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Abstract

Fault-tolerant mechanisms have been increasingly used
to develop safety-critical systems in the past years. There-
fore the accurate description of these mechanisms is cru-
cial if we want that their use do not bring any kind of unex-
pected result due to the misinterpretation of their features.
This paper presents a new way of precisely describing fault-
tolerant mechanisms using a formalism that have a Marko-
vian behavior. More specifically, we describe how to ap-
ply Stochastic Automata Networks (SAN) to describe a De-
pendable Multiparty Interaction (DMI) mechanism.

1. Introduction

Parallel programs are usually composed of diverse con-
current activities, and communication and synchronization
patterns between these activities are complex and not easily
predictable. Thus, parallel programming is widely regarded
as difficult. For instance, Foster [15] says that parallel pro-
gramming is “more difficult than sequential programming
and perhaps more difficult than it needs to be”. In addition
to the normal programming concerns, the programmer has
to deal with the added complexity brought about by multi-
ple threads of control: managing their creation and destruc-
tion, and controlling their interactions via synchronization
and communication.

Furthermore, with the proliferation of distributed sys-
tems, computer communication activities are becoming
more and more distributed. Such distribution can in-
clude processing, control, data, network management, and
security [21]. Although distribution can improve the reli-
ability of a system by replicating components, sometimes
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an increase in distribution can introduce some undesir-
able faults. It is important that this distribution is imple-
mented in an organized way in order to reduce the risks of
introducing faults, as well as the risks of coping with resid-
ual faults.

As in sequential programming, complexity in dis-
tributed, in particular parallel, program development can
be managed by providing appropriate programming lan-
guage constructs. Language constructs can help both by
supporting encapsulation so as to prevent unwanted in-
teractions between program components and by provid-
ing higher-level abstractions that reduce programmer effort
by allowing compilers to handle mundane, error-prone as-
pects of parallel program implementation [15].

A language construct that encloses multiple processes
executing a set of activities together is called a multiparty
interaction [18, 13]. In a multiparty interaction, several ex-
ecuting processes somehow “come together” to produce an
intermediate and temporary combined state, use this state
to execute some joint activity, and then leave the interac-
tion and continue their normal execution.

This paper uses a mechanism that integrates concurrent
exception handling to the multiparty interaction concept.
The extended multiparty interaction concept is called de-
pendable multiparty interaction (DMI) [26] and it is able to
cope with several concurrent exceptions being raised dur-
ing the multiparty interaction. The DMI mechanism has
been used to implement control software for several safety-
critical systems [25, 27], but most of these control software
were developed in an ad hoc manner.

Formal analysis of a system using DMI has also been de-
veloped [25], based on a Temporal Logic description of the
mechanism [28]. Although this description gives a good in-
sight of the DMI properties, it does not provide the system
developer with a tool to analyse the system probabilities to
reach faulty states.

Moreover, it is crucial that formal description of a sys-
tem is used when designing complex safety-critical appli-
cations. This description should not only guarantee the pre-
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cise understanding of the mechanisms that are being applied
in the design, but should also make it possible to get perfor-
mance and reliability measures.

A stochastic modeling formalism seems the nat-
ural choice to formal description. A myriad of for-
malisms could be employed, but the nature of DMI sug-
gests some desirable properties. The straightforward
Markov Chain formalism [24] lacks from structure, never-
theless it offers efficient numerical tools. Stochastic Petri
Nets [1] provides structure and clear synchronization prim-
itives, however there is not a real modular concept and
even partition techniques do not offer a sufficient modu-
lar approach to Stochastic Petri Nets [8, 12, 11]. We sug-
gest the use of Stochastic Automata Networks (SAN) [23]
which is being used to develop performance models to par-
allel and distributed computer systems [19, 5, 4]. The SAN
formalism is usually quite attractive when modeling sys-
tems with several parallel cooperative activities. Another
important advantages of the SAN formalism is the ef-
ficient numeric algorithms to compute stationary and
transient measures [14, 2]. Those algorithms take advan-
tage of the structured and modular definitions, allowing the
treatment of considerably large models1. For all those rea-
sons, we believe SAN is quite adequate to describe co-
operative activities designed using DMI. However, other
formalisms could also be employed with similar advan-
tages, e.g., PEPANETS [16].

