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Abstract
Quantitative imaging in lung cancer is a rapidly evolving modality in radiology that is changing clinical practice from a 
qualitative analysis of imaging features to a more dynamic, spatial, and phenotypical characterization of suspected lesions. 
Some quantitative parameters, such as the use of 18F-FDG PET/CT-derived standard uptake values (SUV), have already 
been incorporated into current practice as it provides important information for diagnosis, staging, and treatment response 
of patients with lung cancer. A growing body of evidence is emerging to support the use of quantitative parameters from 
other modalities. CT-derived volumetric assessment, CT and MRI lung perfusion scans, and diffusion-weighted MRI are 
some of the examples. Software-assisted technologies are the future of quantitative analyses in order to decrease intra- and 
inter-observer variability. In the era of “big data”, widespread incorporation of radiomics (extracting quantitative informa-
tion from medical images by converting them into minable high-dimensional data) will allow medical imaging to surpass 
its current status quo and provide more accurate histological correlations and prognostic value in lung cancer. This is a 
comprehensive review of some of the quantitative image methods and computer-aided systems to the diagnosis and follow-
up of patients with lung cancer.
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Abbreviations
18F-FDG PET/CT	� Fluorine-18-fluorodeoxyglucose 

positron emission tomography/com-
puted tomography

ADC	� Apparent diffusion coefficient
CAD	� Computer-aided diagnosis
CT	� Computed tomography
DCE	� Dynamic contrast-enhanced
DTP	� Dual time point imaging technique
DWI	� Diffusion-weighted imaging
LSR	� Lesion-to-spinal cord ratio
MRI	� Magnetic resonance imaging
MRI-SI	� Magnetic resonance imaging signal 

intensity
MVD	� Microvessel density
NSCLC	� Non-small cell lung cancer

RECIST	� Response evaluation criteria in solid 
tumors

ROI	� Regions of interest
SI	� Signal intensity
SUV	� Standardized uptake value
VDT	� Volume doubling time

Introduction

Lung cancer represents 13% of total cancer incidence and 
20% of cancer-related mortality worldwide [1]. During the 
last three decades, lung cancer prognosis has improved 
mainly due to efforts on early diagnosis and staging to tar-
get the growing number of available therapeutic options [2]. 
However, the overall prognosis remains poor with a 5-year 
survival rate of 15.6% [3].

Quantitative imaging modalities are promising methods 
to improve lung cancer identification and follow-up, as they 
use more accurate parameters than subjective analysis for 
assessment and prediction of treatment response, optimizing 
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care for individual patient [4]. Lung nodule measurement 
on computed tomography (CT) is an important quantitative 
marker to predict likelihood of malignancy and also progres-
sion of disease [5]. Fluorine-18-fluorodeoxyglucose posi-
tron emission tomography/computed tomography (18F-FDG 
PET/CT) provides information on the tumor’s morphology, 
extension and glucose metabolism, outperforming CT or 
PET alone for lung cancer staging [6].

Advances in thoracic magnetic resonance imaging (MRI) 
have led to significant reduction in acquisition time and arti-
facts from respiratory and cardiac motion [7]. Recent MRI 
diffusion-weighted imaging (DWI) studies have reported 
accuracy comparable to PET/CT for evaluation of solid 
pulmonary lesions [8]. Lung perfusion imaging, such as 
dynamic enhanced CT and MRI, has also become a prom-
ising imaging technique to monitor lung malignancies by 
quantifying tumor blood flow and volume [9]. Software-
assisted devices have also been more used to automate 
quantitative analyses and reduce intra- and inter-reader 
variability.

Considering all the recent advances in pulmonary imag-
ing, our purpose was to review the modalities of quantita-
tive lung cancer imaging and summarize some of the more 
promising computer-aided softwares to the diagnosis and 
follow-up of patients with lung cancer.

CT Nodule Measurement

Measurements of diameter or volume of pulmonary nodules 
provide important information for staging of malignancies 
and tumor growth during follow-up. When CT screening for 
lung cancer was first proposed, every indeterminate non-
calcified nodule was followed with serial CT for a minimum 
of 2 years [10]. As this policy was not proved to be beneficial 
or cost-effective, the Fleischner Society proposed in 2005 
a consensus for the assessment of incidental lung nodules 
based on nodule’s size, growth rate, and risk factors for 
malignancy [11]. Solid nodules of up to 6 mm usually do not 
require routine follow-up. However, for high-risk patients, a 
12-month follow-up examination is recommended. Nodules 
sized between 6 and 8 mm require one or two follow-up 
examinations over a period of 2 years. For nodules larger 
than 8 mm, management includes follow-up CT, PET/CT 
or tissue sampling at 3 months. In case of multiple nod-
ules, the most suspicious nodule should be used as a refer-
ence for clinical management [11]. In the case of solitary 
sub-solid nodules, while no follow-up is recommended for 
those < 6 mm, further monitoring is advised for either part-
solid or ground-glass nodules ≥ 6 mm depending on its char-
acteristics [11].

