eterised to carry additional information facilitating
exception handling at the higher level. Within this action
the TA CS controller and the client handle exceptions of
different types:
• exceptions caused by client’s mistakes: the TA CS
controller verifies the requests, checking, for example,
spelling, correctness of travel dates, consistency of
information given by the client, completeness of the
request from the client, etc.
• all exceptions propagated from the underlying levels, in-
cluding communication delays, crashes of the client
machine or the TA server.

Note that the consult_services  action contains
similar information exchange between the client and the
TA CS controller: it is incorporated in a nested action,
which we do not discuss here as it is very similar to the
request action.

5.5. Exception handling in other actions

In this section we briefly discuss several issues related to
exception handling in the booking , cancellation and
payment actions. In the first action, the validity of the
credit card is checked; after that TA makes sure that there is
sufficient money to cover the booking that each particular
component delivers. If one of these checks detects a
problem, a corresponding exception is propagated to the
booking (or payment) action. This situation is handled
cooperatively: the client is involved in this handling, she
is asked to check the information about the credit card
or/and, if possible, to introduce information about another
credit card. TA incorporates some checks of the driving li-
cence to ensure the car rental service; one of the ways to
handling the invalid licence situation is by offering the cli-
ent a taxi service.

Cancellation of a partially booked trip when some of
its part (e.g. a hotel room) becomes unavailable after their
availability was checked in the previous action is a serious
issue in designing the booking  action. This abnormal
situation is handled in the following way. First, an attempt
is made to find and book a replacement. If this is not
possible, the booked parts of the trip have to be cancelled.

Understanding the cancellation policies of different legacy
servers is a very important issue. In our first design we use
only refundable types of bookings. Another possibility
that we have analysed is to use changeable bookings and to
always complete the booking  action with a booked trip
should partial booking happen: this option requires the
client involvement because some of the requirements of the
trip may have to be sacrificed. In our future research we
plan to develop more sophisticated exception handling
techniques which will rely on using some of the money
which TA makes for paying the cancellation fee (this
require a very thorough analysis of the frequency with
which the partial bookings occur).

6. Implementation

Our prototype implementation uses a distributed centralised
solution, which is typical of such applications (Section
5.1). A centralised component (TA SS) offers web services
to a number of clients via TA CSs (Figure 4). In addition,
it exposes a call interface (RMI in our case) to allow TA to
be further integrated. Clients access TA using web
browsers in such a way that the http requests are trans-
formed into RMI calls to the Java classes implementing
the TA logic. These client requests are first passed to a
Java server page (JSP) which provides a communication
layer between TA CS and TA SS. This approach allows us
to separate the TA application logic from dealing with TA
interfacing. We are using a web technology defined by Sun
in which JSPs are HTML documents that are interleaved
with Java code, which in our case incorporate RMI calls to
TA SS. The interface of TA SS includes methods check-
name, cancel, book, checkAvailability, etc. Method
checkname, for instance, checks whether a client has
registered with the TA or not, returning the booking
description when the client has registered.

Figure 4. General implementation structure
TA SS maintains a time counter to throw a client-

timeout exception if the client leaves the system without
quitting. As we have explained before it is our assumption
that the legacy components provide both their own web in-
terface to the clients and RMI interfaces. Analysis of the
latter is an important part of TA integration: among other
things it allows the integrator to incorporate handling of
the exceptions that the components can propagate.

clients
TA CS

TA SS

legacy
componentsHTPP/

HTML
JSP

RMI wrappers

TA CS

HTPP/
HTML

JSP

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



In our design each access to legacy components issued
by TA SS is wrapped into a special code implementing all
functions described in Section 5.3 in such a way that each
request represents an atomic action with a well-defined in-
terface incorporating a rich set of interface exceptions.
Employing such remote protective wrappers is an impor-
tant design decision that allows us to separate a number of
lower-level and routine activities from the main TA SS
logic. Moreover, although in our current implementation
we use synchronous calls to legacy components, using
such wrappers will allow us to deal with asynchronous
calls as well.

CA actions are the main structuring technique we have
applied in developing the TA. Several general CA action
supports have been developed by now. Because of the fact
that we had to apply a number of ready-made technologies
and packages, and because of the heterogeneity of the
environment we could not employ the same CA action
support for implementing the whole TA system. In
particular, the high level actions, such as session  and
a va ila bil i ty have participants that are not explicitly
programmed as processes (or threads) and are executed in
different environments: the client controller, the TA CS
controller and the TA SS controller. In our implementation
of these actions we have used the design proposed in
Section 5 and the CA action principles as the guidelines
without employing any general CA action support (it is
clearly in our plan to use the experience gained to develop
such a support). The rest of the CA actions, including
compose_tr ips and the nested ones, have been pro-
grammed using a distributed Java RMI framework support
for CA actions [18]. This framework allows the implemen-
tation of the set of roles that compose the CA action as
distributed objects, therefore the whole TA SS is designed
as a distributed object system.

