
Propositional Planning in BDI Agents ∗

Felipe Rech Meneguzzi
HP/PUCRS

6681, Ipiranga Avenue
Porto Alegre, Brazil

felipe@cpts.pucrs.br

Avelino Francisco Zorzo
Faculty of Informatics
6681, Ipiranga Avenue

Porto Alegre, Brazil

zorzo@inf.pucrs.br

Michael da Costa Móra
Faculty of Informatics
6681, Ipiranga Avenue

Porto Alegre, Brazil

michael@inf.pucrs.br

ABSTRACT
This paper aims to describe the relationship between pro-

positional planning systems and the process of means-end
reasoning used by BDI agents. To show such relationship,
we define a mapping from BDI mental states to proposi-
tional planning problems and from propositional plans back
to mental states. In order to test the viability of such map-
ping, we have implemented it in an extension of a BDI agent
model through the use of Graphplan as the propositional
planning algorithm. The implementation was applied to
model a case study of an agent controlled production cell.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence—Intelligent agents ; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
Plan execution, formation, and generation

General Terms
BDI Model, Planning

Keywords
Propositional Planning, BDI, X-BDI

1. INTRODUCTION
The development of rational agents, i.e. agents capable

of performing useful actions given its world perception and
knowledge [29], has been a major concern since the begin-
ning of Computer Science research [25]. Such development
originated various important approaches to the implemen-
tation of computational reasoning, starting with the Gen-
eral Problem Solver (GPS) and generic problem solving al-
gorithms, and evolving into Planning Systems. Although
these planning systems are capable of defining how goals

∗This work is partially supported by HP Brazil and CNPq.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14 -17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

are to be achieved, they do not deal with the problem of
which goals are to be pursued. In other words, they are
capable of performing means-end reasoning but not to deal
with the problem of practical reasoning [23].

Planning systems gave way to the reasoning model based
on deliberative agents as a means to deal with practical rea-
soning. These agents used, initially, a series of decision mak-
ing mechanisms which are theoretically defined, like decision
theory, but have proven themselves inadequate to implemen-
tation, since they assumed agents that had unlimited time
and computational resources [23]. In order to solve the is-
sue of limited resources, a philosophical practical reasoning
model was formalized and computationally implemented [5],
that, in theory, allows an agent to limit the time spent in
deliberation. Nevertheless, implementations of these agents
tend to avoid facing the complexity of means-end reasoning
through the usage of plan libraries, defined for the agent
prior to its execution. Therefore, this approach solves the
problem of an agent’s limited resources, but it delegates the
responsibility of building plans to its developer.

Deliberation using a plan library is obviously more com-
putationally efficient than performing plan formation at run-
time. Nevertheless, the usage of a plan library ties the prob-
lem solving capability of an agent to the situations foreseen
by its designer, while planning at runtime allows the agent
to cope with a larger variety of situations. On the other
hand, agent architectures that perform planning at runtime
usually have tightly coupled planning methods that limit its
improvement through the incorporation of novel planning
strategies. Therefore, the purpose of our work is to show how
to incorporate propositional planning in BDI agent models,
providing agents with the ability of practical reasoning and
means-end reasoning. Our approach is underpinned on a
mapping among BDI mental states and propositional plan-
ning formalisms, thus allowing any algorithm based on a
similar formalism to be used as a means-end reasoning pro-
cess for a BDI agent. In order to demonstrate the viability of
such approach we take a specific BDI agent model, namely
the X-BDI model [19], and modify it to use propositional
planning algorithms to perform means-end reasoning [20].

2. BASIC CONCEPTS

2.1 BDI Agents
As computer systems became more complex, abstraction

mechanisms for these systems were developed. One abstrac-
tion mechanism that is becoming increasingly accepted is the
notion of Computer Agents [23, 12, 9], so far as to be pro-

58

2004 ACM Symposium on Applied Computing

posed as an alternative to the Turing Machine as an abstrac-
tion for the notion of computation [12, 26]. Although there
is a variety of definitions for Computer Agents, an informal
definition, which adequately captures important properties
of agency, is the following [12]: An agent is an encapsulated
computer system that is situated in some environment and
that is capable of flexible, autonomous action in that envi-
ronment in order to meet its design objectives.