Regarding therapy response evaluation in solid tumors, 
the response evaluation criteria in solid tumors (RECIST) 

is currently widely accepted. According to RECIST 1.1 
[12], five is the maximum number of lesions required to 
assess tumor burden for response determination (and two 
per organ). To be considered a target lesion, a tumor must 
be of at least 10 mm in its longest diameter, while a lymph 
node is considered pathologically enlarged when is ≥ 15 mm 
in its short axis. Response to treatment may be considered: 
(a) complete, if all target lesions and all nodes with shortest 
axis < 10 mm disappeared; (b) partial, if there was at least 
30% decrease in overall sum of target lesions (the sum of 
the longest diameters for non-nodal lesions and the shortest 
axis for lymph nodes) taking the baseline sum as reference; 
or (c) stable, if there was neither response or progression. 
Disease progression is defined as a 20% increase or a 5 mm 
absolute increase in the target lesions. The appearance of 
new malignant lesions not attributable to differences in scan-
ning technique or change in imaging modality also denotes 
disease progression.

Some studies have analyzed whether it was appropriate to 
move from a linear to a volumetric anatomical assessment 
of tumor size [13–16]. Volumetric measurements are based 
on segmentation of nodules on thin-section CT data sets 
and an algorithm that translates the segmented voxels into 
nodule volume. Dicken et al. [16] compared the variability 
of a computer-aided volumetric assessment of lung lesions 
to manual measurements of in-plane lesion diameters per-
formed according to RECIST. The volumetric assessments 
resulted in a markedly reduced variability of parameters 
describing size and change. The authors also showed that 
manual linear measurement requires a change of 2–3 mm 
to reliably detect a change on a typical lung lesion, whereas 
volumetric assessment is capable of detecting changes of 
about 1 pixel (∼0.8 mm). For example, a nodule that has 
increased in diameter from 7 to 9 mm (2 mm or > 25% 
diameter increase in diameter) has approximately doubled 
its volume [17]. The “volume doubling time” (VDT) is cur-
rently accepted as the parameter to define a significant vol-
ume increased by means of volumetric analysis. A VDT of 
< 400 days yields a positive result for progression of disease 
according to the NELSON Trial [18].

Precision and accuracy of volume measurements depend 
on several factors, especially the software package used. Two 
authors have [19–21] showed substantial differences in seg-
mentation performance among available software packages 
in a dataset of nodules with a variety in size, morphology, 
and contact to pulmonary structures. All software packages 
showed similar inter-examination variability but there were 
significant differences in absolute nodule volumes. Thus, 
despite the potential benefits of increased sensitivity and 
more robust detection of significant volume increase with 
small diameters changes, the lack of extensively validated 
software for volumetric nodule measurement still makes the 
linear measurement the current standard of practice [11]. 



635Lung (2018) 196:633–642	

1 3

Figure 1 presents a case of a spiculated pulmonary nodule 
follow-using the volumetric visual assessment.

18F‑FDG PET/CT

18F-FDG PET/CT can provide both metabolic and anatomi-
cal information about the tumor. The quantitative param-
eter most commonly used to evaluate glucose metabolism 
in malignant cells is the standardized uptake value (SUV) 
corrected for body weight [11]. Although many different 
SUV cut-offs have been discussed, SUVmax (maximal SUV 
in the single hottest voxel) became the most popular param-
eter in oncology [22]. In this sense, SUVmax was shown to 
correlates well with disease prognosis in non-small cell lung 
cancer (NSCLC) [23, 24]. Also, a high SUV of the primary 
tumor determined by 18F-FDG PET prior to treatment is 
associated with a shorter time-to-progression, higher recur-
rence, and lower overall survival rates [25]. It has also been 
demonstrated that there is a low likelihood of a substantial 
response to therapy if there is no decrease in maximum SUV 
early after the initiation of anticancer treatment, representing 
a worse prognosis [26].

