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Abstract Recently the concept of dependable multiparty interaction (DMI) has 
been introduced. In a multiparty interaction, several parties (objects 
or processes) somehow "come together" to produce an intermediate 
and temporary combined state, use this state to execute some activ­
ity, and then leave this interaction and continue their normal execution. 
The concept of multiparty interactions has been investigated by sev­
eral researchers, but to the best of our knowledge none have considered 
how failures in one or more participants of the multiparty interaction 
could be dealt with. In this paper, we show how this mechanism deals 
with concurrent exceptions raised during an interaction. This is shown 
through a formal description of the DMI concept. We use Temporal 
Logic of Actions (TLA) in order to formally describe the DMI features. 
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1. Introduction 
It is very common for software developers to write programs under 

the optimistic assumption that nothing will go wrong when the program 
is executed. Unfortunately, there are many factors that can make this 
assumption invalid. For example, an arithmetic expression that may 
cause a division by zero; an array that is indexed with a value that 
exceeds the declared bounds; the square root of a negative number; 
a request for memory allocation during run-time that may exceed the 
amount of memory available; opening a file that does not exist; and 
many more. 

When any of such event happens the system will often fail in an unex­
pected way. This is not acceptable in current programming standards. 
To improve reliability, it is important that such circumstances are de­
tected and treated appropriately. Conventional control structures, such 
as the if-then-else command, are inadequate. For example, to check that 
an index of an array is always valid, a programmer could explicitly test 
the value of the index each time before using it, which is cumbersome 
and could often be forgotten or intentionally omitted. A better way 
would be to rely on the underlying system to trap the situation where 
array indexes are outside the array bounds. To cope with this kind of 
situation, several programming languages provide features for handling 
such circumstances, i.e. exception handling. 

Exception handling in sequential programs is a well-known subject 
with several languages providing mechanisms for handling exceptions. 
Exception handling in parallel programs is much more complex than in 
sequential programs. Exceptional termination in a process can have a 
strong impact on other processes. For example, consider a set of pro­
cesses that communicate with each other via a rendezvous mechanism. 
A process may terminate abruptly due to the presence of an exception. 
Processes that need to communicate with the process that was termi­
nated, may be suspended for ever because the terminated process will 
not be ready for communication anymore. 

The problem of dealing with concurrent exceptions has been addressed 
in different systems [1] and models [2] [3]. For example, the VAXELN 
programming environment from Digital [1] provides means for a process 
to raise exceptions in other processes. The raising of an exception in 
a different process is done in an unstructured manner. A process can 
enable or disable this kind of exceptions. Raising an exception in a 
process that has disabled this kind of exception has no effect. The 
approach of allowing an exception in a process to be raised in a different 
process outside a structured framework can have a devastating effect 
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on program modularity. This is especially the case when the raising of 
exceptions in other processes cannot be restricted. 

In [2], a model for dealing with concurrent exceptions explores the use 
of an exception tree. Exceptions that can be signalled by a component 
of a parallel block C are organized in a tree structure. The root of this 
tree contains the universal exception, i.e. the exception that represents 
the whole exceptional domain of C. When more than one exception is 
raised concurrently, a handler for an exception that is ancestor to all 
exceptions raised is executed. In the worst case scenario, a handler for 
the universal exception is executed. In [3], a different model that relies 
on the definition of resolution functions within classes is presented. In 
this model, a resolution function takes a sequence of exceptions as input 
parameter and returns an exception. 

Despite the aforementioned efforts, mechanisms for dealing with con­
current exceptions in programming languages are still in their early 
stages. For example, in the Ada 95 [4] rendezvous mechanism, if an 
exception is raised during a rendezvous and not handled in the accept 
statement, that exception is propagated to both tasks and must be han­
dled in two places. However, Ada 95 does not provide any mechanism 
to handle concurrent exceptions. 

A mechanism that handles concurrent exception has been presented in 
[5]. This mechanism is called dependable multiparty interaction (DMI) 
and is able to cope with several concurrent exceptions being raised during 
an activity executed jointly by a set of participants (processes/threads). 

The main goal of this paper is to present how Temporal Logic of Ac­
tions (TLA) [6] can be applied to describe dependable programming/spe­
cification constructs, such as the DMI concept. TLA is a formalism 
suitable for describing state transition systems and their properties us­
ing a uniform notation. Hence being suitable to describe fault tolerance 
mechanisms. For example, the one described in this paper. 