In the context of multi-agent systems research, one of
most widely known and studied models of deliberative agents
uses Beliefs, Desires and Intentions as abstractions for the
description of a system’s behaviour. This model is called
BDI (for Beliefs, Desires and Intentions) and was originated
by a philosophical model of human practical reasoning [4],
later formalized [8] and improved towards a more complete
computational theory [22, 29].

One of the most important processes of the BDI model
is the selection of the course of action the agent will take
in order to satisfy its intentions, i.e. given an environment
and a set of objectives, determine whether the agent is ca-
pable of satisfying its objectives through some sequence of
actions. This problem is characterized as the Agent Design
Problem [28]. The most widely known BDI agent imple-
mentations have been bypassing this problem through the
use of plan libraries where the courses of action for every
possible objective an agent might have are stored [11, 10].
The theories commonly used to underpin systems capable
of dealing with the agent design problem assume an agent
with unlimited resources, thus making its actual implemen-
tation impossible [23, 22]. On the other hand, recent works
seek to deal with this problem in various ways, for instance,
by defining alternate proof systems [19, 21] or using model
checking in order to validate the agent’s plan library [3]. An
alternate approach to solve the problem is the use of plan-
ning algorithms to perform means-end reasoning at runtime
[23]. It is important to point out that we do not tackle the
issue of hierarchical planning at Intention and Action levels
[16], though the architecture we propose is suitable to such
extensions.

2.2 Planning Algorithms
Means-end reasoning is a fundamental component of any

rational agent [4] and is useful in the resolution of problems
in a number of different areas, for instance scheduling [24].
Therefore, the development of planning algorithms has been
one of the main goals of AI research [29]. A planning prob-
lem is generically defined by formal description of the [27]: i)
start state; ii) intended goals; iii) actions that may be per-
formed. The planning system will take these components
and will generate a set of actions ordered by some relation,
that, when applied to the world where the initial state de-
scription is true, will make the goals description true.

It is known that planning is undecidable [7] and that plan-
ning problems, in the general case, are PSPACE [6]. Despite
the high complexity proven for the general case of planning
problems, recent advances in planning research led to the
creation of planning algorithms that perform significantly
better than previous approaches to solve various problem
classes [27, 20]. These algorithms belong mainly to two
classes: i) Graphplan based algorithms [2]; ii) algorithms
based in the compilation of the planning problem into a for-
mula whose satisfiability is tested (SAT) [13].

In this work, we focus on STRIPS-like (STanford Research

Institute Problem Solver) formalisms [20]. Our description
of the formalism is based on the one found in [20], and is,
according to the author, a SIL formalism, i.e. the basic
STRIPS plus the possibility to use incomplete specifications
and literals in the description of world states. It is impor-
tant to point out that the formalisms defined by Nebel [20]
are more general, but since we do not intend to provide a de-
tailed study of planning formalisms, we use a simpler version
of the referred formalism. In particular, we use a proposi-
tional logical language with variables only in the specifica-
tion of operators. Also, operators are not allowed to have
conditional effects. Considering the STRIPS formalism, one
can notice that the referred planners deal only with atoms.
Nevertheless, within this paper more expressivity is desir-
able, in particular, the possibility to use first order ground
literals. It is possible to avoid these limitation through the
use of syntactic transformations so that the planners de-
scribed operate over first order ground literals.

2.3 Graphplan
Graphplan [2] is a planning algorithm based on the con-

struction and search in a graph. It is considered one of
the most efficient planning algorithms created recently [27,
20, 24]. The efficiency of this algorithm was empirically
proved through the significant results obtained by instances
of Graphplan in the planning competitions of the AIPS (In-
ternational Conference on AI Planning and Scheduling) [14,
18]. Planning in Graphplan is based on the concept of a
Planning Graph, which is a data structure in which infor-
mation regarding the planning problem is stored in such a
way that the search for a solution can be accelerated. The
Planning Graph is not a space state graph in which a plan
is a path through the graph. Instead, a plan in the Planning
Graph is essentially a flow, in the sense of a network flow.
Planning Graph construction is efficient. It has polynomial
complexity in graph size and construction time with regard
to problem size [2]. The graph is then used by the planner
in the search for a solution to the planning problem using
data stored in the graph to speed up the process. The basic
Graphplan algorithm (i.e. without the optimizations pro-
posed by other authors) is divided into two distinct phases:
Graph Expansion and Solution Extraction.

