
Chapter 3

TLA SPECIFICATION OF A MECHANISM
FOR CONCURRENT EXCEPTION
HANDLING

A velino Francisco Zorzo
Faculdade de Informatica- PUCRS- 90619-900- Porto Alegre- RS- Brazil
zorzo@i nf.pucrs. br

Brian Randell
University of Newcastle upon Tyne - NEJ RU- Newcastle upon Tyne - UK
brian. ra ndell @ncl.ac.u k

Alexander Romanovsky
University of Newcastle upon Tyne - NEJ RU- Newcastle upon Tyne - UK
alexander. romanovsky@ ncl.ac. uk

Abstract Recently the concept of dependable multiparty interaction (DMI) has
been introduced. In a multiparty interaction, several parties (objects
or processes) somehow "come together" to produce an intermediate
and temporary combined state, use this state to execute some activ­
ity, and then leave this interaction and continue their normal execution.
The concept of multiparty interactions has been investigated by sev­
eral researchers, but to the best of our knowledge none have considered
how failures in one or more participants of the multiparty interaction
could be dealt with. In this paper, we show how this mechanism deals
with concurrent exceptions raised during an interaction. This is shown
through a formal description of the DMI concept. We use Temporal
Logic of Actions (TLA) in order to formally describe the DMI features.

Keywords: Distributed and Parallel Systems, Multiparty Interactions, Concurrent
Exception Handling

41

P. Ezhilchelvan and A. Romanovsky (eds.), Concurrency in Dependable Computing, 41-59.
© 2002 Kluwer Academic Pubhshers.

42 Chapter 3

1. Introduction
It is very common for software developers to write programs under

the optimistic assumption that nothing will go wrong when the program
is executed. Unfortunately, there are many factors that can make this
assumption invalid. For example, an arithmetic expression that may
cause a division by zero; an array that is indexed with a value that
exceeds the declared bounds; the square root of a negative number;
a request for memory allocation during run-time that may exceed the
amount of memory available; opening a file that does not exist; and
many more.

When any of such event happens the system will often fail in an unex­
pected way. This is not acceptable in current programming standards.
To improve reliability, it is important that such circumstances are de­
tected and treated appropriately. Conventional control structures, such
as the if-then-else command, are inadequate. For example, to check that
an index of an array is always valid, a programmer could explicitly test
the value of the index each time before using it, which is cumbersome
and could often be forgotten or intentionally omitted. A better way
would be to rely on the underlying system to trap the situation where
array indexes are outside the array bounds. To cope with this kind of
situation, several programming languages provide features for handling
such circumstances, i.e. exception handling.

Exception handling in sequential programs is a well-known subject
with several languages providing mechanisms for handling exceptions.
Exception handling in parallel programs is much more complex than in
sequential programs. Exceptional termination in a process can have a
strong impact on other processes. For example, consider a set of pro­
cesses that communicate with each other via a rendezvous mechanism.
A process may terminate abruptly due to the presence of an exception.
Processes that need to communicate with the process that was termi­
nated, may be suspended for ever because the terminated process will
not be ready for communication anymore.

The problem of dealing with concurrent exceptions has been addressed
in different systems [1] and models [2] [3]. For example, the VAXELN
programming environment from Digital [1] provides means for a process
to raise exceptions in other processes. The raising of an exception in
a different process is done in an unstructured manner. A process can
enable or disable this kind of exceptions. Raising an exception in a
process that has disabled this kind of exception has no effect. The
approach of allowing an exception in a process to be raised in a different
process outside a structured framework can have a devastating effect

TLA specification of a mechanism for concurrent exception handling 43

on program modularity. This is especially the case when the raising of
exceptions in other processes cannot be restricted.

In [2], a model for dealing with concurrent exceptions explores the use
of an exception tree. Exceptions that can be signalled by a component
of a parallel block C are organized in a tree structure. The root of this
tree contains the universal exception, i.e. the exception that represents
the whole exceptional domain of C. When more than one exception is
raised concurrently, a handler for an exception that is ancestor to all
exceptions raised is executed. In the worst case scenario, a handler for
the universal exception is executed. In [3], a different model that relies
on the definition of resolution functions within classes is presented. In
this model, a resolution function takes a sequence of exceptions as input
parameter and returns an exception.

Despite the aforementioned efforts, mechanisms for dealing with con­
current exceptions in programming languages are still in their early
stages. For example, in the Ada 95 [4] rendezvous mechanism, if an
exception is raised during a rendezvous and not handled in the accept
statement, that exception is propagated to both tasks and must be han­
dled in two places. However, Ada 95 does not provide any mechanism
to handle concurrent exceptions.

