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ABSTRACT
This paper describes an algorithm that allows Linux to per-
form multilevel load balancing in NUMA computers. The
Linux scheduler implements a load balancing algorithm that
uses structures called sched domains to build a hierarchy
that represents the machine’s topology. Although sched do-
mains implementation allows Linux to build a multilevel
hierarchy to represent multilevel machines, the generic code
of the current kernel version builds no more than two levels
in the sched domains hierarchy. Thus, for NUMA systems
with three or more memory access levels, the constructed
hierarchy does not represent correctly the machine’s topol-
ogy. When Linux load balancing algorithm uses an incor-
rect sched domains hierarchy, process execution time can
increase, because processes can be moved to nodes that are
distant from their memory areas. In order to solve this prob-
lem, we have implemented an algorithm to build multilevel
sched domains hierarchies for NUMA computers. Our pro-
posed algorithm uses ACPI SLIT table data to recognize
how many memory access levels a machine contains. Then,
it builds an n-level sched domains hierarchy, where n is the
number of memory access levels. Through benchmarking
and simulation results we demonstrate that the Linux load
balancing performance when the sched domains hierarchy is
built using our proposed algorithm is better than using the
current Linux algorithm.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General—Linux ; D.4.1
[Operating Systems]: Process Management—Multipro-
cessing/multiprogramming, Scheduling ; D.4.8 [Operating

Systems]: Performance—Measurements, Simulation
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1. INTRODUCTION
The demand for computational power has been increas-

ing throughout the past years. Several solutions are being
used in order to respond to such demand, e.g., clusters of
workstations [5] and shared memory multiprocessors. Al-
though clusters have lower cost, their use implies in a great
specialized programming effort. It is necessary to build new
applications or port the existing ones to execute in these en-
vironments through the use of specific API’s, such as MPI
(Message Passing Interface) [17]. On the other hand, shared
memory multiprocessor computers are more expensive, but
simpler to use, since all resources are managed by a single
operating system.

Shared memory multiprocessor computers can be classi-
fied as UMA (Uniform Memory Access) or NUMA (Non-
Uniform Memory Access) computers [11]. In UMA com-
puters each processor can access any memory area with the
same average cost, which simplifies the load balancing. The
major drawback of UMA architectures is that the number
of processors is limited by the contention on access to the
shared memory bus. NUMA architectures allow a greater
number of processors because processors and memory are
distributed in nodes. Memory access times depend on the
processor that a process is executing and on the accessed
memory area. Thus, the load balancing on these machines
is more complex, since moving a process to a node that is
distant from its memory area can increase process execution
time.

Load balancing for parallel environments is a problem that
has been deeply studied for a long time. However, most of
these studies are focused on user-level load balancing. In
this sense, there are many proposals for different platforms,
for example clusters [4, 2, 20] and computational grids [8,
18]. Some authors have also presented solutions or stud-
ies for the load balancing problem on NUMA computers.
Zhu [19], for instance, proposes a cluster queue structure for
processes based on a hierarchical structure. Focht [7], on
the other hand, describes an algorithm based on the Linux
load balancing algorithm that tries to attract processes back
to their original nodes when they are migrated. There has
been also some studies presenting analysis of load balancing
algorithms on NUMA machines [6].

This paper proposes an algorithm that allows Linux to
perform multilevel load balancing in NUMA computers.
The current Linux load balancing algorithm uses a 2-level
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sched domains hierarchy to represent the machine’s topol-
ogy and perform load balancing. However, there are NUMA
computers with more than two memory access levels. For
these architectures, a 2-level sched domains hierarchy does
not represent their topology correctly, causing unappropri-
ate load balancing. To cope with this problem, we propose
a generic algorithm to build a multilevel sched domain hier-
archy, according to the number of memory access levels that
the NUMA computer contains.

In this paper we also evaluate the performance of the
Linux load balancing algorithm in different NUMA archi-
tectures, using the 2-level sched domain hierarchy built by
the current Linux version and using an n-level hierarchy
built by our proposed algorithm. To perform this evalu-
ation we use two different approaches: benchmarking and
simulation. The simulation model is developed using the
JavaSim simulation tool [12], and KernBench [13] is used
for benchmarking.