This paper is organized as follow. Section 2 introduces the concept 
of dependable multiparty interaction. Section 3 presents the formalism 
used to describe the DMI properties. Section 4 shows the formal de­
scription of the DMI properties. Section 5 discusses the related work. 
Section 6 draws some conclusions. 

2. Dependable Multiparty Interactions 
Existing multiparty interaction mechanisms [7] [8] do not provide fea­

tures for dealing with possible failures that may happen during the 
execution of the interaction. Typically, the underlying system that is 
executing those multiparty interactions will simply stop the system in 
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response to a failure. In DisCo [9], for instance, if an assertion inside an 
action is false, then the run-time system is assumed to stop the whole ap­
plication. This is unacceptable in many situations, e.g. a flying aircraft 
or a pacemaker (see [10] for more examples). 

In this section, multiparty interactions are augmented with an excep­
tion handling facility to form a new construct: the dependable multiparty 
interaction (DMI). The DMI mechanism is based on a structuring mech­
anism called Coordinated Atomic Action (CA action) [11], which brings 
together the concept of conversation [12] and transaction [13]. Specifi­
cally, a DMI provides facilities for: 

• HANDLING CONCURRENT EXCEPTIONS: when an exception occurs 
in one of the bodies of a participant, and is not dealt with by that 
participant, the exception must be propagated to all participants 
of the interaction [2]. A DMI must also provide a way of dealing 
with exceptions that can be raised by one or more participants. 
Finally, if several different exceptions are raised concurrently, the 
D MI mechanism has to decide which exception will be raised in all 
participants. 

With respect to how the participants of a DMI will be involved 
in the exception resolution and exception handling, there are two 
possible schemes: synchronous or asynchronous. In synchronous 
schemes, each participant has to either come to the action end 
or to raise an exception; it is only afterwards that it is ready to 
participate in any kind of exception handling; this means that the 
participant's execution cannot be pre-empted if another partici­
pant raises an exception. In asynchronous schemes, participants 
do not wait until they finish their execution or raise an excep­
tion to participate in the exception handling; once an exception 
is raised in any participant of the DMI, all other participants are 
interrupted and handle the raised exceptions together. Although 
implementing synchronous schemes is easier than asynchronous, 
because all participants are ready to execute the exception han­
dling, the synchronous scheme can bring the undesirable risk of 
deadlock. Therefore the asynchronous scheme is adopted; 

• ASSURING CONSISTENCY UPON EXIT: participants can only leave 
the interaction when all of them have finished their roles and the 
external objects are in a consistent state. This property guarantees 
that if something goes wrong in the activity executed by one of the 
participants, then all participants have an opportunity to recover 
from possible errors. 



TLA specification of a mechanism for concurrent exception handling 45 

~ 
;;l 
:0 
0 

activation 

1 
"1:1 

~ ~ ~ 
;;l ~ ~ 
:0 :0 
0 0 

flow of control 

"1:1 

1 
~ 

"1:1 

~ .. 
I ~ 

~ 
0 

1 
~ 

DMI 

multiparty 
inleraction 
activity 

Figure 1. Dependable Multiparty Interaction 

The key idea for handling exceptions is to build DMis out of not 
necessarily reliable multiparty interactions by chaining them together, 
where each multiparty interaction in the chain is the exception handler 
for the previous multiparty interaction in the chain. Figure 1 shows how 
a basic multiparty interaction and exception handling multiparty inter­
actions are chained together to form a composite multiparty interaction, 
in fact what we term a DMI, by handling possible exceptions that are 
raised during the execution of the DMI. As shown in the figure, the basic 
multiparty interaction can terminate normally, raise exceptions that are 
handled by exception handling multiparty interactions, or raise excep­
tions that are not handled in the DMI. If the basic multiparty interaction 
terminates normally, the control flow is passed to the callers of the D MI. 
If an exception is raised, then there are two possible execution paths to 
be followed: i) if there is an exception handling multiparty interaction 
to handle this exception, then it is activated by all roles in the DMI; ii) 
if there is no exception handling multiparty interaction to handle the 
raised exception, then this exception is signalled to the invokers of the 
DMI. The whole set of basic multiparty interaction and their associated 
exception handling multiparty interactions form a single entity: they are 
isolated from the outside so that internal activities (e.g., the raising of 
an exception) are not visible to the enclosing environment. 
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The exceptions that are raised by the basic multiparty interaction or 
by a handler, should be the same for all roles in the DMI. If several roles 
raise different concurrent exceptions, the DMI mechanism activates an 
exception resolution algorithm based on [2] to decide which common 
exception will be raised and handled. 