This paper describes how to use SAN to model a sys-
tem designed using DMI. Section 2 presents a quick intro-
duction to the dependable multiparty interaction concept. In
Section 3, we briefly describe the Stochastic Automata Net-
works formalism. Section 4 presents the description of DMI
using SAN. In Section 5, we show an example of a SAN
model for an application designed using DMI. Finally, in
Section 6, we present the numerical results of the proposed
model.

2. Dependable Multiparty Interactions

Several multiparty interaction mechanisms do not pro-
vide features for dealing with possible faults that may hap-
pen during the execution of the interactions. In some faults,
the underlying system that is executing those multiparty in-
teractions will simply stop the system in response to a fault.
In DisCo [17], for instance, if an assertion inside an action
is false, then the run-time system is assumed to stop the
whole application. This situation is unacceptable in many
situations.

1 The state of art in SAN lumpability [2] could not be employed to the
proposed model in this paper due to different synchronizing events
among similar automata. Actually, the algorithm proposed in [2] can
only be applied to replicated automata.

A mechanism that brings together a way to handle excep-
tions during a multiparty interaction is the Dependable Mul-
tiparty Interactions (DMI) mechanism [26]. Specifically, a
DMI is a multiparty interaction mechanism that provides
facilities for handling concurrent exceptions and assuring
consistency upon exit. Fig. 1 shows how exception handling
is organized in a DMI . More details on how to use DMI
can be found in [26, 27, 25].
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Figure 1. Dependable Multiparty Interactions

A DMI is represented by a set of roles which are exe-
cuted by players. A player can activate a role in a DMI in
order to execute the commands inside a role. A DMI only
starts, when all its roles have been activated, and the guard
(boolean expression) at the beginning of the DMI is true.
A DMI only finishes, when all players have finished to ex-
ecute their roles, and the assertion at the end of the DMI
(boolean expression) is true (if no exceptions have been
raised). Roles can only access data that are sent to them
when they are activated, or data sent by other roles, belong-
ing to the same DMI. Exceptions can be raised during the
execution of a DMI. If exceptions are raised, then all roles
that have not raised an exception are interrupted, and an ex-
ception resolution algorithm [9] is executed when all roles
have either raised an exception or have been interrupted. If
there is a handler to deal with the exception that was de-
cided upon by the exception resolution algorithm, then this
handler is activated by all roles. If there is no handler to
deal with the exception that was decided upon by the ex-
ception resolution algorithm, then the exception is raised in
the callers of all roles. Handlers have the same number of
roles as the DMI to which they are connected.
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3. Stochastic Automata Networks

The SAN formalism was proposed by Plateau [22] and
its basic idea is to represent a whole system by a collec-
tion of subsystems with an independent behavior (local
transitions) and occasional interdependencies (functional
rates and synchronizing events). The framework proposed
by Plateau defines a modular way to describe continuous
and discrete-time Markovian models [23]. However, only
continuous-time SAN will be considered in this paper, al-
though discrete-time SAN can also be employed without
any loss of generality.

The SAN formalism describes a complete system as a
collection of subsystems that interact with each other. Each
subsystem is described as a stochastic automaton, i.e., an
automaton in which the transitions are labeled with prob-
abilistic and timing information. Hence, one can build a
continuous-time stochastic process related to SAN, i.e., the
SAN formalism has exactly the same application scope as
Markov Chain (MC) formalism [24, 7]. The state of a SAN
model, called global state, it is defined by the cartesian
product of the local states of all automata.