The Planning Graph in Graphplan is directed and lev-
elled. Considering that a plan is composed of temporally
ordered actions, and, in between these actions there are
world states, graph levels are divided into alternating propo-
sition and action levels. Proposition levels are composed of
proposition nodes labelled with propositions. These nodes
are connected to the actions in the subsequent action level
through pre-condition arcs. Action nodes are labelled with
operators and are connected to the nodes in the subsequent
proposition nodes by effect arcs. Every proposition level de-
notes literals that are possibly true at a given moment, thus
the first proposition level represents the literals that are pos-
sibly true at time 1, the next proposition level represents the
literals that are possibly true at time 2 and so forth. Ac-
tion levels denote operators that can be executed at a given
moment in time in such a way that the first action level rep-
resents the operators that may be executed at time 1 and so
forth. The graph contains mutual exclusion relations (mu-
tex) between nodes in the same graph level. Mutex relations
have a fundamental role in algorithm efficiency. A mutual
exclusion relation between two nodes means that they can-

59

not be simultaneously present in the same graph level for the
same solution. After graph expansion, the second phase of
Graphplan, called solution extraction, takes place. It uses a
backward chaining strategy to traverse the graph on a level
by level basis trying to find a flow starting from the goals
that leads to the initial conditions.

The algorithm chosen for implementation in the proto-
type is Graphplan. Its choice was due to the greater body
of available work related to its improvement, e.g. real-time
planning [24], additional inference of planning graph infor-
mation [17], among others, that might be incorporated into
an implementation.

3. PROPOSED SOLUTION
Considering that we will use propositional planners as a

mechanism for means-end reasoning within BDI agents, we
take the X-BDI agent model [19] and modify its operational
definition to accommodate the use of planning algorithms
external to its kernel.

3.1 Extending X-BDI with Graphplan
The X-BDI agent model was created in order to allow a

formal agent specification to be directly executed [19]. That
is possible because X-BDI’s language is defined in terms
of a formalism that has a reference implementation, which
is called Extended Logic Programming with explicit nega-
tion (ELP) using the Well-Founded Semantics extended for
the explicit Negation (WFSX), with a derivation procedure
is called Selected Linear Derivation for extended programs
(SLX) [1]. X-BDI uses ELP’s ability to deal with contra-
diction to implement a variety of non-monotonic reasoning
processes, necessary for the BDI model. Moreover, a mod-
ified form of Event Calculus [15] is used in order to allow
X-BDI to deal with a dynamic world.

3.1.1 X-BDI Operation
An X-BDI agent has the traditional components of a BDI

agent, i.e. a set of Beliefs, Desires and Intentions. Besides,
given its extended logic definition, it has also a set of time
axioms defined through a variation of the Event Calculus
[19, 15]. The set of beliefs is simply a formalization of facts
in ELP, individualized for a specific agent. The belief revi-
sion process in X-BDI is the result of the program revision
process performed in ELP by the SLX procedure. From the
agent’s point of view, it is assumed that its beliefs are not
always consistent, because whenever an event that makes
the beliefs inconsistent, SLX will minimally revise the pro-
gram, and therefore, the beliefs. Every desire in an X-BDI
agent is conditioned to the body of a logic rule, which is a
conjunction of literals called Body. Thus, Body specifies the
pre-conditions that must be satisfied in order for an agent
to desire a property. When Body is an empty conjunction,
property P is unconditionally desired. Desires may be tem-
porally situated, i.e. can be desired in a specific moment,
or whenever its pre-conditions are valid. Besides, desires
have a priority value used in the formation of an order re-
lation among desire sets. There are two possible types of
intentions: Primary Intentions, which refer to the intended
properties, and Relative Intentions, which refer to actions
able to bring about these properties. An agent may intend
something in the past or that is already true. Besides, in-
tentions may not be impossible, i.e. there must be at least
one plan available to the agent whose result is a world state