A mechanism that handles concurrent exception has been presented in
[5]. This mechanism is called dependable multiparty interaction (DMI)
and is able to cope with several concurrent exceptions being raised during
an activity executed jointly by a set of participants (processes/threads).

The main goal of this paper is to present how Temporal Logic of Ac­
tions (TLA) [6] can be applied to describe dependable programming/spe­
cification constructs, such as the DMI concept. TLA is a formalism
suitable for describing state transition systems and their properties us­
ing a uniform notation. Hence being suitable to describe fault tolerance
mechanisms. For example, the one described in this paper.

This paper is organized as follow. Section 2 introduces the concept
of dependable multiparty interaction. Section 3 presents the formalism
used to describe the DMI properties. Section 4 shows the formal de­
scription of the DMI properties. Section 5 discusses the related work.
Section 6 draws some conclusions.

2. Dependable Multiparty Interactions
Existing multiparty interaction mechanisms [7] [8] do not provide fea­

tures for dealing with possible failures that may happen during the
execution of the interaction. Typically, the underlying system that is
executing those multiparty interactions will simply stop the system in

44 Chapter 3

response to a failure. In DisCo [9], for instance, if an assertion inside an
action is false, then the run-time system is assumed to stop the whole ap­
plication. This is unacceptable in many situations, e.g. a flying aircraft
or a pacemaker (see [10] for more examples).

In this section, multiparty interactions are augmented with an excep­
tion handling facility to form a new construct: the dependable multiparty
interaction (DMI). The DMI mechanism is based on a structuring mech­
anism called Coordinated Atomic Action (CA action) [11], which brings
together the concept of conversation [12] and transaction [13]. Specifi­
cally, a DMI provides facilities for:

• HANDLING CONCURRENT EXCEPTIONS: when an exception occurs
in one of the bodies of a participant, and is not dealt with by that
participant, the exception must be propagated to all participants
of the interaction [2]. A DMI must also provide a way of dealing
with exceptions that can be raised by one or more participants.
Finally, if several different exceptions are raised concurrently, the
D MI mechanism has to decide which exception will be raised in all
participants.

With respect to how the participants of a DMI will be involved
in the exception resolution and exception handling, there are two
possible schemes: synchronous or asynchronous. In synchronous
schemes, each participant has to either come to the action end
or to raise an exception; it is only afterwards that it is ready to
participate in any kind of exception handling; this means that the
participant's execution cannot be pre-empted if another partici­
pant raises an exception. In asynchronous schemes, participants
do not wait until they finish their execution or raise an excep­
tion to participate in the exception handling; once an exception
is raised in any participant of the DMI, all other participants are
interrupted and handle the raised exceptions together. Although
implementing synchronous schemes is easier than asynchronous,
because all participants are ready to execute the exception han­
dling, the synchronous scheme can bring the undesirable risk of
deadlock. Therefore the asynchronous scheme is adopted;

• ASSURING CONSISTENCY UPON EXIT: participants can only leave
the interaction when all of them have finished their roles and the
external objects are in a consistent state. This property guarantees
that if something goes wrong in the activity executed by one of the
participants, then all participants have an opportunity to recover
from possible errors.

TLA specification of a mechanism for concurrent exception handling 45

~
;;l
:0
0

activation

1
"1:1

~ ~ ~
;;l ~ ~
:0 :0
0 0

flow of control

"1:1

1
~

"1:1

~ ..
I ~

~
0

1
~

DMI

multiparty
inleraction
activity

Figure 1. Dependable Multiparty Interaction

The key idea for handling exceptions is to build DMis out of not
necessarily reliable multiparty interactions by chaining them together,
where each multiparty interaction in the chain is the exception handler
for the previous multiparty interaction in the chain. Figure 1 shows how
a basic multiparty interaction and exception handling multiparty inter­
actions are chained together to form a composite multiparty interaction,
in fact what we term a DMI, by handling possible exceptions that are
raised during the execution of the DMI. As shown in the figure, the basic
multiparty interaction can terminate normally, raise exceptions that are
handled by exception handling multiparty interactions, or raise excep­
tions that are not handled in the DMI. If the basic multiparty interaction
terminates normally, the control flow is passed to the callers of the D MI.
If an exception is raised, then there are two possible execution paths to
be followed: i) if there is an exception handling multiparty interaction
to handle this exception, then it is activated by all roles in the DMI; ii)
if there is no exception handling multiparty interaction to handle the
raised exception, then this exception is signalled to the invokers of the
DMI. The whole set of basic multiparty interaction and their associated
exception handling multiparty interactions form a single entity: they are
isolated from the outside so that internal activities (e.g., the raising of
an exception) are not visible to the enclosing environment.