Our decision to distribute the role objects of each ac-
tion of the TA system is important for improving the
overall system performance in the situations when the TA
is accessed by several clients at the same time. Using a
distributed solution facilitates the distribution of the load
when several clients are accessing the TA: different
session actions can be executed on different TA machines
leaving the control of the system on one machine. This
solution will allow us to employ any known dynamic load
balancing algorithms.

Section 5.4 describes a general structure of the r e-
quest action; in our environment each HTTP request from
the client is transported (via TCP/IP) to our server to be
processed by a JSP servlet implementing the Java servlet
interface: it takes as an input the HTTP requests and
outputs HTML formatted code. Once the request is received
from the servlet we remotely call an appropriate method to
process the Java request further. The output of the call
(RMI reply) is formatted in HTML by the servlet and
returned to the client to be displayed as a web page. We
have performed a detailed analysis of all exceptions which
each of these levels can signal and for each level we have
classified them into two categories: ones that can be

handled (or, an attempt can be made to handle them) and
ones that cannot be handled, in which case some interface
exceptions are to be propagated to a higher level (note that
we need a mapping here because exceptions of the higher
level have to be expressed in terms of this level). In
accordance with our approach no exceptions can be passed
uncaught between levels. For example, in addition to the
standard exception RemoteException we introduced a
number of specific exceptions to allow a more focused
handling to be executed and better diagnostic information
to be reported to the client. In particular, we have intro-
duced the following three exceptions which are signalled to
the request action when the predefined timeouts expire:
the TA SS is down, the client machine is down, the client
timeout.

7. Discussion

One of our assumptions (Section 3) is that the designers
have a complete description of legacy component call
interfaces at their disposal. At present only a few web
servers offer call interfaces to allow their integration; there
are many reasons why their owners are reluctant to make
them available for general public, one of which is the
absence of standard technologies. This is why in our study
we have been using only services which mimic the
functionality of the existing web services. In spite of this,
we believe that our research is an important contribution to
the field. First of all, service trading is a very active area of
development and standardisation, and it is only matter of
time before call interfaces are offered for integration.
Secondly, ours are general web-specific solutions which we
believe will be useful when there are more services offering
call interfaces. In particular, modern e-applications are built
under the assumption that component call interfaces are
known, so our approaches are directly applicable in this
area.

Our second assumption is that legacy component
crashes can be detected by timeouts, the approach which is
used in most existing systems. The disadvantages of such
solution are well known (see for example, [2). In response
to this, several companies have been developing services
that guarantee eventual message delivery in spite of net-
work outages and node failures. IBM MQI [1] is an
example of such a service.

8. Conclusions

This study shows that CA actions provide an optimal and
powerful support for structuring integrated web applica-
tions. First of all, in such systems legacy components (i.e.
existing web services) are not controlled by system
integrators and, due to this, the main means of system
recovery is application-specific exception handling. The
situation is complicated by the fact that only weak
assumptions can be made of the behaviour of such
components. It is becoming clear to the specialists in the
field that ACID transactions cannot be used for such

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



purposes; this is why more flexible techniques are being
developed [15]. CA actions clearly offer a more general
approach which allows developers to deal with cooperative
and competitive concurrency, and to employ application-
specific and component-specific exception handling in a
disciplined and structured way. Another relevant characteris-
tic of CA actions is their ability to support structuring and
fault tolerance of the complex systems which include non-
software entities such as human beings, devices, money,
goods, documents, etc. Because of their very nature,
activities involving such entities become long-lived and
the abort semantics is not applicable. CA actions keep all
information under control and allow different types of
application-specific recovery to be programmed using
exception handling [17, 13].

We realise that the results presented are preliminary in
the sense that more work is needed to develop supports in a
number of standard emerging web technologies (such as
WSDL, SOAP, other XML-based techniques, etc.). It is
our belief that it is important to apply known structuring
and fault tolerance techniques as early as possible without
waiting for such technologies to become mature and widely
accepted. This allows the community to gain important
experience and to become ready for the future developments
in the area. We have chosen to use the Sun approach and
made a number of assumptions, some of which may not be
easy to guarantee in real-life situations.