where the intended property is true. This definition repre-
sents the first change performed in X-BDI described in this
work. In the original X-BDI the possibility of a property
was verified through the abduction of an Event Calculus
theory that would make the property true. In this work, we
modified the planning process so that it is abstracted from
the operational definition of X-BDI, allowing that any plan-
ning process that satisfies the conditions of Section 2.2 to be
used by X-BDI. Thus, the notion of possibility of a desire is
associated with the existence of a plan to satisfy it.

The reasoning process performed by X-BDI initiates with
the selection of Eligible Desires, which represent the un-
satisfied desires whose pre-conditions were satisfied. The
elements of this set are not necessarily consistent among
themselves. Candidate Desires are then generated, which
represent a set of Eligible Desires that are both consistent
and possible and will be later adopted as Primary Inten-
tions. In order to satisfy the properties represented by Pri-
mary Intentions, the planning process generates a sequence
of temporally ordered actions that constitute the Relative
Intentions. Eligible desires have rationality constraints that
are similar to those imposed over the intentions in the sense
that an agent will not desire something in the past or some-
thing the agent believes will happen without his interfer-
ence. Agent beliefs must also support the pre-conditions
defined in the desire Body. Within the agent’s reasoning
process these desires will originate a set of mutually consis-
tent subsets ordered by a partial order relation. The process
of selecting Candidate Desires seeks to choose among the El-
igible Desires one subset that contains only desires that are
internally consistent and possible. A possible desire is one
that has a property P that can be satisfied through a se-
quence of actions. In order to choose among multiple sets of
Candidate Desires, X-BDI uses ELP constructs that allow
the definition of preferred revisions. Thus, X-BDI defines
a desire preference relation through a set of preferred revi-
sions generated using the priorities expressed in the desires.
Through this preference relation, a desire preference graph
that relates all subsets of Eligible Desires is generated.

Candidate Desires represent the most significant modi-
fication made in this paper regarding the original X-BDI
[19]. Originally, X-BDI verified the possibility of a desire
through the abduction of an Event Calculus Theory in which
the belief in the validity of a desired property P could be
true. Such abduction process is, actually, a form of plan-
ning. Since our main objective in this paper is to separate
the planning process previously hard-coded within X-BDI,
the notion of desire possibility had to be re-defined. There-
fore, we define that a set of Candidate Desires is the subset
of Eligible Desires with the greater preference value, and
whose properties can be satisfied. Satisfiability is verified
through the execution of a propositional planner that pro-
cesses a planning problem in which the initial state contains
the properties that the agent believes at the time of plan-
ning. The P properties present in the Candidate Desires are
used to generate the set primary intentions.

Primary Intentions can be seen as high-level plans, simi-
lar to the intentions in IRMA [5]. Hence, they represent the
agent’s commitment to a course of action, which will be per-
formed through a series of refinements up to the point where
an agent has a temporally ordered set of actions representing
a concrete plan towards the satisfaction of its goals. Rela-
tive Intentions correspond to the temporally ordered steps of

60

the concrete plans generated to satisfy the agent’s Primary
Intentions. The notion of agent commitment results from
the fact that Relative Intentions must be non-contradictory
regarding Primary Intentions.

3.1.2 Intention Revision
The computational effort and the time required to recon-

sider the whole set of intentions of a resource-bounded agent
is generally significant regarding the environment change ra-
tio. Therefore, intention reconsideration should not occur
constantly, but only when the world changes in such a way
as to threaten the plans an agent is executing or when an op-
portunity to satisfy more important goals is detected. As a
consequence, X-BDI uses a set of reconsideration “triggers”
generated when intentions are selected, and causes the agent
to reconsider its course of action when activated.