A relevant number of false-positive findings may occur 
with 18F-FDG PET/CT, especially infectious and inflamma-
tory processes that may also present as an area of elevated 

glucose metabolism [27, 28]. The dual time point imaging 
technique (DTP) has been claimed to be a method to address 
this issue. The DTP protocol is based on reports that found 
that when SUV is measured sequentially, there is a cor-
relation between 18F-FDG uptake and time. In malignant 
lesions, there is a continual increment of FDG uptake for 
several hours after its injection, whereas in inflammatory/
infectious or normal tissues such increment in uptake is rare. 
Even though promising results were noted in some types of 
diseases, like lymphoma [29] and breast cancer [30], lung 
cancers did not seem to be significantly ameliorated by DTP 
imaging technique [31–33].

Besides the inherent risk of false-positive nodules with 
this modality, other disadvantages include high radiation 
dose, inconvenient pre-imaging protocols for patients, and 
low detection of small nodules with ground-glass attenuation 
(Fig. 2). Also, compared to CT or MR, PET/CT imaging is 
usually more costly to patients and scanners are not widely 
available [34].

Perfusion Computed Tomography

Perfusion is the transportation of blood to a tissue per unit 
of time [35]. Interpreting changes in lung perfusion param-
eters often translates into anomalous bloody supply patterns, 

Fig. 1   Volumetric measurement of pulmonary nodule. Small, spicu-
late right upper lobe tumor on initial axial CT (a) showing minimal 
change in area by visual assessment on 4-month follow-up scan (b). 
(c, d) Three-dimensional CT scan obtained with volume rendering 
from 426 mm3 on February 24, 2012 to 390 mm3 on June 27, 2012. 

The volumetric assessment contributed to support a benign differen-
tial diagnosis in this case by detecting a 10% volume reduction that 
would likely pass unnoticed by linear or visual assessment. Outpa-
tient follow-up revealed no progression of the lesion and the patient 
was managed conservatively
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such as in tumor angiogenesis [36]. Higher perfusion in lung 
cancer has been found to be directly correlated with bio-
markers of angiogenesis such as microvessel density (MVD) 
and hyperexpression of VEGF (vascular endothelial growth 
factor) [37, 38]. Given this correlation with VEGF expres-
sion, CT perfusion was shown to predict with imaging only 
responders to antiangiogenic tumor therapy [39]. Poorly per-
fused tumors, on the other hand, have been proved to be less 
responsive to chemotherapy (possibly because the chemo-
therapeutic agent is less efficiently delivered to the tumoral 
cells) and to radiotherapy (since they were more likely to be 
hypoxic) [40]. Besides, tumors with low perfusion rates have 
been reported to have an increased potential for lymph node 
metastases in advanced lung cancer [41].

There are two approaches to CT-derived lung perfu-
sion imaging: the static peak enhancement imaging and 
the dynamic contrast-enhanced (DCE) imaging. The for-
mer consists of a single CT stop at a particular point of 
time—for instance, at the peak of normal lung parenchymal 
enhancement—so that changes in lung perfusion can be 
evidenced by differences in density of the lung tissue. The 
main advantage of this technique is that it is easily executed. 
However, disadvantages include inaccurate results in case 
of wrong timing and the fact that a single time point imag-
ing cannot adequately represent physiologic differences in 
regional perfusion [42, 43]. On the other hand, DCE imaging 
gathers serial CT scans before and throughout the admin-
istration of iodinated contrast. Thus, temporal changes in 
contrast enhancement provide a time-signal intensity curve 
that allows a quantitative perfusion evaluation of the tissue. 
Different CT kinetic models are used to calculate perfusion 
parameters depending on the available software, but there is 
no consensus as to which is the optimal technique for assess-
ment of tumor vascularity [43, 44].

Several authors have tried to use the principles of CT per-
fusion to aid in the differentiation of malignant and benign 
pulmonary nodules [45–47]. Parameters of perfusion per 
time in each nodule and blood volume have demonstrated 
accuracies of nearly 90% to rule out benign pulmonary 
lesions in the absence of perfusion and low blood volume 
[45]. Also, Ohno et al. using perfusion index was able to 
correctly identify as malignant three bronchoalveolar carci-
nomas misinterpreted as benign nodules by PET/CT [47]. 
Thus, although quantitative perfusion imaging by CT should 
be a promising modality in the characterization of indetermi-
nate pulmonary nodules, the reliability and reproducibility 
of the functional results still represent an open issue. A high 
number of factors affecting the outcomes of CT perfusion 
examinations, such as imaging protocols, acquisition arti-
facts, and methods of data processing and analysis, are still 
to be validated [36].