46 Chapter3

The exceptions that are raised by the basic multiparty interaction or
by a handler, should be the same for all roles in the DMI. If several roles
raise different concurrent exceptions, the DMI mechanism activates an
exception resolution algorithm based on [2] to decide which common
exception will be raised and handled.

In view of our interest in dependability, and in particular fault tol­
erance, we adopt the use of pre and post-conditions, which are checked
at run-time. Regarding the remaining alternatives presented in [7] and
[14], we have made the following design choices for DMis:

• although the particular processes involved should be able to vary
from one invocation of a DMI to the next, their number in a given
DMI should be fixed;

• the processes should synchronise their entry to and exit from the
DMI;

• the DMI mechanism should ensure that as viewed from outside the
DMI, its system state should change atomically, though inside the
DMI intermediate internal states will be visible;

• the way the underlying system executes a DMI can be synchronous
or asynchronous.

The choice for allowing a varying set of processes to enrole into a DMI
is related to the expressive power of the language construct we intend
to provide. In [7] a taxonomy of languages that provide multiparty
interactions as a basic construct is presented. In the presented taxonomy,
the basic construct that presents the higher degree of expressiveness is
a team. A DMI is a team, hence choice (i) was made. Synchronisation
upon entry and exit (choice (ii)) is crucial if we want to have some kind
of guard to be tested before the DMI commences, or an assertion to
be tested before the DMI terminates. For example, if participants in
a DMI are allowed to terminate without synchronising upon exit, then
the process of involving that participant in the handling of an exception
raised by another participant of the DMI will be much more difficult.
Paper [15] discusses several issues related to termination of processes
that should not interfere with each other, e.g. issues related to error
recovery before a process has terminated, or error recovery after a process
has terminated the execution of an activity. Choice (iii) is related to
the visibility of shared data inside the DMI and outside of the DMI. The
related "frozen initial state" property discussed in [14] is used in relation
to the participants that are outside the DMI, i.e. they see the change
of shared data as being instantaneous when the DMI terminates. Our

TLA specification of a mechanism for concurrent exception handling 4 7

proposal differs from [14] in relation to the visibility of shared data inside
the DMI. In our proposal, participants can exchange data inside the
DMI, while in [14] participants of a multiparty interaction view shared
data as "frozen" when the multiparty interaction commences.

3. Formal Semantics
A well-defined syntactic and semantic description of a language is

essential for helping good design and programming of a system. The
syntax of a language describes the correct form in which programs can
be written while the semantics expresses the meaning that is attached
to the various syntactic constructs. While syntax diagrams and Backus­
Naur Form- BNF have become standard tools for describing the syntax
of a language, no such tools have become widely accepted and standard
for describing the semantics of a language. Different formal approaches
to semantics definition exist, e.g. operational semantics, axiomatic se­
mantics, or denotational semantics. Several authors report how to use
these approaches for describing the semantics of programming languages
[16] [17].

Concurrent systems are usually described in terms of their behaviour
- what they do in the course of an execution [18]. The Temporal Logic
formal model [19] was introduced to describe such behaviour of concur­
rent systems. A variation of Temporal Logic that makes it practical
to write a specification as a single formula was presented in [6]. This
variation is called Temporal Logic of Actions - TLA. TLA provides the
mathematical basis for describing properties of concurrent systems.

3.1 Temporal Logic of Actions
The Temporal Logic of Actions - TLA [6] is a formalism suitable for

describing state transition systems and properties of such systems using
the same notation.

TLA is a linear-time logic in which expressions are evaluated for non­
terminating sequences of states. Each sequence of states is called a
behaviour. A state is an assignment of values to variables. Variables
that are used to model properties are state functions, which have unique
values in each state. A state function is a non-boolean expression built
from variables, constants, and constant operators. Semantically, a state
function assigns a value to each state. An individual state change is
called a step. A step that allows variables to stay unchanged is called a
stuttering step.

An action is a boolean expression containing primed and unprimed
variables. For any pair of states, primed variables refer to the second

48

process example is
integer x := 0;
body

loop x := x + 1; end;
end body

end process

Chapter 3

Figure 2. Simple Program in DIP

state whereas unprimed ones refer to the first state. An action is said to
be enabled in a state s if and only if there exists some state t such that
the pair of states < s, t > satisfies that action.