This paper is organized as follows. Section 2 describes
the current Linux load balancing algorithm and our pro-
posal to allow Linux to perform multilevel load balancing.
Section 3 shows the results of simulation and benchmarking
and demonstrate that multilevel load balancing can present
a better performance in terms of average processes execu-
tion time than the current Linux load balancing algorithm.
Finally, Section 4 assesses future work and emphasizes the
main contributions of this paper.

2. LOAD BALANCING IN NUMA COM-
PUTERS

In a NUMA computer, processors and main memory are
distributed in nodes. Each processor can access the entire
memory address space, but with different latency times [11].
In general, if the system has a small number of processors,
the machine has only two memory access levels. For ex-
ample, Figure 1 shows the architecture of a HP Integrity
Superdome server [9] with 4 nodes and 16 processors. This
machine has two different memory latencies: when a pro-
cessor accesses memory that is inside its node; and when a
processor accesses any other memory area.
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P13 P16P15P14
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Figure 1: HP Integrity Superdome with two mem-

ory access levels

However, some NUMA architectures, usually with a
greater number of processors, have more than two mem-
ory access levels, e.g., the HP Integrity Superdome server in
Figure 2 and the SGI Altix 3000 servers [15]. The machine
shown in Figure 2 is a NUMA computer with 16 nodes, 64
processors and three memory access levels: (i) memory la-
tency inside the node; (ii) memory latency among nodes on
the same crossbar; and (iii) memory latency among nodes
on different crossbars.

N1 N2 N3 N4

Crossbar

N5 N6 N7 N8

Crossbar Crossbar

N9

Crossbar

N10 N11 N12 N13 N14 N15 N16

Figure 2: HP Integrity Superdome with three mem-

ory access levels

An efficient load balancing algorithm must be aware of
how many memory access levels exist in the machine in order
to keep processes as close as possible to their memory areas,
improving their average execution time. This information
can be read from the ACPI SLIT table [10].

2.1 ACPI SLIT Table
ACPI (Advanced Configuration and Power Interface) is an

interface specification that provides information about hard-
ware configuration and allows operating systems to perform
power management for devices [10]. All ACPI data are hier-
archically organized in description tables built by the com-
puter firmware. One of these tables, called System Locality
Information Table (SLIT), describes the relative distance
(memory latency) among localities or proximity domains.
Specifically in case of NUMA computers, each node is a lo-
cality. Thus, the distance between nodes is available in the
ACPI SLIT table.

Figure 3 shows a possible SLIT table for the NUMA com-
puter in Figure 1. According to this table, the distance from
node 1 to node 2 is 1.7 times the SMP distance. This means
that a processor in node 1 accesses a memory area in node
2 seventy percent (70%) slower than a memory area in node
1 [10].

N1 N2 N3 N4

N1 10 17 17 17

N2 17 10 17 17

N3 17 17 10 17

N4 17 17 17 10

Figure 3: HP Integrity Superdome SLIT Table

Note that the two different distance values in the SLIT
table represent exactly the two memory access levels shown
in Figure 1. Thus, it is possible for the operating system to
find how many memory access levels exist in the machine
and what nodes are closer through the SLIT table data.

2.2 Linux Load Balancing Algorithm
Up to kernel version 2.4, the Linux process scheduler had

a single shared process queue. When a processor was idle, it
received a process from this queue. Although this approach
results in a natural load balancing, it is not scalable: as the
number of processors increases, the process queue becomes
a bottleneck. The current Linux scheduler has one process
queue for each processor in the system, solving this scalabil-
ity problem. However, due to the multiple process queues,
Linux had to implement a load balancing algorithm [14].
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The Linux load balancing algorithm uses a data structure
called sched domain to build a hierarchy that represents
the machine’s topology. Each sched domain contains CPU
groups that define the scope of load balancing to this domain
[1, 3]. Based on this hierarchy, Linux is able to perform
appropriate load balancing to different architectures. For
NUMA machines, Linux builds a two-level sched domain
hierarchy: the lowest level is composed of processors that are
in the same node and the highest level contains all processors
of the system. Thus, for the machine in Figure 1, Linux
builds the hierarchy shown in Figure 4.