There are two types of events that change the global
state of a model: local events and synchronizing events.
Local events change the SAN global state passing from a
global state to another that differs only by one local state.
On the other hand, synchronizing events can change simul-
taneously more than one local state, i.e., two or more au-
tomata can change their local states simultaneously. In other
words, the occurrence of a synchronizing event forces all
concerned automata to fire a transition corresponding to this
event. In fact, local events can be viewed as a particular case
of synchronizing events that concerns only one automaton.

Each event is represented by an identifier and a rate of
occurrence, which describes how often a given event will
occur. Each transition may be fired as result of the occur-
rence of any number of events. In general, non-determinism
among possible different events is dealt according to
Markovian behavior, i.e., any of the events may occur and
their occurrence rates define how often each one of them
will occur. However, from a given local state, if the oc-
currence of a given event can lead to more than one
state, then an additional routing probability must be in-
formed. The absence of routing probability is tolerated if
only one transition can be fired by an event from a given lo-
cal state.

The other possibility of interaction among automata is
the use of functional rates. Any event occurrence rate may
be expressed by a constant value (a positive real number)
or a function of the state of other automata. In opposition
to synchronizing events, functional rates are one-way inter-
action among automata, since it affects only the automaton
where it appears.

Figure 2 presents a SAN model with two automata, four
local events, one synchronizing event, and one functional
rate. In the context of this paper, we will use roman letters
to identify the name of events and functions, and greek let-
ters to describe constant values of rates and probabilities.
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A(1)

e1
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e1 τ1
e2 τ2
e3 τ3
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) ∗ λ1

]
+
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st(A(1)) == 2(1)

) ∗ λ2
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Figure 2. Example of a SAN model

In the model of Fig. 2, the occurrence of the event e 4

changes the automaton A(2) from 1(2) to 0(2) state at the
same time that the automaton A(1) changes from 2(1) to
0(1) state with probability equal to π1, or from 2(1) to 1(1)

state with probability equal to 1−π1. Notice that the rate of
the event e5 is not a constant rate, but a function rate called
f5. Due to event e5, the firing of the transition from 0(2) to
1(2) state occurs with rate λ1 (if automaton A(1) is in 0(1)

state) or λ2 (if automaton A(1) is in 2(1) state). If automa-
ton A(1) is in 1(1) state, the transition from 0(2) to 1(2) state
does not occur (event e5 rate becomes equal to 0). Func-
tion f5 in the SAN formalism is described through the no-
tation2 employed by the PEPS2003 tools [3]. Fig. 3 shows
the equivalent Markov chain to Fig. 2.

2(1)0(2) 2(1)1(2)

0(1)1(2)0(1)0(2)

1(1)0(2) 1(1)1(2)

λ1

λ2

τ1 τ1

τ4π1

τ3τ3 τ4π2

τ2 τ2

Figure 3. Equivalent Markov Chain to Fig. 2

The use of functional expressions is not limited to event
rates. In fact, routing probabilities also may be expressed as
functions. The use of functions is a powerful primitive of

2 The interpretation of a function can be viewed as the evaluation of
an expression of non-typed programming languages, e.g., C language.
Each comparison is evaluated to value 1 (for true) and to value 0 (for
false).
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SAN, since it allows to describe very complex behaviors in
a very compact format. The computational costs to handle
functional rates has decreased significantly with the devel-
opments of numerical solutions for the SAN models, e.g.,
the algorithms for generalized tensor products [3].

4. SAN model for a DMI mechanism

This section describes a general manner to translate a
DMI definition to a SAN model. The structure of a DMI
definition composed of D DMIS, R roles, and P play-
ers (see Section 2) can be described by three subsets of
generic automata called DMI (k) (k = 1 . . .D), Role(j)

(j = 1 . . . R), and Player(i) (i = 1 . . . P ).