Rather than presenting the full description of TLA, a simple program
[6] in Dependable Interacting Processes (DIP) [20] is presented with
its corresponding TLA formula. The process, in Figure 2, initialises a
variable x with 0 and then keeps incrementing x by 1 forever.

The TLA formula for the above DIP process is defined as follows:

f1 ~ 1\ (x = 0)

1\ D [x' = x + 1] x
1\ WFx(x' = x + 1)

A TLA formula is true or false on a behaviour. Formula f1, presented
above, is true on a behaviour in which the ith state assigns the value
i- 1 to x, for i = 1, 2, In the above TLA formula, the conjunct (x

= O) specifies that initially, x is equal to 0; the conjunct D [x' = x + 1]x

specifies that the value of x in the next state (x') is always (D) equal
to its value in the current state (x) plus 1. The subscript x specifies
that stuttering steps are allowed, i.e. steps where the value of x is left
unchanged. The WFx(x' = x + 1) conjunct rules out behaviours in which
x is incremented only a finite number of times. It asserts that, if the
action (x' = x + 1) 1\ (x' f. x) ever becomes enabled and remains en­
abled forever, then infinitely many (x' = x + 1) 1\ (x' f. x) steps occur.
WF stands for Weak Fairness.

In the next section the specification of the dependable multiparty
interaction mechanism is presented in TLA.

TLA specification of a mechanism for concurrent exception handling 49

4. DMI in TLA
In this section we will present the semantics of dependable multiparty

interactions. However, before we start formally describing the semantics
of DMI in TLA, consider the following:

• a DMI is represented by a set of roles that are executed by players;

• a player has to activate a role in DMI in order to execute the
commands inside a role;

• a DMI only starts when all roles of the DMI have been activated,
and the guard (boolean expression) at the beginning of the DMI
is true;

• the DMI only finishes when all players have finished executing their
roles, and the assertion at the end of the DMI (boolean expression)
is true (if no exceptions were raised);

• roles can only access data that is sent to them when they are
activated, or data that is sent to them by other roles belonging to
the same DMI;

• exceptions may be raised during the execution of a DMI, in which
case all roles that have not raised an exception are interrupted;
an exception resolution algorithm is executed when all roles either
have raised an exception or have been interrupted.

• if there is a handler to deal with the exception that was decided
upon by the exception resolution algorithm, then this handler is
activated by all roles;

• if there is no handler to deal with the exception that was decided
upon by the exception resolution algorithm, then the exception is
raised in the callers of all roles;

• handlers have the same number of roles as the DMI to which they
are connected.

In order to formally specify the semantics of a DMI in TLA, we will
use the following sets, predicates and state variables:

• Exceptions: the set of exceptions handled by the DMI;

• Commands: a set of commands;

• Objects: a set of objects;

50 Chapter 3

• Players: a set of players that can participate in a DMI;

• Roles: contains the roles of a DMI. Each element of this set IS

a record with a field to represent the state of the role, a field to
represent the result of the role after the commands of this role have
been executed, a field to store those coDDnands, and a field containing
the set of objects manipulated by the role;

• Handlers: the set of handlers for the DMI;

• GuardExpression(e): a predicate representing the execution of the
precondition of the DMI. The parameter e contains the set of all
tuples <p,er,o>, where p represents a player that is enroled to the
role er, and o is the set of objects sent to the role by the player;

• AssertionExpression(e): the same as GuardExpression(e) but for the
post-condition of the DMI;

• ExecuteCoDDnands (e): execute the commands for the corresponding
role;

• Resolve (enroled): execute the exception resolution algorithm for all
roles in the DMI. After this algorithm has been executed all roles
will produce the same exceptional result;

• four state variables: i) guard, which indicates whether the DMI
can be started or not; ii) assert, which indicates whether the DMI
was finished successfully or not; iii) enroled, which stores the roles
that have already been enroled to in a particular execution of the
DMI; and, iv) elements, which stores the tuples <p,er,o> that are
used when executing the roles commands.