P1, P2, P3, P4 P5, P6, P7, P8

P9, P10, P11, P12P13, P14, P15, P16

P1 P2
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CPU domain

P5 P6

P7P8

CPU domain

P9

Node domain

CPU domain

P15P16

P13 P14

CPU domain

P10

P11P12

Figure 4: 2-level sched domains hierarchy

Load balancing is performed among processors of a spe-
cific sched domain. Since load balancing must be executed
on a specific processor (all processors will execute the load
balancing eventually), it will be performed in the sched do-
mains that contain this processor. Initially, the load bal-
ancer searches for the busiest processor of the busiest CPU
group in the current domain (all domains are visited, start-
ing at the lowest level). Then, if the busiest processor is
overloaded in comparison to the processor that is executing
the load balancing, Linux migrates processes from the over-
loaded processor to the processor that is executing the load
balancing.

2.3 Multilevel Load Balancing Algorithm
The load balancing algorithm described in Section 2.2

tries to keep processes closer to their memory areas. The
memory area of a process is allocated in the same node of
the processor in which this process was created. Thus, Linux
migrates tasks among processors in the same node, keeping
the processes closer to their memory areas. If after this
intra-node migration there is still an imbalance, processes
will be moved from distant nodes.

However, in machines with more than two memory access
levels, there are different distances among nodes. If inter-
node migration is necessary, it is desirable to move processes
among closer nodes, performing a multilevel load balancing.
Linux load balancing does not implement this feature, since
it is not aware of the different node distances. This hap-
pens because the created sched domains hierarchy does not
represent correctly the machine’s topology if the computer
has more than two memory access levels: all processors in
different nodes are grouped in only one sched domain (the
highest level of the hierarchy).

In order to solve this problem, we propose a new algorithm
to build the sched domains hierarchy (Figure 6). This is a
generic algorithm that builds an n-level hierarchy for a ma-
chine with n memory access levels, based on node distances
provided by the ACPI SLIT table. Hence, for the machine

in Figure 2, which has three memory access levels, our pro-
posed algorithm builds the sched domains hierarchy shown
in Figure 5.

1. For each node N :

(a) Choose a processor P in node N .

(b) For each SLIT table distance d from node N to
all other nodes (in increasing order):

i. Create a new sched domain for processor P .
If this is not the first domain of this processor,
it is the parent of the last created domain.

ii. Create a list of CPU groups for the sched do-
main built in the previous step. If d = 10
(distance from node N to itself), this list will
have one CPU group for each processor in
node N . Otherwise, the list must be com-
posed by one CPU group for each node that
has the distance to node N less than or equal
to d.

(c) Replicate the sched domains hierarchy created for
processor P to all other processors in node N .

Figure 6: Algorithm to build the sched domains hi-

erarchy

Using the hierarchy from Figure 5, after the intra-node
migration, Linux performs load balancing in the second level
of the hierarchy, moving processes among closer nodes, i.e.,
on the same crossbar. The processes will be migrated to the
most distant nodes in the third level of the hierarchy, only
if there is still load imbalance among nodes. Thus, with the
3-level sched domain hierarchy, Linux can actually try to
keep the processes closer to their memory area, improving
their execution times.

2.4 Implementation
In the current Linux kernel version, the sched domains

hierarchy is built in the arch init sched domains function,
located in the kernel/sched.c file. In order to implement the
proposed algorithm for the construction of a multilevel sched
domains hierarchy, we have changed this specific function
and created some auxiliary functions.

We have developed a patch for the current Linux kernel
version (2.6.14). This patch is available in the PeSO project
web site [16].