In view of our interest in dependability, and in particular fault tol­
erance, we adopt the use of pre and post-conditions, which are checked 
at run-time. Regarding the remaining alternatives presented in [7] and 
[14], we have made the following design choices for DMis: 

• although the particular processes involved should be able to vary 
from one invocation of a DMI to the next, their number in a given 
DMI should be fixed; 

• the processes should synchronise their entry to and exit from the 
DMI; 

• the DMI mechanism should ensure that as viewed from outside the 
DMI, its system state should change atomically, though inside the 
DMI intermediate internal states will be visible; 

• the way the underlying system executes a DMI can be synchronous 
or asynchronous. 

The choice for allowing a varying set of processes to enrole into a DMI 
is related to the expressive power of the language construct we intend 
to provide. In [7] a taxonomy of languages that provide multiparty 
interactions as a basic construct is presented. In the presented taxonomy, 
the basic construct that presents the higher degree of expressiveness is 
a team. A DMI is a team, hence choice (i) was made. Synchronisation 
upon entry and exit (choice (ii)) is crucial if we want to have some kind 
of guard to be tested before the DMI commences, or an assertion to 
be tested before the DMI terminates. For example, if participants in 
a DMI are allowed to terminate without synchronising upon exit, then 
the process of involving that participant in the handling of an exception 
raised by another participant of the DMI will be much more difficult. 
Paper [15] discusses several issues related to termination of processes 
that should not interfere with each other, e.g. issues related to error 
recovery before a process has terminated, or error recovery after a process 
has terminated the execution of an activity. Choice (iii) is related to 
the visibility of shared data inside the DMI and outside of the DMI. The 
related "frozen initial state" property discussed in [14] is used in relation 
to the participants that are outside the DMI, i.e. they see the change 
of shared data as being instantaneous when the DMI terminates. Our 
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proposal differs from [14] in relation to the visibility of shared data inside 
the DMI. In our proposal, participants can exchange data inside the 
DMI, while in [14] participants of a multiparty interaction view shared 
data as "frozen" when the multiparty interaction commences. 

3. Formal Semantics 
A well-defined syntactic and semantic description of a language is 

essential for helping good design and programming of a system. The 
syntax of a language describes the correct form in which programs can 
be written while the semantics expresses the meaning that is attached 
to the various syntactic constructs. While syntax diagrams and Backus­
Naur Form- BNF have become standard tools for describing the syntax 
of a language, no such tools have become widely accepted and standard 
for describing the semantics of a language. Different formal approaches 
to semantics definition exist, e.g. operational semantics, axiomatic se­
mantics, or denotational semantics. Several authors report how to use 
these approaches for describing the semantics of programming languages 
[16] [17]. 

Concurrent systems are usually described in terms of their behaviour 
- what they do in the course of an execution [18]. The Temporal Logic 
formal model [19] was introduced to describe such behaviour of concur­
rent systems. A variation of Temporal Logic that makes it practical 
to write a specification as a single formula was presented in [6]. This 
variation is called Temporal Logic of Actions - TLA. TLA provides the 
mathematical basis for describing properties of concurrent systems. 

3.1 Temporal Logic of Actions 
The Temporal Logic of Actions - TLA [6] is a formalism suitable for 

describing state transition systems and properties of such systems using 
the same notation. 

TLA is a linear-time logic in which expressions are evaluated for non­
terminating sequences of states. Each sequence of states is called a 
behaviour. A state is an assignment of values to variables. Variables 
that are used to model properties are state functions, which have unique 
values in each state. A state function is a non-boolean expression built 
from variables, constants, and constant operators. Semantically, a state 
function assigns a value to each state. An individual state change is 
called a step. A step that allows variables to stay unchanged is called a 
stuttering step. 