The type invariant specifies that the guard and assert are BOOLEAN vari­
ables, the state of a role can only have one of the values from the set
{"wait" ,"ended", "started"}, and the result of a role can either have a value
from the set {"ok", "interrupted"} or from the set of possible exceptions
in Exceptions. The type invariant is defined as:

Typelnvariant ~ 1\ guard, assert E BOOLEAN
1\ Vr E Roles :

r. state E {"wait", "ended" ,"started"}
1\ Vr E Roles:

r.result E {"ok","interrupted"}UExceptions
1\ enroled ~ Roles
1\ elements ~ Players X Roles X Objects

TLA specification of a mechanism for concurrent exception handling 51

The initial condition for the DMI is that all roles are in a waiting
state, both guard and assert have the value FALSE, and the enroled and
elements sets are empty. The !nit predicate is defined in TLA as:

!nit ~ 1\ Vr E Roles: r.state = "wait"
1\ guard = FALSE
1\ assert = FALSE
1\ enroled = {}
1\ elements = {}

For a player p to enrole in a role er with a set of objects o, it has to
execute the action Enrole(p,er,o). This step is only enabled if role er
belongs to the set of Roles in the DMI and no other player has enroled to
such a role. This is expressed by the first two conjuncts of the following
TLA formula. If this step is enabled, then the role er is added to the
enroled set and the tuple <p, r, o> is added to the elements set. The
Enrole(p,er,o) action is defined in TLA as:

~
Enrole(p,er,o) 1\ erE Roles

1\ er fl. enroled
1\ enroled 1 = enroled U {er}
1\ elements' = elements U {<p,er,o>}
1\ UNCHANGED (guard, assert)

The DMI only begins if all roles have a player enroled to and the
precondition is true. The testing of the guard with all players enroled is
defined by the following two TLA conjunctions:

Guard ~ 1\ Vr E Roles : r E enroled
1\ guard' = GuardExpression (elements)
1\ UNCHANGED (enroled, elements, assert)

Begin ~ 1\ guard = TRUE
1\ Vr E Roles: r. state 1 = "started"
1\ UNCHANGED (enroled, elements, assert, guard)

The execution of all roles is defined in the action ExecuteRoles. This
step is only enabled if all roles have state = "started". If enabled, then
the result of the execution of the set of commands of a role is stored in
the field result. The ExecuteRoles is defined in TLA as:

ExecuteRoles ~ 1\ Vr E Roles: r.state = "started"
1\ V<p,r,o> E elements:

r. result 1 = ExecuteCommands (< p, r, o >)
1\ UNCHANGED (enroled, assert, guard)

When all roles have executed their commands without raising an ex­
ception, i.e. their state is equal to "ok", the post-condition expression

52 Chapter 3

can be tested. The assert variable changes its value based on the execu­
tion of the AssertionExpression(elements) action. The post-condition of a
D MI is defined as:

Assertion ~ 1\ Vr E Roles: r. result = "ok"
1\ assert 1 = AssertionExpression(elements)
1\ UNCHANGED (enroled, elements, guard}

If no exceptions were raised, then the normal termination of a DMI
is defined in the NormalEnd action. The condition that enables this step
is assert = TRUE, i.e. the post-condition was passed. This step changes
the state of all roles to "wait", meaning that the roles are ready to be
executed again. The sets enroled and elements are emptied. The TLA
definition of NormalEnd is:

NormalEnd
a

1\ TRUE assert =
1\ Vr E Roles: r.state' "wait"
1\ enroled' = (}
1\ elements' = (}
1\ assert' = FALSE
1\ guard' = FALSE

Figure 3 shows the complete first part of the formal semantics of a
DMI. In the figure all conjunctions are related to the normal execution
of a DMI. In Figure 4, we define the formal semantics for the steps that
are taken in case of one or more exceptions being raised. An exception
can be raised during the execution of the set of commands of a role in
the ExecuteCommands action.

The activation of a handler depends on the state of the roles. A han­
dler is only activated when all roles have the same value for their result,

and there exists a handler for the exception resolved by the resolution
algorithm. The activation of a handler is defined as:

ActivateHandler ~ 1\ Vr1,r2 E Roles: (r1.result = r2 .result)
1\ 3h E Handlers: (3r E Roles: r.result E h.Exc)
1\ UNCHANGED (enroled, elements, assert, guard}

The resolution algorithm on the other hand, is activated once all roles
have raised an exception, i.e. their result belongs to the set Exceptions,

or have been interrupted. The state of all roles has to be different from
"ok". This action is defined as:

ExceptionResolution ~ 1\ Vr E Roles: r.result -:f "ok"
1\ Resolve (enroled)
1\ UNCHANGED (enroled, elements, assert, guard}

TLA specification of a mechanism for concurrent exception handling 53

.--------------- MODULE DMI

EXTENDS Naturals, Sequences
VARIABLES enroled, elements, guard, assert

!nit
a

A Vr E Roles r.state "wait" :