Magnetic Resonance Imaging (MRI)

MRI Perfusion

The current approach to image lung perfusion by MRI is 
DCE imaging, which uses the same principles of DCE-CT: 
sequential imaging following the injection of a contrast 
agent, usually a gadolinium-based chelate. DCE-MRI was 
found to be suitable for discrimination of benign from malig-
nant pulmonary nodules with sensitivity and specificity of 
95% and 87%, respectively [48]. This method also proved 
to be valid to determine tumor’s response to therapy [49]. 
A case in which MRI perfusion images were used to aid in 
the differential diagnosis of a solitary pulmonary nodule is 
shown in Fig. 3.

There are different DCE-MRI techniques described in 
medical literature, most of them are robust, simple to per-
form and can be applied in several clinical scenarios. The 
method is used for the evaluation of enhancement pattern and 
creation of signal intensity (SI)-time curves, which assures 
different derived quantitative parameters [50] (Fig. 4). In 
comparison to DCE-CT, DCE-MRI has the advantage of 
not requiring radiation exposure. However, while DCE-CT 
imaging is directly dependent on the concentration of con-
trast material in the blood, paramagnetic contrast material 
of DCE-MRI also depends on interactions among mobile 
water molecules in the interstitium and cytoplasm, creating a 
non-linear correlation between MRI-SI (magnetic resonance 
imaging signal intensity) and tissue contrast agent concen-
trations [51]. Although some models using high-relaxivity 
agents or non-linear corrections methods were proposed in 
an attempt to overcome this limitation [52], more advances 
in the area are required to the use of routine MRI perfusion 
imaging for solitary pulmonary nodules.

Fig. 2   CT scan with a ground-glass nodule in the left lung. PET/CT 
was performed and was negative. PET/CT is limited for these con-
ditions and should not be used for small nodules with ground-glass 
attenuation
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MRI Diffusion

Recent advances in MRI gradient technology have led to 
the introduction of DWI, which is entirely different from 
ordinary T1- and T2-weighted MRI images [53]. DWI-MRI 
has several advantages such as being a radiation-free method 
without the need for exogenous contrast medium, and it can 
provide quantitative and qualitative information about the 
integrity of cell membranes and tissue consistency [54]. 
Diffusion is the random, thermally induced movement of 
water molecules in biologic tissues, called Brownian motion. 
DWI is sensitive to molecular diffusion and allows for tissue 
characterization by probing tissue microstructural changes 
quantified as the apparent diffusion coefficient (ADC) [55].

In DWI-MRI, blood flow showing high diffusion and 
normal tissue with fat depression are undetectable [56]. 
Since malignant tumors have increased cellularity, larger 
nuclear/cytoplasmic ratio, and less extracellular space rela-
tive to normal tissue, the diffusion of water molecules in 
tumors is restricted, resulting in decreased ADC [7]. In fact, 
ADC was found to have an inverse correlation with PET/

CT-derived SUVmax in NSCLC [57, 58]. DWI was shown 
to be equivalent to PET in distinguishing NSCLC from 
benign pulmonary nodules and also for detection of lymph 
node involvement [53, 58]. Pauls et al. [58] found that MRI 
with or without DWI agrees with PET/CT-derived N staging 
in most patients, with a tendency for an N understaging in 
15% of patients.

DWI can differentiate malignant from benign pulmonary 
nodules in endemic areas of infectious diseases, where rates 
of false-positives in PET/CT are higher due to granuloma-
tous lesions [59]. In this study, the lesion-to-spinal cord ratio 
(LSR) was also calculated to help differentiate malignant 
from benign lesions. The diagnostic capability of the ADC 
did not differ significantly from that of the LSR. However, 
LSR calculation is more useful and easily obtained than 
ADC in clinical routine practice. DWI can also be used for 
the differential diagnosis of solitary pulmonary hamartomas 
with inconclusive CT findings. Since almost 60% of pulmo-
nary hamartomas contain fat, they were found to have no 
restriction in signal intensity on DWI sequence, but high 
signal intensity on T2-weighted sequences, suggesting that 

Fig. 3   MRI images (a, b) 
show a small solid nodule 
in the left upper lobe. In the 
perfusion images, a significant 
enhancement of the nodule is 
observed only in the pulmonary 
artery phase (c), but not in 
the subtraction image repre-
senting the bronchial artery 
phase (d)—supporting the 
diagnosis of a benign nodule. 
The patient decided through 
shared decision-making with his 
primary clinician to undergo a 
surgical lung biopsy to rule out 
malignancy, which revealed the 
diagnosis of cryptogenic organ-
izing pneumonia
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chemical-shift MRI is accurate to distinguish hamartomas 
from other solitary pulmonary nodules [60]. Figure 5 rep-
resents a case in which MRI diffusion images were used 
to help in the differential diagnosis of solitary pulmonary 
nodule.