An action is a boolean expression containing primed and unprimed 
variables. For any pair of states, primed variables refer to the second 
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process example is 
integer x := 0; 
body 

loop x := x + 1; end; 
end body 

end process 

Chapter 3 

Figure 2. Simple Program in DIP 

state whereas unprimed ones refer to the first state. An action is said to 
be enabled in a state s if and only if there exists some state t such that 
the pair of states < s, t > satisfies that action. 

Rather than presenting the full description of TLA, a simple program 
[6] in Dependable Interacting Processes (DIP) [20] is presented with 
its corresponding TLA formula. The process, in Figure 2, initialises a 
variable x with 0 and then keeps incrementing x by 1 forever. 

The TLA formula for the above DIP process is defined as follows: 

f1 ~ 1\ (x = 0) 

1\ D [x' = x + 1] x 
1\ WFx(x' = x + 1) 

A TLA formula is true or false on a behaviour. Formula f1, presented 
above, is true on a behaviour in which the ith state assigns the value 
i- 1 to x, for i = 1, 2, .... In the above TLA formula, the conjunct (x 

= O) specifies that initially, x is equal to 0; the conjunct D [x' = x + 1]x 

specifies that the value of x in the next state (x') is always (D) equal 
to its value in the current state (x) plus 1. The subscript x specifies 
that stuttering steps are allowed, i.e. steps where the value of x is left 
unchanged. The WFx(x' = x + 1) conjunct rules out behaviours in which 
x is incremented only a finite number of times. It asserts that, if the 
action (x' = x + 1) 1\ (x' f. x) ever becomes enabled and remains en­
abled forever, then infinitely many (x' = x + 1) 1\ (x' f. x) steps occur. 
WF stands for Weak Fairness. 

In the next section the specification of the dependable multiparty 
interaction mechanism is presented in TLA. 
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4. DMI in TLA 
In this section we will present the semantics of dependable multiparty 

interactions. However, before we start formally describing the semantics 
of DMI in TLA, consider the following: 

• a DMI is represented by a set of roles that are executed by players; 

• a player has to activate a role in DMI in order to execute the 
commands inside a role; 

• a DMI only starts when all roles of the DMI have been activated, 
and the guard (boolean expression) at the beginning of the DMI 
is true; 

• the DMI only finishes when all players have finished executing their 
roles, and the assertion at the end of the DMI (boolean expression) 
is true (if no exceptions were raised); 

• roles can only access data that is sent to them when they are 
activated, or data that is sent to them by other roles belonging to 
the same DMI; 

• exceptions may be raised during the execution of a DMI, in which 
case all roles that have not raised an exception are interrupted; 
an exception resolution algorithm is executed when all roles either 
have raised an exception or have been interrupted. 

• if there is a handler to deal with the exception that was decided 
upon by the exception resolution algorithm, then this handler is 
activated by all roles; 

• if there is no handler to deal with the exception that was decided 
upon by the exception resolution algorithm, then the exception is 
raised in the callers of all roles; 

• handlers have the same number of roles as the DMI to which they 
are connected. 

In order to formally specify the semantics of a DMI in TLA, we will 
use the following sets, predicates and state variables: 

• Exceptions: the set of exceptions handled by the DMI; 

• Commands: a set of commands; 

• Objects: a set of objects; 
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• Players: a set of players that can participate in a DMI; 

• Roles: contains the roles of a DMI. Each element of this set IS 

a record with a field to represent the state of the role, a field to 
represent the result of the role after the commands of this role have 
been executed, a field to store those coDDnands, and a field containing 
the set of objects manipulated by the role; 

• Handlers: the set of handlers for the DMI; 

• GuardExpression(e): a predicate representing the execution of the 
precondition of the DMI. The parameter e contains the set of all 
tuples <p,er,o>, where p represents a player that is enroled to the 
role er, and o is the set of objects sent to the role by the player; 

• AssertionExpression(e): the same as GuardExpression(e) but for the 
post-condition of the DMI; 

• ExecuteCoDDnands (e): execute the commands for the corresponding 
role; 

• Resolve (enroled): execute the exception resolution algorithm for all 
roles in the DMI. After this algorithm has been executed all roles 
will produce the same exceptional result; 

• four state variables: i) guard, which indicates whether the DMI 
can be started or not; ii) assert, which indicates whether the DMI 
was finished successfully or not; iii) enroled, which stores the roles 
that have already been enroled to in a particular execution of the 
DMI; and, iv) elements, which stores the tuples <p,er,o> that are 
used when executing the roles commands. 