DMI (k)

rs(k)

nh(k)

A(k) E(k) X (k)I(k)

ns(k)
fn(k)

ns(k)

ar
(k)
1 . . ar

(k)
Rs(k)

ar
(k)
1 . . ar

(k)
R

Figure 4. Generic DMI automaton

The DMI(k) automaton (Fig. 4) represents the k th DMI
and it is composed of states: I (k) (idle) representing that
the kth DMI is not needed at the moment; A(k) (active) in-
dicating that the kth DMI has its players activated (syn-
chronized), and they are waiting roles to be assigned; E (k)

(executing) representing that the players are executing their
roles; and X (k) (abort exception) representing that the k th

DMI is waiting for external intervention to deal with a non-
handable (global) exception.

Role(j)

ag(k)

al(j)

hl(j)

ag(k)

ag(k)

hg(k)(π1)

nh(k)

hg(k)(π2)

I(j) E(j)

fr
(k)
j

ar
(k)
j

Lx(j) Gx(j)

π1 = (st P layer(i) == E(i)) π2 = (st P layer(i) == A(i))

Figure 5. Generic Role automaton

The Role(j) automaton (Fig. 5) represents the j th role
and it is composed of states: I (j) (idle) indicating that the
jth role has not been assigned to a player; E (j) (executing)
representing that the j th role has been assigned to a player,
which is performing some computation; Lx(j) (local excep-
tion) representing that the j th role is handling an exception
locally, i.e., without involving the other DMI’s roles; and

Gx(j) (global exception) indicating that the j th role is han-
dling the exception cooperatively (with other DMI’s roles).

Player(i)

nh(k)

fn(k)

ns(k)

nh(k)

I(i) A(i) E(i)

fr
(k)
j

ar
(k)
js(k)

Figure 6. Generic Player automaton

The Player(i) automaton (Fig. 6) represents the ith

player and it is composed of states: I (i) (idle) represent-
ing that the ith player is not ready to work3, i.e., it is wait-
ing for a DMI activation (synchronization); A (i) (active) in-
dicating that the ith player is ready to work, but a role has
to yet been assigned to it; and E (i) (execution) represent-
ing that the ith player is performing a role (including the
handling of an exception).

A DMI state can be modified by the occurrence of
events that affect the DMI (k) automaton, its role automata
(Role(j)), and all automata representing the players that can
be assigned to those roles. Note that to each DMI, there are
exclusive roles, but the players can be assigned to roles be-
longing to as many DMIS as defined by the system descrip-
tion.

The events in a subset coordinated by the DMI (k) are:

• s(k) - the DMI activation; this single event starts the
DMI by synchronizing the passage from I (k) to A(k)

in DMI(k) automaton with the passage from I (i) to
A(i) in all automata representing players coordinated
by DMI(k);

• ns(k) - synchronizes the passage from A(k) to I(k) or
E(k) to I(k) when the guard or the assertion of the
DMI(k) is not satisfied;

• fn(k) - finalizes the execution of the DMI (k) and all
their players;

• ar
(k)
j - the assignment of the Role(j) to one of the

players; there are as many arj events as there are roles
to be assigned in the DMI (k), and each of them syn-
chronizes the beginning of execution in the automata
representing the player and the role;

• fr
(k)
j - finalizes the execution of the Role(j) and syn-

chronizes the passage from E (k) to A(k) of the player;

• al(j) - a local exception is raised in the Role(j);

• hl(j) - a local exception in the Role(j) is handled;

3 This could also indicate that the player is executing some computation
that does not involve cooperative work.
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• ag(k) - sinalizes a global exception to all concerned
roles in the DMI (k);

• hg(k) - handles a global exception in the DMI (k) and
return the concerned roles to their previous states;

• nh(k) - passes the DMI(k) from E(k) to X(k) (non-
handled exception) and set all their players and roles
as inactive;

• rs(k) - reset the execution of the DMI (k) after a non-
handled global exception was raised.