Consistency
Maintenance

Mapping

Perception

Action

Propositional
Planning

Candidate
Desires

Elligible
Desires

Primary
Intentions

Relative
Intentions

Desires Beliefs

Deliberation

Figure 1: Modified X-BDI overview.

At this point, we verified that the modifications operated
in X-BDI allow us to maintain the reconsideration conditions
defined by Bratman [5]. In particular, if all of the agent’s
Primary Intentions are satisfied before the time planned for
them to be satisfied, the agent will restart the deliberative
process, for he has achieved his goals. On the other hand,
if one of the Primary Intentions has not been achieved at
the time planned for it, the agent will have to reconsider
its intentions because its plans have failed. Moreover, if a
desire with a higher priority than the currently selected de-
sires becomes possible, the agent will reconsider its desires
in order to take advantage of the new opportunity. Recon-
sideration is completely based on integrity constraints over
beliefs. Therefore, considering that beliefs are revised at
every sensoring cycle, it is possible that a reconsideration
occurs due the “triggering” of a reconsideration restriction.
The modifications implemented in X-BDI alter its opera-
tion so that it uses propositional planning algorithms as the
underpinning of the means-end reasoning and as possibility
verifiers in the practical reasoning process (Figure 1).

3.2 Solution Architecture
The prototype implemented for this work is essentially

composed of three parts: the X-BDI kernel, implemented
in Prolog, a planning system containing a C++ implemen-
tation of Graphplan, and a Java Graphical Interface used
to ease the operation of X-BDI and to visualize its inter-

action with the environment. The Agent Viewer interface
communicates with X-BDI through sockets by sending the
input from the environment where the agent is embedded
and receiving the result of the agent’s deliberation. Through
Agent Viewer the user can also describe the agent through
its desires, actions and initial beliefs. Once X-BDI receives
the agent description, it communicates with the planning li-
brary through Operating System files and the Prolog/C++
interface. The planner is responsible for generating a set
of intentions for the agent. The modification applied into
X-BDI essentially consists of, when the agent deliberates,
convert subsets of the agent’s desired properties into propo-
sitional planning problems and invoke the planning algo-
rithm to solve these problems until either a plan that solve
the highest priority desires is found, or the algorithm de-
termines that it is not possible to solve any one of these
problems.

4. A BDI PRODUCTION CELL
In this work we use a BDI agent in order to model a

production cell as a case study, and as a means to verify
the validity of the architecture described in Section 3. The
proposed production cell is composed of seven devices, a
Feed Belt, a Deposit Belt, four Processing Units and a Crane
that can freely move components over all the devices in the
cell. This Production Cell is illustrated in Figure 2.

�������
�������
�����
�����

Processing
Unit 3

Belt
DepositFeed

Belt

Processing
Unit 2

Processing
Unit 4

Processing

L1

Unit 1

Figure 2: A BDI Production Cell.

Components enter the production cell for processing
through the Feed Belt, and, once processed by all the ap-
propriate Processing Units, they are removed from the cell
through the Deposit Belt. Every Processing Unit is respon-
sible for performing a different kind of operation in the com-
ponent being processed, and can hold only one component
at a given moment. Every component introduced in the cell
can be processed by one or more Processing Units, which is
determined by the type of component being processed. Dif-
ferent component types have different processing priorities.
The control of this production cell is trusted to a BDI agent
implemented using X-BDI, which should schedule the work
of the production cell through its beliefs, desires and inten-
tions, re-scheduling the work whenever some change occurs.

The first step in modelling any problem using a STRIPS-
like formalism is the choice of the predicates used to repre-
sent the problem’s object-types and its states. Hence, we
have the following predicates representing objects in the
cell:i) bloc(B) denotes that B is a Component to be pro-
cessed; ii) procUnit(P) denotes that P is a Processing Unit,
Processing Units are also Devices; iii) device(D) denotes
that D is a Device; iv) feedBelt represents the Feed Belt;