A guard = FALSE
A assert = FALSE
A enroled = {}

A elements = {}

Type!nvariant ~ A guard, assert E BOOLEAN
A Vr E Roles r. state E {"wait", "ended", "started"}
A Vr E Roles : r.result E {"ok", "interrupted"} U Exceptions

Enrole(p,er,o) ~ A 3r1 E Roles : r1 = er
A Vr2 E enroled : r2 # er
A enroled 1 = enroled U {er}
A elements' = elements U {<p,er,o>}
A UNCHANGED {guard, assert)

Guard ~ A Vr E Roles : r E enroled
A guard' = GuardExpression(elements)

A UNCHANGED {enroled, elements, assert)

Begin ~ A guard = TRUE
A Vr E Roles : r.state 1 = "started"
A UNCHANGED {enroled, elements, assert, guard)

ExecuteRoles ~ A Vr E Roles : r.state = "started"
A V<p,r,o> E elements : r.result'
A UNCHANGED (enroled, assert, guard)

Assertion ~ A Vr E Roles : r.result = "ok"
A assert 1 = AssertionExpression(elements)
A UNCHANGED {enroled, elements, guard)

NormalEnd a A assert = TRUE
A Vr E Roles : r.state = "ended"
A Vr E Roles : r.state' = "wait"
A enroled 1 = {)
A elements 1 = ()
A assert 1 = FALSE
A guard 1 = FALSE

ExecuteCommands (< p, r, o >)

Figure 3. TLA Specification of a DMI (part 1)

54 Chapter]

InterruptRoles ~ A 3r1 E Roles r1 . result E Exceptions
A Vr2 E Roles IF r2 . result fl. Exceptions

THEN r2 .result 1 = "interrupted"
ELSE r2 .result 1 = r2 .result

A UNCHANGED (enroled, assert, guard)

ExceptionResolution ~ A Vr E Roles : r.result :f; "ok"
A Resolve (enroled)
A UNCHANGED (enroled, elements, assert, guard)

ActivateHandler ~ A Vr1 ,r2 E Roles : (r1.result = r2 .result)
A 3h E Handlers : (3r E Roles : r.result E h.Exc)
A UNCHANGED (enroled, elements, assert, guard)

ExceptionalEnd ~ A Vr1 ,r2 E Roles : r1.result = r2 .result

Next

Spec

A ~3h E Handlers : (3r E Roles : r.result E h.Exc)
A Vr E Roles : r. state = "ended"
A Vr E Roles : r. state 1 = "wait"
A enroled 1 = ()
A elements 1 = ()
A assert 1 = FALSE
A guard 1 = FALSE

~ V 3p E Players : (3er E Roles : (3o E Objects : Enrole(p,er,o)))
V Guard V Begin V ExecuteRoles V Assertion V NormalEnd V
V ExceptionalEnd V InterruptRoles V ActivateHandler

~ !nit A D [Next] (1 d 1 d) enro e , e ements, assert, guar

THEOREM Spec => D Type Invariant

Figure 4. TLA Specification of a DMI (part 2)

When a role terminates by raising an exception, then all other roles
have to be interrupted, causing the exception resolution algorithm to be
enabled. The step that represents the interruption of roles is Interrupt­

Roles. This step is enabled when at least one of the roles has raised an
exception. The raising of an exception is represented in the value that
the role's result assumes. If the value belongs to the set of Exceptions,

then the InterruptRoles action is enabled. The step will then set the state
of all roles, which did not raise an exception, to "interrupted". Even if
a role has terminated it will be interrupted when another role raises an
exception. The InterruptRoles actions is defined in TLA as:

TLA specification of a mechanism for concurrent exception handling 55

InterruptRoles ~ A 3r1 E Roles: r1. result E Exceptions
A Vr2 E Roles: IF r2.result ~Exceptions

THEN r2 .result 1 = "interrupted"
ELSE r2 . result 1 = r2 . result

A UNCHANGED (enroled, assert, guard)

If exceptions were raised and there is no exception handler for the
exception that resulted from the exception resolution algorithm, then
the exceptional termination of a DMI is defined in the ExceptionalEnd

action. This step is enabled when all roles have the same result and
there is no exception handler for that result. This step changes the state
of all roles to "vait", meaning that the roles are ready to be executed
again. The sets enroled and elements are emptied. The TLA definition
of ExceptionalEnd is:

ExceptionalEnd ~ A Vr1 ,r2 E Roles: r1.result = r2 .result
A ~3h E Handlers: (3r E Roles: r.result E h.Exc)
A Vr E Roles: r. state = "ended"
A Vr E Roles: r.state 1 = "vait"
A enroled 1 = ()
A elements 1 = {)
A assert 1 = FALSE
A guard 1 = FALSE

5. Related work
The semantics described in Section 4 deals with the basic rules of

a DMI, i.e. pre and post-synchronisation, roles activation, exception
handling, and roles interruption.