5. Case study: Fault-Tolerant Production Cell

In this section, we used a safety-critical system to show
how to model a system designed with DMI using the SAN
formalism. The system we have used is a Fault-Tolerant
Production Cell [25] which consists of six devices: two con-
veyor belts (a feed belt and a deposit belt), an elevating
rotary table, two presses, and a rotary robot that has two
orthogonal extendible arms equipped with electromagnets
(see Fig. 7). These devices are associated with a set of sen-
sors that provide useful information to a controller and a
set of actuators via which the controller can exercise con-
trol over the whole system. The task of the cell is to get a
metal blank from its “environment” via the feed belt, trans-
form it into a forged plate by using a press, and then return
it to the environment via the deposit belt. More precisely,
the production cycle for each blank is:

1. If the traffic light for insertion shows green, a blank
may be added, e.g., by the blank supplier, to the feed
belt from the environment;

2. The feed belt conveys the blank to the table;

3. The table rotates and rises to the position where the
magnets of the robot are able to grip the blank;

4. Arm 1 of the robot picks the blank up and places it into
an unoccupied press, either press 1 or press 2;

5. The chosen press forges the blank;

6. Arm 2 of the robot removes the forged plate from the
press and places it on the deposit belt; and

7. If the traffic light for deposit is green, the plate may
be forwarded further and carried to the environment
where a container may be used, e.g., by the blank con-
sumer, to store the forged pieces.

Normally, both presses are used and a certain amount
of interleaving of two such production cycles, one for each
press, is possible. A correct control program must satisfy
certain requirements specified by the Fault-Tolerant Produc-
tion Cell model, e.g., safety, liveness, and failure detection
and continuous service. Other requirements, such as flexi-
bility and efficiency, may be taken into account, but must
not conflict with the previous requirements.
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Figure 7. Fault-Tolerant Production Cell

5.1. Proposed model

To validate the ideas proposed in Section 4, we modeled
a control software for this production cell using SAN. Al-
though the whole design of a control software for the Pro-
duction Cell is composed of twelve DMIS, the SAN model
for this case study represents only the DMIS that are critical
in the system, i.e., the DMIS that involve the robot and the
forging of blanks. The proposed SAN model contains seven
DMIS (UnloadTable, LoadPress1, ForgeBlank1, Unload-
Press1, LoadPress2, ForgeBlank2, and UnloadPress2) and
four players (Table, Robot, Press1, and Press2). Then the
problem size (product state space) becomes considerably
smaller (2.23 × 1013) than the original model with twelve
DMIS (4.84 × 1023). Starting from this reduced model,
which is still very large, we can use algebraic aggregation
[3] reducing the problem to a reasonable size (2.05× 106).

Although a DMI may contain several participants, in the
case study used in this paper, the DMIS will contain only
one or two participants. As can be seen in Fig. 7, a DMI en-
closes the control of a sequence of operations between de-
vices (players). Each DMI encloses a set of devices that
must interact in a coordinated fashion to satisfy the safety
and fault tolerance requirements of the case study. If two
DMIS overlap, they cannot be performed in parallel be-
cause they both involve the same device. For instance, Un-
loadTable cannot be executed in parallel with LoadPress1
because both DMIS involve the robot, and the robot can
participate in only one of them at a time.

The obvious interaction among DMIS is represented by
possible assignment of roles from different DMIS to a same
player. Such interaction exclude all control of the paralleli-
sation possibilities to a DMI description. Actually, the ab-
sence of such interaction implies a fully concurrent execu-
tion of all DMIS, i.e., tasks can be performed in any or-
der. Many real applications require synchronization of tasks
both inside a DMI and among different DMIS.