The type invariant specifies that the guard and assert are BOOLEAN vari­
ables, the state of a role can only have one of the values from the set 
{"wait" ,"ended", "started"}, and the result of a role can either have a value 
from the set {"ok", "interrupted"} or from the set of possible exceptions 
in Exceptions. The type invariant is defined as: 

Typelnvariant ~ 1\ guard, assert E BOOLEAN 
1\ Vr E Roles : 

r. state E {"wait", "ended" ,"started"} 
1\ Vr E Roles: 

r.result E {"ok","interrupted"}UExceptions 
1\ enroled ~ Roles 
1\ elements ~ Players X Roles X Objects 



TLA specification of a mechanism for concurrent exception handling 51 

The initial condition for the DMI is that all roles are in a waiting 
state, both guard and assert have the value FALSE, and the enroled and 
elements sets are empty. The !nit predicate is defined in TLA as: 

!nit ~ 1\ Vr E Roles: r.state = "wait" 
1\ guard = FALSE 
1\ assert = FALSE 
1\ enroled = {} 
1\ elements = {} 

For a player p to enrole in a role er with a set of objects o, it has to 
execute the action Enrole(p,er,o). This step is only enabled if role er 
belongs to the set of Roles in the DMI and no other player has enroled to 
such a role. This is expressed by the first two conjuncts of the following 
TLA formula. If this step is enabled, then the role er is added to the 
enroled set and the tuple <p, r, o> is added to the elements set. The 
Enrole(p,er,o) action is defined in TLA as: 

~ 
Enrole(p,er,o) 1\ erE Roles 

1\ er fl. enroled 
1\ enroled 1 = enroled U {er} 
1\ elements' = elements U {<p,er,o>} 
1\ UNCHANGED (guard, assert) 

The DMI only begins if all roles have a player enroled to and the 
precondition is true. The testing of the guard with all players enroled is 
defined by the following two TLA conjunctions: 

Guard ~ 1\ Vr E Roles : r E enroled 
1\ guard' = GuardExpression (elements) 
1\ UNCHANGED ( enroled, elements, assert) 

Begin ~ 1\ guard = TRUE 
1\ Vr E Roles: r. state 1 = "started" 
1\ UNCHANGED (enroled, elements, assert, guard) 

The execution of all roles is defined in the action ExecuteRoles. This 
step is only enabled if all roles have state = "started". If enabled, then 
the result of the execution of the set of commands of a role is stored in 
the field result. The ExecuteRoles is defined in TLA as: 

ExecuteRoles ~ 1\ Vr E Roles: r.state = "started" 
1\ V<p,r,o> E elements: 

r. result 1 = ExecuteCommands ( < p, r, o > ) 
1\ UNCHANGED ( enroled, assert, guard) 

When all roles have executed their commands without raising an ex­
ception, i.e. their state is equal to "ok", the post-condition expression 
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can be tested. The assert variable changes its value based on the execu­
tion of the AssertionExpression(elements) action. The post-condition of a 
D MI is defined as: 

Assertion ~ 1\ Vr E Roles: r. result = "ok" 
1\ assert 1 = AssertionExpression(elements) 
1\ UNCHANGED (enroled, elements, guard} 

If no exceptions were raised, then the normal termination of a DMI 
is defined in the NormalEnd action. The condition that enables this step 
is assert = TRUE, i.e. the post-condition was passed. This step changes 
the state of all roles to "wait", meaning that the roles are ready to be 
executed again. The sets enroled and elements are emptied. The TLA 
definition of NormalEnd is: 

NormalEnd 
a 

1\ TRUE assert = 
1\ Vr E Roles: r.state' "wait" 
1\ enroled' = ( } 
1\ elements' = ( } 
1\ assert' = FALSE 
1\ guard' = FALSE 

Figure 3 shows the complete first part of the formal semantics of a 
DMI. In the figure all conjunctions are related to the normal execution 
of a DMI. In Figure 4, we define the formal semantics for the steps that 
are taken in case of one or more exceptions being raised. An exception 
can be raised during the execution of the set of commands of a role in 
the ExecuteCommands action. 