61

v) depositBelt represents the Deposit Belt. Similarly, we
have the following predicates representing system states: i)
over(B,D) denotes that Component B is over Device D; ii)
empty(P) denotes that Processing Unit P is empty, i.e. has
not Component over it; iii) processed(B,P) denotes that
Component B has already been processed by Processing Unit
P; iv) finished(B) denotes that Component B has already
been processed by all appropriate Processing Units and has
been removed from the Production Cell. Next, we define the
actions the agent is capable of performing in the context of
the proposed problem: i) Action process(B,P) having as
pre-conditions procUnit(P), bloc(B) and over(B,P), and
as effect processed(B,P), represents the processing that a
Processing Unit P performs in a Component B over it; ii)
Action consume(B) having as pre-conditions bloc(B) and
over(B,depositBelt) and as effects ¬over(B,depositBelt),
empty(depositBelt) and finished(B), represents the re-
moval of component B from the production cell through
the Deposit Belt; iii) Action move(B,D1,D2) having as pre-
conditions over(B,D1), empty(D2), bloc(B), device(D1)

and device(D2) and as effects over(B, D2), ¬over(B,D1),
¬empty(D2) and empty(D1), represents the motion of Com-
ponent B from Device D1 to Device D2.

The processing requirements of components and its pri-
orities are modelled through the agent’s desires. There-
fore, we can model agent pCell necessity to process Compo-
nent bloc1 by Processing Units procUnit1, procUnit2 and
procUnit3 as soon as this component is inserted into the
production cell through the following desires:

des(pCell,finished(bloc1),Tf,[0.7])
if bel(pCell, bloc(bloc1)),

bel(pCell, processed(bloc1,procUnit1)),
bel(pCell, processed(bloc1,procUnit2)),
bel(pCell, processed(bloc1,procUnit3)),
bel(pCell, -finished(bloc1)).

des(pCell,processed(bloc1,procUnit1),Tf,[0.6])
if bel(pCell, bloc(bloc1)),

bel(pCell, -processed(bloc1,procUnit1)).
des(pCell,processed(bloc1,procUnit2),Tf,[0.6])
if bel(pCell, bloc(bloc1)),

bel(pCell, -processed(bloc1,procUnit2)).
des(pCell,processed(bloc1,procUnit3),Tf,[0.6])
if bel(pCell, bloc(bloc1)),

bel(pCell, -processed(bloc1,procUnit3)).

Similarly, we can model the agent’s need to process Com-
ponent bloc2 by Processing Unit procUnit3 and procUnit4

through the following desires:

des(pCell,finished(bloc2),Tf,[0.6])
if bel(pCell, bloc(bloc2)),

bel(pCell, processed(bloc2,procUnit3)),
bel(pCell, processed(bloc2,procUnit4)),
bel(pCell, -finished(bloc2)).

des(pCell,processed(bloc2,procUnit3),Tf,[0.5])
if bel(pCell, bloc(bloc2)),

bel(pCell, -processed(bloc2,procUnit3)).
des(pCell,processed(bloc2,procUnit4),Tf,[0.5])
if bel(pCell, bloc(bloc2)),

bel(pCell, -processed(bloc2,procUnit4)).

Finally, we model the agent’s static knowledge regarding
the problem domain, in particular the object’s classes and
the initial world-state with the following beliefs:

bel(pCell, procUnit(procUnit1)).
bel(pCell, procUnit(procUnit2)).
bel(pCell, procUnit(procUnit3)).

bel(pCell, procUnit(procUnit4)).
bel(pCell, device(procUnit1)).
bel(pCell, device(procUnit2)).
bel(pCell, device(procUnit3)).
bel(pCell, device(procUnit4)).
bel(pCell, device(depositBelt)).
bel(pCell, device(feedBelt)).
bel(pCell, empty(procUnit1)).
bel(pCell, empty(procUnit2)).
bel(pCell, empty(procUnit3)).
bel(pCell, empty(procUnit4)).
bel(pCell, empty(depositBelt)).