The synchronization among roles the same DMI is rep-
resented by event superposition, i.e., the replacement of two
events that must happen in a specific order by a single event.
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If the jth role must be performed just before the execution
of the lth role, such synchronization can be represented by
the replacement of the finishing event of Role (j) (fr

(k)
j )

and the assignment of Role(l) (ar
(k)
l ) by a single event

called sr
(k)
jl . The use of event superposition assures not only

the precedence of the j th role over the lth role, but it also
forces the succession of these roles. Note that such synchro-
nization has been applied to this case study, since its DMIS

have a specific order to be executed, e.g., in the Unload-
Table DMI, the table has to be elevated and rotated before
the robot can grab the metal plate from the table.

The synchronization among DMIS have the same nature
as the synchronization among roles. Nevertheless, the rep-
resentation in the SAN model need to be a little bit more
sophisticated. Synchronization among different DMIS not
only affect all DMIS automata, but also the concerned play-
ers automata. Regarding DMIS automata, we also use an
event superposition technique, that works in a similar man-
ner as for the synchronization among roles. For instance, if
the kth DMI must precede the lth DMI, the ending event of
the DMI(k) (fn(k)) and the starting event of the DMI (l)

(s(l)) must be replaced by a single event called sd(kl). No-
tice that the events fn(k) and s(l) also synchronize the play-
ers used by the DMI tasks. Therefore, the event superpo-
sition must take that into account, specially, when a same
player is used by both synchronized DMIS. In that particu-
lar case, the player must stay in the active state (A(i)) after
the end of the kth DMI, in order to be ready to the execution
of the lth DMI. The automaton of the player (Player (i))
concerned by the sequence of DMIS must include an addi-
tional loop transition in the active state (A(i)). This loop
transition allows that a player executes roles in different
DMIS in an ordered sequence.

Another possibility of interaction among DMIS is the
message exchange, which can be easily described in a SAN
model through the use of functional rates. Such functional
rates depend on the state of other DMIS in order to al-
low, or not, the occurrence of events. The adequation of the
SAN formalism is once again clear, since the inclusion of
functional rates keeps the same automata structure into the
model.

6. Reliability and performance indices

In Section 5, SAN was used to model a control system
using DMIS. This model was executed in the PEPS2003
tools [3] to analyse the behavior of the system. This section
presents some of the indices obtained from the execution of
the PEPS2003 tool.

The system was modeled with three basic configurations.
First the production cell was executed with only one func-
tioning press and the other press was not used in the produc-

tion cell (one-press). The second configuration considered
the usage of a primary press and a backup press (backup-
press). The backup press is only activated when the primary
press is broken. And finally, the third configuration sets the
system to use both presses equally, thus both presses can be
used in parallel (two-presses).
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Figure 8. Throughput vs. Exception Rate

The first case study considers the SAN model regard-
ing a steady state system, i.e., when an abort exception oc-
curs, the system reboots and the service restarts. An exam-
ple of such system recovery may be the replacement of a
faulty press by a new press by the operator.

Considering this situation, Fig. 8 shows the sys-
tem throughput (blanks processed per minute) upon several
exceptions being raised (exceptions per time unit). The ex-
ceptions can be from one of three kinds:

• exceptions that can be dealt locally (Role(j) is at state
Lx(j));

• exceptions that can be dealt globally (Role(j) is at state
Gx(j)); and

• exceptions that can not be dealt and therefore it takes
DMI(k) to state X(k) (abort exception).

Notice that the system throughput with two presses
working at the same time is not twice the throughput with
just one press, because the robot is a bottleneck to the sys-
tem. The increase in the number of exceptions does not
affect the system throughput considerably. While the num-
ber of exceptions per time unit increases ten times, the loss
in the system throughput is only about 10% for all con-
figurations, i.e., when there are two active presses. For
example, with two-presses configuration this happens be-
cause the robot is frequently involved in the handling
of global exceptions in a DMI, and therefore the enrol-
ment of the robot player in another DMI may be delayed.
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Figure 9. Abort Exception Probability vs.
Elapsed Time

Fig. 9 depicts the results of the transient analysis of the
system, i.e., it represents the situation in which a DMI en-
tering state X (k), stays in state X(k). The results presented
in the figure consider rare exceptions (one exception being
raised per time unit). Obviously, the longer the system stays
executing, the bigger the probability to get an abort excep-
tion will be.