This work has once again demonstrated the generality
and power of the concept of CA actions, which have been
successfully used in a number of applications before (see,
for example, [16, 18]). This case study differs a lot from
them, though, because the application area has a number of
very specific characteristics (heterogeneity and complexity
of the environment, autonomy and legacy of the web
servers, needs to explicitly deal with node crashes and
communication delays) that required serious adjustments in
the way CA actions are used.

Another important conclusion is that in many practi-
cal situations it makes sense to apply specific structuring
techniques tailored for particular needs: we refer here to
protective wrapping discussed in Sections 5.3 and 6, and
multilevel exception handling in action r equest (Sections
5.4 and 6). It is clearly difficult to apply the same
structuring technique to integrating complex systems that
incorporate legacy components of different types. Very
often it makes sense to apply several of them in combina-
tion. In the TA case study we needed an extended CA
action scheme to represent the overall structure of the
system, multilevel exception handling to deal with a
combined use of several ready-made environments, and
protective wrapping to provide fault tolerance at the level
of individual calls of legacy components. We believe a
combined use of several fault tolerance and structuring
techniques is an important direction of future research in
application-level fault tolerance.
A ck nowledgem ents. This work is funded by IST
DSoS Project (IST-1999-11585). A. Zorzo is supported by
the Brazilian agency CNPq (350277/2000-1). We would

like to thank B. Randell and V. Issarny for the fruitful
discussions.
References
1. B. Blakeley, H. Harris, R. Lewis. Messaging & Queuing
Using the MQI. McGraw Hill. 1995
2. N. Bowen, D. Sturman, T.T. Liu. Towards Continuous
Availability of Internet Services through Availability
Domains. Proc. of DSN’2000, 559-566. 2000
3. F. Cristian. Exception Handling and Tolerance of Software
Faults. In Lyu, M.R. (ed.): Software Fault Tolerance. Wiley,
81-108.  1995
4. R.H. Campbell, B. Randell. Error Recovery in Asynchro-
nous Systems. IEEE TSE-12, 8. 1986
5. K.H. Kim. Approaches to Mechanization of the Conversa-
tion Scheme Based on Monitors. IEEE TSE-8.  1982.
6. M. Kalyanakrishnan, R.K. Iyer, J.U. Patel. Reliability of
Internet hosts: a case study from the end user’s perspective.
Computer Networks, 31, 47–57. 1999.
7. B. Liskov. Distributed Programming in Argus. CACM, 31,
3. 1988.
8. P.A. Lee, T. Anderson. Fault Tolerance: Principles and
Practice. Springer-Verlag. 1991
9. C. Labovitz, A. Ahuja, F. Jahanian. Experimental Study of
Internet Stability and Backbone Failures. Proc. of FTCS-29,
Wisconsin. 1999.
10. P. Periorellis, J.E. Dobson. Case Study Problem Analysis.
The Travel Agency Problem. Technical Deliverable CS1.
Dependable Systems of Systems Project. 37 p. 2001.
11. P. Popov, S. Riddle, A. Romanovsky, L. Strigini. On
Systematic Design of Protectors for Employing OTS Items. In
Proc. of Euromicro-27. Poland, 22-29. 2001.
12. B. Randell. Recursive Structured Distributed Computing
Systems. Proc. of the 3rd Symp. on Reliability in Distributed
Software and Database Systems. Florida, 3-11. 1983.
13. A. Romanovsky. Coordinated Atomic Actions: How to
Remain ACID in the Modern World. ACM Software Eng.
Notes, 26, 2, 66-68. 2001
14. B. Randell, J. Xu. The Evolution of the Recovery Block
Concept. In Lyu, M.R. (ed.): Software Fault Tolerance. Wiley,
1-20. 1995.
15.  J. Webber, V. Corrales, M. Little, S. Parastatidis. Making
web services work. Application Development Advisor.
November-December, 68-71. 2001.
16. J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F.
Zorzo, E. Canver, F. von Henke. Rigorous development of an
embedded fault-tolerant system based on Coordinated Atomic
actions. IEEE TC-51, 2. 2002.
17.  J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud,
Z. Wu. Fault tolerance in concurrent object-oriented software
through coordinated error recovery. Proc of FTCS-25,
California, 499-509. 1995.
18. A.F. Zorzo, R.J. Stroud. An object-oriented framework for
dependable multiparty interactions. Proc. of OOPSLA’99,
ACM Sigplan Notices, 34, 10, 435-446. 1999.

Proceedings of the Sixth International Symposium on Autonomous Decentralized Systems (ISADS’03) 
0-7695-1876-1/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