We did not attempt to describe formally the semantics of the execu­
tion of the role's commands. The way external objects guarantee ACID
properties is also not described (a formal description of the ACID prop­
erties can be found in [21]). In [22], for example, formal description
of properties for a mechanism similar to the DMI (Coordinated Atomic
actions [11]- CA actions differ from DMis in the way exceptions are han­
dled during the interaction) is given in Temporal Logic. In [23], a formal
approach is used to model and verify a safety-critical system (namely
the fault-tolerant production cell) designed using CA actions. In order
to model-checking, the state transition system corresponding to a CA
action based design is expressed in SMV (Symbolic Model Checking)
[24] and system properties expressed in CTL [25].

The COALA framework [26] is proposed to allow system developers
to model systems using the CA action concept. Within this work a for­
malisation of the CA action concept is developed that uses CO-OPN /2:

56 Chapter3

an object-oriented language based on Petri nets and partial order-sorted
algebraic specifications.

The ERT model (ERT stands for extraction, refusals and traces) is
used for formalising the CA action concept [27]. Refusals and traces are
terms coming from CSP; term extraction refers to a specific technique
used to relate systems specified at different levels of abstractions.

A mathematical framework based on Timed CSP for representing the
use of CA actions in real-time safety-critical systems is proposed in [28].
It allows the interactions between concurrently functioning equipment
items to be modelled and their behaviour to be reasoned about in an
abstract way. The framework models dynamic system structuring us­
ing CA actions by explicitly modeling synchronisation between items
and the controlling system. Although the framework is not developed
for dealing with erroneously behaving action participants, it allows for
better understanding of the CA action concept and can be used in de­
veloping general models incorporating mechanisms supporting system
safety.

6. Conclusion
The strategy of dealing with concurrent exceptions by enclosing them

in a language mechanism presented in this paper, has been successfuly
applied to several case studies [29] [30] [31]. This paper has showed how
TLA can be used to formally describe the semantics of a mechanism that
implements this strategy. The formal model described in this paper is
now being applied to a case study, which will be model-checked using
TLA tools.

We believe that based on the description of the formal semantics pre­
sented in this paper, the process of implementing languages like De­
pendable Interacting Processes [5] [20], which include DMis as a basic
language construct will be greatly facilitated.

Acknowledgments
We would like to thank our colleagues from the Department of Com­

puting Science at the University of Newcastle, Robert Stroud and Ian
Welch, and from the University of Durham, Jie Xu, for several discus­
sions that helped in formulating the dependable multiparty interaction
concept. This work is supported by FAPERGS and CNPq/Brazil (grant
number 520503 /00-7). Alexander Romanovsky is supported by Euro­
pean IST DSoS project (IST-1999-11585). We also thank the reviewers
for their contribution in making this a better paper.

TLA specification of a mechanism for concurrent exception handling 51

References

[1] Digital Equipament Corporation, Massachusetts, USA. VAXELN
Pascal language reference manual: Programming, 1986.

[2] R. H. Campbell and B. Randell. Error recovery in asynchronous
systems. IEEE Transactions on Software Engineering, 12(8):811-
826, 1986.

[3] V. Issarny. An exception handling mechanism for parallel object­
oriented programming: Toward reusable, robust distributed soft­
ware. Journal of Object Oriented Programming, 6(6):29-39, 1993.

[4] International Standard for Organization. Ada g5 Reference Manual
- IS0/8652-1995. ISO, 1995.

[5] A. F. Zorzo. Multiparty Interactions in Dependable Distributed Sys­
tems. PhD thesis, University of Newcastle upon Tyne, Newcastle
upon Tyne, UK, 1999.

[6] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, 1994.

[7] Y.-J. Joung and S. A. Smolka. A comprehensive study of the com­
plexity of multiparty interaction. Journal of ACM, 43(1):75-115,
1996.

[8] I. Forman and F. Nissen. Interacting Processes - A multiparty ap­
proach to coordinated distributed programming. ACM Publishers,
1996.