It is interesting to notice that the one-press configura-
tion rapidly reaches a high abort exception probability. The
behavior of the other two configurations is almost exactly
the same, since the full system stop (abort exception in
both presses) remains equal. Such result is comprehensible,
since in the backup-press configuration, the overall press
use (sum of the use of the primary and the backup presses)
is the same as in the two-presses configuration. In fact,
the probability of abort exception in the primary press will
be considerably higher than the probability of the backup
press. Nevertheless, the average for those two probabilities
will be quite similar to the probability of abort exception in
both presses for the two-presses configuration.

As general conclusion, we may argue that the two-
presses configuration is a better choice. In a first approach,
such conclusion seems obvious. Nevertheless, the numeri-
cal results for a specific, and well parameterized, case may
furnish a deeper analysis, e.g., the additional cost of a sec-
ond press (and/or its maintenance) may be justified, or not,
by the throughput increase.

7. Conclusion

The main contribution of this paper is to show a fea-
sible way to conjugate the specification power of a DMI
description and the performance evaluation capacities of a
SAN model. Starting from a DMI specification, it is possi-
ble to obtain a large, but tractable, equivalent SAN model.
From this model we could compute stationary and transient

measures that may furnish useful performance information
about the fault-tolerant system.

Note that the results shown in the previous section do
not add a particular understanding about the modeled sys-
tem (Fig. 7). It seems quite evident to any experienced fault-
tolerant specialist that the two-presses option (active redun-
dancy) has better performance (higher throughput in Fig. 8)
than the other options, i.e., one-press (no redundancy) and
backup-press (passive redundancy). However, it was a lit-
tle bit more surprising to see an almost equal behavior for
the abort exception probability (Fig. 9). In fact, we must in-
sist that the purpose of our paper is not to analyse a particu-
lar fault-tolerant example, but to show the benefits from the
conjugation of the DMI description and the SAN perfor-
mance evaluation.

One of the main concerns in the model development
phase is the (usually huge) size of the SAN model. A DMI
description with D DMIS, R roles, and P players repre-
sents a SAN model with D+R+P automata, up to 7D+4R
events, and a product state space of 4D×4R×3P states. Al-
though the particular synchronization of roles could reduce
considerably the number of events, the SAN model remains
with a quite large product state space. Fortunately, the natu-
ral restrictions of any DMI description reduce this product
state space to a much smaller reachable state space. Conse-
quently, it is vital to consider an efficient way to deal with
very sparse representations.

The use of Generalized Tensor Algebra (GTA) [6] is
quite efficient to the representation and storage of models,
but other techniques, such as Matrix Diagrams [20], can be
also employed to an even more efficient generation of the
state space. The modular nature of the DMI description and
the number of distinct events seem determinant to justify
the choice of the SAN formalism. For example, a Stochas-
tic Petri Nets (SPN) representation of an equivalent SAN
model must represent a near intractable number of transi-
tions in a single net. However, it is important to notice that
SPN models have a powerful software tool, called SMART
[10], which allows to obtain performance indices even for
such impressively large product state spaces.

The natural future work for is a careful study about the
information that can be extracted from a SAN model con-
structed from a DMI specification. The modeling experi-
ence presented in this paper was just an initial attempt, and
we believe that the current SAN modeling technique has
much more information to offer. A comparison with actual
reality measures may also help the development of a fur-
ther comprehension of SAN models benefits. Another in-
teresting future work can include some extensions to SAN
numerical tools in order to facilitate the solution of mod-
els with very large product state space, and relatively small
reachable state space. Such numerical improvements will
allow the solution of a wider class of DMI descriptions.
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