The arrival of a new component in the production cell is
signaled by the sensors through the inclusion of bloc(bloc1)
and over(bloc1,feedBelt) in the agent’s beliefs database,
activating the agent’s reconsideration process. Given the
desire’s pre-conditions previously defined, only the desires
related to the following properties become Eligible:

processed(bloc1,procUnit1)
processed(bloc1,procUnit2)
processed(bloc1,procUnit3)

These desires are then analyzed by the process of select-
ing Candidate Desires. In this process, the agent’s Eligible
Desires and beliefs are used in the creation of planning prob-
lems that are sent to Graphplan for resolution. The result of
this processing is a plan that satisfies all the Eligible Desires,
with the following steps:

1. move(bloc1,feedBelt,procUnit2)
2. process(bloc1,procUnit2)
3. move(bloc1,procUnit2,procUnit1)
4. process(bloc1,procUnit1)
5. move(bloc1,procUnit1,procUnit3)
6. process(bloc1,procUnit3)

The existence of this plan indicates to X-BDI that the
specified set of Eligible Desires is possible, thus turning the
previous set of desires into Candidate Desires, which will
generate Primary Intentions, representing the agent’s com-
mitment. Next, Relative Intentions are generated using the
steps in the plan recently created, one Intention for each
step of the plan. These will lead the agent to perform the
appropriate actions. Once the actions are executed, the
Candidate Desires from the previous deliberation are satis-
fied. Moreover, the pre-condition of the desire to accomplish
finished(bloc1) becomes valid, reactivating the agent’s de-
liberative process and generating the following plan:

1. move(bloc1,procUnit3,depositBelt)
2. consume(bloc1)

Once more, this plan will originate the agent’s intentions
and, eventually, lead it to act. A possible situation dur-
ing this agent’s operation would be the arrival of a new
component in the Production Cell. This could take place
right after the deliberation which created the first plan, and
would be signaled by the agent’s sensors through the in-
clusion of bloc(bloc2) and over(bloc2,feedBelt) in the
beliefs database, which would modify the Eligible Desires
chosen in the second deliberation cycle to:

finished(bloc1);
processed(bloc2,procUnit3);
processed(bloc2,procUnit4);

These desires would cause the agent to generate a new
plan to verify their validity, as well as the mental states
required for the agent to eventually act.

62

5. CONCLUSIONS
In this paper, we described the relationship between propo-

sitional planning algorithms and means-end reasoning in
BDI agents. To test the viability of such approach we de-
scribe a modification in the X-BDI agent model. Through-
out this modification, new definitions of desires and inten-
tions were created in order for the BDI model to maintain
the theoretical properties present in its original version, es-
pecially regarding the definition of desires and intentions
impossibility. Moreover, it was necessary to define a map-
ping between the structural components of a BDI agent and
propositional planning problems. The result of implement-
ing these definitions in a prototype can be seen in the case
study of Section 4, which represents a problem that the
means-end reasoning process of the original X-BDI could
not solve. Considering that most implementations of BDI
agents use a plan library in the means-end reasoning in or-
der to bypass the inherent complexity of performing plan-
ning at runtime, X-BDI offers an innovative way of imple-
menting more flexible agents. Its main drawback was the
fact that the original planning mechanism is notably inef-
ficient. For example, the case study described in Section 4
was not tractable by the original X-BDI planning process.
Thus, the main contribution of our work consists in the def-
inition of a mapping from BDI means-end reasoning to fast
planning algorithms. Moreover, such approach enables the
agent architecture to be extended with any propositional
planning algorithm that uses a formalism compatible with
the proposed mapping. Thus allowing an agent to use more
powerful planners as they become available, or to use more
suitable planning strategies for different problem classes.

Some ramifications of this work are foreseen as future
work, in particular, the incorporation of the various Graph-
plan improvements, as well as the conduction of tests using
other propositional planning algorithms, SAT being an ex-
ample. Moreover, the determination of the class of problems
for which some combination of BDI Agent and planning al-
gorithm is capable of dealing with, represents an interesting
theoretical contribution to our work.

¨

6. REFERENCES
[1] J. J. Alferes and L. M. Pereira. Reasoning with Logic

Programming. Springer, 1996.

[2] A. L. Blum and M. L. Furst. Fast planning through
planning graph analysis. Artificial Intelligence, 1997.