The activation of a handler depends on the state of the roles. A han­
dler is only activated when all roles have the same value for their result, 

and there exists a handler for the exception resolved by the resolution 
algorithm. The activation of a handler is defined as: 

ActivateHandler ~ 1\ Vr1,r2 E Roles: (r1.result = r2 .result) 
1\ 3h E Handlers: (3r E Roles: r.result E h.Exc) 
1\ UNCHANGED (enroled, elements, assert, guard} 

The resolution algorithm on the other hand, is activated once all roles 
have raised an exception, i.e. their result belongs to the set Exceptions, 

or have been interrupted. The state of all roles has to be different from 
"ok". This action is defined as: 

ExceptionResolution ~ 1\ Vr E Roles: r.result -:f "ok" 
1\ Resolve (enroled) 
1\ UNCHANGED (enroled, elements, assert, guard} 
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.--------------- MODULE DMI 

EXTENDS Naturals, Sequences 
VARIABLES enroled, elements, guard, assert 

!nit 
a 

A Vr E Roles r.state "wait" : 

A guard = FALSE 
A assert = FALSE 
A enroled = {} 

A elements = {} 

Type!nvariant ~ A guard, assert E BOOLEAN 
A Vr E Roles r. state E {"wait", "ended", "started"} 
A Vr E Roles : r.result E {"ok", "interrupted"} U Exceptions 

Enrole(p,er,o) ~ A 3r1 E Roles : r1 = er 
A Vr2 E enroled : r2 # er 
A enroled 1 = enroled U {er} 
A elements' = elements U {<p,er,o>} 
A UNCHANGED {guard, assert) 

Guard ~ A Vr E Roles : r E enroled 
A guard' = GuardExpression(elements) 

A UNCHANGED {enroled, elements, assert) 

Begin ~ A guard = TRUE 
A Vr E Roles : r.state 1 = "started" 
A UNCHANGED {enroled, elements, assert, guard) 

ExecuteRoles ~ A Vr E Roles : r.state = "started" 
A V<p,r,o> E elements : r.result' 
A UNCHANGED (enroled, assert, guard) 

Assertion ~ A Vr E Roles : r.result = "ok" 
A assert 1 = AssertionExpression(elements) 
A UNCHANGED {enroled, elements, guard) 

NormalEnd a A assert = TRUE 
A Vr E Roles : r.state = "ended" 
A Vr E Roles : r.state' = "wait" 
A enroled 1 = { ) 
A elements 1 = ( ) 
A assert 1 = FALSE 
A guard 1 = FALSE 

ExecuteCommands ( < p, r, o > ) 

Figure 3. TLA Specification of a DMI (part 1) 
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InterruptRoles ~ A 3r1 E Roles r1 . result E Exceptions 
A Vr2 E Roles IF r2 . result fl. Exceptions 

THEN r2 .result 1 = "interrupted" 
ELSE r2 .result 1 = r2 .result 

A UNCHANGED (enroled, assert, guard) 

ExceptionResolution ~ A Vr E Roles : r.result :f; "ok" 
A Resolve (enroled) 
A UNCHANGED (enroled, elements, assert, guard) 

ActivateHandler ~ A Vr1 ,r2 E Roles : (r1.result = r2 .result) 
A 3h E Handlers : (3r E Roles : r.result E h.Exc) 
A UNCHANGED (enroled, elements, assert, guard) 

ExceptionalEnd ~ A Vr1 ,r2 E Roles : r1.result = r2 .result 

Next 

Spec 

A ~3h E Handlers : (3r E Roles : r.result E h.Exc) 
A Vr E Roles : r. state = "ended" 
A Vr E Roles : r. state 1 = "wait" 
A enroled 1 = ( ) 
A elements 1 = ( ) 
A assert 1 = FALSE 
A guard 1 = FALSE 

~ V 3p E Players : (3er E Roles : (3o E Objects : Enrole(p,er,o))) 
V Guard V Begin V ExecuteRoles V Assertion V NormalEnd V 
V ExceptionalEnd V InterruptRoles V ActivateHandler 

~ !nit A D [Next] ( 1 d 1 d) enro e , e ements, assert, guar 

THEOREM Spec => D Type Invariant 

Figure 4. TLA Specification of a DMI (part 2) 