[9] H.-M. Jarvinen and R. Kurki-Suonio. Disco specification language:
Marriage of actions and objects. In 11th International Conference
on Distributed Computing Systems, pages 142-151. IEEE CS Press,
1991.

[10] N. G. Levenson. Safeware: System, safety and computers. Addison
Wesley, Reading, MA, USA, 1995.

[11] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. J. Stroud, and
Z. Wu. Fault tolerance in concurrent object-oriented software
through coordinated error recovery. In 25th International Sympo­
sium on Fault-Tolerant Computing, pages 450-457. IEEE Computer
Society Press, 1995.

[12] B. Randell. Systems structure for software fault tolerance. IEEE
Transactions on Software Engineering, 1(2):220-232, 1975.

58 Chapter]

[13] J. Gray and A. Reuter. Transaction processing: concepts and tech­
niques. Morgan Kaufmann Publishers, San Mateo, CA, USA, 2nd
edition, 1993.

[14] M. Evangelist, N. Francez, and S. Katz. Multiparty interactions for
interprocess communication and synchronization. IEEE Transac­
tions on Software Engineering, 15(11):1417-1426, 1989.

[15] C. T. Davies. Data processing spheres of control. IBM Systems
Journal, 17(2):179-198, 1978.

[16] R. D. Tennent. Semantics of Programming Languages. Prentice
Hall, Englewood Cliffs, NJ, USA, 1991.

[17] M. Hennessy. The Semantics of Programming Languages: An ele­
mentary introduction using Structural Operational Semantics. John
Wiley & Sons, Chichester, UK, 1990.

[18] L. Lamport. Specifying concurrent systems with TLA +. In M Broy
and R. Steinbruggen, editors, Calculational System Design. lOS
Press, Amsterdam, 1999.

[19] A. Pnueli. The temporal logic of programs. In 18th Annual Sympo­
sium on the Foundations of Computer Science, pages 46-57. IEEE
CS Press, 1977.

[20] A. F. Zorzo. A language construct for DMis. In II Workshop of
Tests and Fault Tolerance, Curitiba, PR, Brazil, 2000.

[21] N. Lynch, M. Merrit, W. Weihl, and A. Fekete. Atomic Transac­
tions. Morgan Kaufmann, 1994.

[22] D. Schwier, F. von Henke, J. Xu, R. J. Stroud, A. Romanovsky,
and B. Randell. Formalization of the CA action concept based on
temporal logic. In De Va - Design for Validation, 2nd year, pages
3-15. ESPRIT Long Term Project 20072, 1997.

[23] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, E. Canver
A. F. Zorzo, and F. von Henke. Rigorous development of a safety­
critical system based on coordinated atomic actions. In 29th In­
ternational Symposium on Fault- Tolerant Computing, pages 68-75.
IEEE CS Press, 1999.

[24] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Press,
1993.

TLA specification ~fa mechanism for concurrent exception handling 59

[25) E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, ed­
itor, Handbook of Theoretical Computer Science, chapter 16, pages
995-1072. Elsevier Science Publishers, 1990.

[26] J. Vachon. COALA: a design language for reliable distributed sys­
tems. PhD thesis, Swiss Federal Institue of Technology, Lausanne,
Switzerland, 2000.

[27) M. Koutny and G. Pappalardo. The ERT model of fault-
tolerant computing and its applicaton to formalisation of co­
ordinated atomic actions. Technical Report 636, Depart­
ment of Computing Science, Newcastle upon Tyne, UK, 1998.
http:/ /www.cs.ncl.ac.uk/research/trs.

[28] S. Veloudis and N. Nissanke. Modelling coordinated atomic actions
in timed CSP, volume 1926 of Lectures Notes in Computing Science,
pages 228-239. Springer Verlag, Berlin, Germany, 2000.

[29] A. F. Zorzo and R. J. Stroud. A distributed object-oriented frame­
work for dependable multiparty interactions. In 14th ACM Confer­
ence on Object-Oriented Programming Systems, Languages and Ap­
plications - OOPSLA '99, pages 435-446, Denver, CO, USA, 1999.
ACM Press.

[30) A. F. Zorzo, A. Romanovsky, B. Randell J. Xu, R. J. Stroud, and
I. S. Welch. Using coordinated atomic actions to design safety­
critical systems: A production cell case study. Software: Practice
and Experience, 29(8):677-697, 1999.

[31] A. Romanovsky and A. F. Zorzo. Coordinated atomic actions as
a technique for implementing distributed GAMMA computation.
Journal of Systems Architecture - Special Issue on New Trends in
Programming, 45(9):79-95, 1999.