[3] R. H. Bordini, M. Fisher, C. Pardavila, and
M. Wooldridge. Model checking AgentSpeak. In Proc.
of the 2nd AAMAS, pages 409–416, 2003. ACM Press.

[4] M. E. Bratman. Intention, Plans and Practical
Reason. Harvard University Press, 1987.

[5] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans
and resource-bounded practical reasoning.
Computational Intelligence, 4(4):349–355, 1988.

[6] T. Bylander. The computational complexity of
propositional STRIPS planning. Artificial Intelligence,
69(1-2):165–204, 1994.

[7] D. Chapman. Planning for conjunctive goals. Artificial
Intelligence, 32(3):333–377, 1987.

[8] P. R. Cohen and H. J. Levesque. Intention is choice
with commitment. Artificial Intelligence,
42(2-3):213–261, 1990.

[9] W. V. der Hoek and M. Wooldridge. Towards a logic
of rational agency. Logic Journal of the IGPL,
11(2):133–157, 2003.

[10] M. d’Inverno and M. Luck. Engineering
AgentSpeak(L): A formal computational model.
Journal of Logic and Computation, 8(3):233–260, 1998.

[11] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An
architecture for real-time reasoning and system
control. IEEE Expert, 7(6):33–44, 1992.

[12] N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117:277–296, 2000.

[13] H. Kautz and B. Selman. Planning as satisfiability. In
Proc. of the 10th ECAI, pages 359–363, 1992. Wiley.

[14] J. Köhler. Solving complex planning tasks through
extraction of subproblems. In R. Simmons, M. Veloso,
and S. Smith, editors, Proc. of the 4th AIPS, pages
62–69, 1998. AAAI Press.

[15] R. A. Kowalski and M. J. Sergot. A logic-based
calculus of events. New Generation Computing,
4(1):67–95, 1986.

[16] N. Lacey, H. Hexmoor, and G. Beavers. Planning at
the intention level. In Proc. of the 15th FLAIRS,
pages 8–13, 2002. AAAI Press.

[17] D. Long and M. Fox. Efficient implementation of the
plan graph in STAN. Journal of Artificial Intelligence
Research, 10:87–115, 1999.

[18] D. Long and M. Fox. Automatic synthesis and use of
generic types in planning. In S. Chien,
S. Kambhampati, and C. A. Knoblock, editors, Proc.
of the 5th AIPS, pages 196–205, 2000. AAAI Press.

[19] M. C. Móra, J. G. Lopes, R. M. Viccari, and
H. Coelho. BDI models and systems: Reducing the
gap. In Proc. of the 5th International Workshop on
Intelligent Agents, 1999. Springer.

[20] B. Nebel. On the compilability and expressive power
of propositional planning formalisms. Journal of
Artificial Intelligence Research (JAIR), 12:271–315,
2000.

[21] N. Nide and S. Takata. Deduction systems for BDI
logics using sequent calculus. In Proc. of the AAMAS,
pages 928–935. ACM Press, 2002.

[22] A. S. Rao and M. P. Georgeff. Formal models and
decision procedures for multi-agent systems. Technical
Report 61, AAII, 1995. Technical Note.

[23] M. Schut and M. Wooldridge. The control of reasoning
in resource-bounded agents. The Knowledge
Engineering Review, 16(3), 2001.

[24] D. E. Smith and D. S. Weld. Temporal planning with
mutual exclusion reasoning. In Proc. of the 17th
IJCAI, pages 326–337, 1999.

[25] A. M. Turing. Intelligent machinery. Machine
Intelligence, 5:3–23, 1948.

[26] P. Wegner. Why interaction is more powerful than
algorithms. Comm. of the ACM, 40(5):80–91, 1997.

[27] D. S. Weld. Recent advances in AI planning. AI
Magazine, 20(2):93–123, 1999.

[28] M. Wooldridge. The computational complexity of
agent design problems. In E. Durfee, editor, Proc. of
the 4th ICMAS, pages 341–348. IEEE Press, 2000.

[29] M. Wooldridge. Reasoning about Rational Agents. The
MIT Press, 2000.

63