When a role terminates by raising an exception, then all other roles 
have to be interrupted, causing the exception resolution algorithm to be 
enabled. The step that represents the interruption of roles is Interrupt­

Roles. This step is enabled when at least one of the roles has raised an 
exception. The raising of an exception is represented in the value that 
the role's result assumes. If the value belongs to the set of Exceptions, 

then the InterruptRoles action is enabled. The step will then set the state 
of all roles, which did not raise an exception, to "interrupted". Even if 
a role has terminated it will be interrupted when another role raises an 
exception. The InterruptRoles actions is defined in TLA as: 
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InterruptRoles ~ A 3r1 E Roles: r1. result E Exceptions 
A Vr2 E Roles: IF r2.result ~Exceptions 

THEN r2 .result 1 = "interrupted" 
ELSE r2 . result 1 = r2 . result 

A UNCHANGED (enroled, assert, guard) 

If exceptions were raised and there is no exception handler for the 
exception that resulted from the exception resolution algorithm, then 
the exceptional termination of a DMI is defined in the ExceptionalEnd 

action. This step is enabled when all roles have the same result and 
there is no exception handler for that result. This step changes the state 
of all roles to "vait", meaning that the roles are ready to be executed 
again. The sets enroled and elements are emptied. The TLA definition 
of ExceptionalEnd is: 

ExceptionalEnd ~ A Vr1 ,r2 E Roles: r1.result = r2 .result 
A ~3h E Handlers: (3r E Roles: r.result E h.Exc) 
A Vr E Roles: r. state = "ended" 
A Vr E Roles: r.state 1 = "vait" 
A enroled 1 = ( ) 
A elements 1 = { ) 
A assert 1 = FALSE 
A guard 1 = FALSE 

5. Related work 
The semantics described in Section 4 deals with the basic rules of 

a DMI, i.e. pre and post-synchronisation, roles activation, exception 
handling, and roles interruption. 

We did not attempt to describe formally the semantics of the execu­
tion of the role's commands. The way external objects guarantee ACID 
properties is also not described (a formal description of the ACID prop­
erties can be found in [21]). In [22], for example, formal description 
of properties for a mechanism similar to the DMI (Coordinated Atomic 
actions [11]- CA actions differ from DMis in the way exceptions are han­
dled during the interaction) is given in Temporal Logic. In [23], a formal 
approach is used to model and verify a safety-critical system (namely 
the fault-tolerant production cell) designed using CA actions. In order 
to model-checking, the state transition system corresponding to a CA 
action based design is expressed in SMV (Symbolic Model Checking) 
[24] and system properties expressed in CTL [25]. 

The COALA framework [26] is proposed to allow system developers 
to model systems using the CA action concept. Within this work a for­
malisation of the CA action concept is developed that uses CO-OPN /2: 
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an object-oriented language based on Petri nets and partial order-sorted 
algebraic specifications. 

The ERT model (ERT stands for extraction, refusals and traces) is 
used for formalising the CA action concept [27]. Refusals and traces are 
terms coming from CSP; term extraction refers to a specific technique 
used to relate systems specified at different levels of abstractions. 

A mathematical framework based on Timed CSP for representing the 
use of CA actions in real-time safety-critical systems is proposed in [28]. 
It allows the interactions between concurrently functioning equipment 
items to be modelled and their behaviour to be reasoned about in an 
abstract way. The framework models dynamic system structuring us­
ing CA actions by explicitly modeling synchronisation between items 
and the controlling system. Although the framework is not developed 
for dealing with erroneously behaving action participants, it allows for 
better understanding of the CA action concept and can be used in de­
veloping general models incorporating mechanisms supporting system 
safety. 

6. Conclusion 
The strategy of dealing with concurrent exceptions by enclosing them 

in a language mechanism presented in this paper, has been successfuly 
applied to several case studies [29] [30] [31]. This paper has showed how 
TLA can be used to formally describe the semantics of a mechanism that 
implements this strategy. The formal model described in this paper is 
now being applied to a case study, which will be model-checked using 
TLA tools. 

We believe that based on the description of the formal semantics pre­
sented in this paper, the process of implementing languages like De­
pendable Interacting Processes [5] [20], which include DMis as a basic 
language construct will be greatly facilitated. 
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