3. NUMERICAL RESULTS
In order to compare the performance of the Linux load

balancing algorithm when the sched domains hierarchy is
built using the current Linux algorithm and using our pro-
posed algorithm, we use the JavaSim simulation tool [12],
and the KernBench benchmark [13]. Kernbench is a CPU
throughput benchmark that compiles a kernel with various
numbers of concurrent jobs and provides the average execu-
tion time for each group of compilings.

Figure 7 shows the results from the KernBench bench-
mark. The computer we have run the benchmark is the
HP Integrity Superdome shown in Figure 1. We have built
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Figure 5: 3-level sched domains hierarchy
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the sched domains to consider: i) two memory access levels
(line “2 levels”); ii) only one memory access level (line “1
level SMP”); iii) only one memory access level (line “1 level
NUMA”), but to execute load balancing only at the node
level and not at the CPU level. This strategy was used to
verify the influence of using a system that does not consider
the right number of memory access levels when executing
the load balancing. As can be seen in Figure 7, when all
memory access levels are taken into consideration by the
load balancing algorithm (line “2 levels”), the system has a
better performance, since it will consider first to balance the
system load among processors in the same node, and only
after that, it will consider load balancing among processors
from different nodes. Furthermore, the execution of load
balancing only at node level (line “1 level NUMA”) shows a
worse performance than executing load balancing consider-
ing all processors in the system (line “1 level SMP”). This
is due to the fact that the load balancing algorithm will
consider only processors from different nodes to balance the
system load.

Regarding the simulation results, we considered the fol-
lowing1: static priority (nice value) equal to 0; average pro-
cess execution time of 500 milliseconds; average processing
time, before yielding the processor, of timeslice+nice value

milliseconds; and, average IO time of 1 second. In our sim-
ulation tests we have defined workloads between 50 and 500
processes. For each test case, we performed 1,000 simulation

1Values are based on benchmark results or Linux constants.

runs, with standard deviation between 0,4% and 1,3%, and
confidence coefficient of 99%.
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Figure 8: SGI Altix 3000 server

We have considered two commercial machines in the simu-
lations to verify the system performance when our proposed
algorithm is used. The computers we used were the SGI Al-
tix 3000 server with six memory access levels (Figure 8) and
the HP Integrity Superdome computer with three memory
access levels (Figure 2).
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Figure 9: SGI Altix 3000 simulation results

The SGI Altix computer has 16 nodes and only two pro-
cessors per node. The simulation results for this machine
are presented in Figure 9. For this machine, the average
performance improvement was 10%. The HP Superdome
computer in Figure 2 has three memory access levels and
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four processors per node. For this machine, the simulation
achieves an average performance improvement of 2.2% (Fig-
ure 10).
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Figure 10: HP Superdome simulation results

4. CONCLUSION
This paper has discussed the performance benefits of

a new approach for operating systems load balancing in
NUMA computers. In order to evaluate this new approach,
we used benchmarking and simulation. The simulation re-
sults we obtained have driven an actual implementation of
our approach in the Linux operating system. Linux does
implement a load balancing algorithm but its implementa-
tion considers only NUMA computers that have up to two
memory access levels. Such implementation does not take
full advantage of the correct machine’s topology, as shown
in our simulation results.

The actual architectures we have used in our models were
the HP Superdome and SGI Altix 3000 with different num-
ber of memory access levels. We have also implemented our
strategy on the HP Superdome Computers, and the bench-
mark results we obtained are very promising.

The major contributions of this paper are related to the
use of the ACPI SLIT table information to build the sched
domains hierarchy; benchmark and simulation results for
operating systems load balancing algorithm in NUMA com-
puters; and actual implementation of our proposal on an
actual operating system.

From our simulation model we have already verified that
in at least one situation our solution would not improve the
overall system performance. This situation occurs when a
machine has several memory access levels, few processors
per node and different process priorities. Such problem is
due to the fact that Linux does not migrate process memory
when the process is migrated. We have already constructed
a simulation model showing the benefits of memory page mi-
gration in NUMA computers. Our next step is to integrate
both Linux load balancing and memory migration.
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