Radiomics of Lung Cancer (Artificial 
Intelligence)

Radiomics can be defined as the conversion of digital 
medical images into mineable high-dimensional data that 
can be quantitatively analyzed and correlated to different 

pathophysiological and clinical information [61]. Radiomics 
is a natural evolution of computer-aided diagnosis (CAD) 
systems. Whereas CAD systems traditionally provide single 
answers (for instance, the presence or not of a lesion), radi-
omics has been developed to provide prognostic informa-
tion, aid in therapeutic decision, and correlate with clinical 
outcome. Thus, radiomics extracts and analyses quantitative 
information obtained with medical imaging that, combined 
with additional patients’ characteristics, may provide more 
accurate diagnostic and prognostic value in clinical practice 
[62, 63].

In lung cancer, radiomics studies have been conducted 
using mainly CT and FDG-PET images. Radiomics texture 

Fig. 4   Fifty two year-old male with history previously treated pulmo-
nary tuberculosis presenting for evaluation of renal cell carcinoma. 
Staging CT images (a, b) demonstrating two peripheral round nod-
ules on left lung. Lung MRI was performed to help characterize the 
lesions and showed significant post contrast enhancement (c) and 

restriction on DWI (d) (b-value of 1000). Perfusion analysis was also 
performed, showing an enhancement curve type A for both lesions, 
with fast and intense early SI increase followed by a fast and signifi-
cant decrease (washout), as also demonstrated by the perfusion quan-
titative parameters (e, f). Biopsy proved both lesions to be metastases
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analysis can be an independent marker of survival for 
patients with NSCLC as combining the radiomics sig-
nature with TNM staging showed a significant improve-
ment in prognosis prediction [63, 64]. Radiomics features 
can reflect different biologic mechanisms, such as gene 
expression patterns or cell cycling pathways, and there-
fore capture distinct phenotypic differences between lung 
tumors [65, 66]. Radiomics principles have also been used 
to aid lung cancer histopathological subtype diagnosis 
(“virtual biopsy”) and predict metastatic dissemination of 

NSCLC [67]. Figure 6 illustrates an example of radiomics 
evaluation.

Radiomics process begins with the acquisition of high-
quality medical images. From acquired images, regions of 
interest (ROIs) that contain either the whole lesion or spe-
cific regions within the lesion are delineated. These ROIs 
are segmented and can also be rendered in three dimen-
sions. Quantitative features and attributes are massively 
extracted from these ROIs to generate a report, which is 
placed in a database along with other patients and lesions’ 

Fig. 5   Axial CT images, a demonstrating the presence of a sub-solid 
and ground-glass pulmonary nodules in the left upper lobe. b, c MRI 
images of the sub-solid nodule showed a T2 and diffusion-weighted 

sequences with hyperintense signal and restriction, respectively. 
Biopsy of the nodule confirms adenocarcinoma in situ, and the sec-
ond an inflammatory lesion

Fig. 6   Patient with a NSCLC 
adenocarcinoma, T1bN0M1b 
(bone). A spiculated nodule in 
lingula is identified on the lung 
window CT image (a). Nodule 
segmentation for the radiomic 
evaluation is highlighted in 
green color (b). Values of most 
significant image features for 
this lesion on a radiomic evalu-
ation (relation to histology and 
metastasis) are also shown
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data, combined to clinical, laboratory and genomic infor-
mation. Then, these data are mined to develop diagnostic, 
predictive, or prognostic models for outcomes of interest 
[61]. Several qualitative and semi-quantitative features can 
be obtained based on lesions attenuation, such as hetero-
geneity, size, shape, margins, calcification, and cavitation. 
Other quantitative attributes based on lesions’ shape, his-
togram, gray-level intensity, co-occurrence matrix texture, 
and more can be obtained [68].

The mining of radiomic data and correlation with 
biopsy-derived genomic information is known as radiog-
enomics [69]. There are only a few studies in chest imag-
ing that tried to correlate CT radiomics with the expres-
sion of clinically relevant genetic mutations. Rizzo et al. 
were one of the groups that demonstrated that CT tumor 
features could predict EGFR mutation with a sensitivity 
and specificity of nearly 75% [70]. Association CT features 
and ALK mutation was also revealed by the same author 
and also Yamamoto et al. [70, 71]. Although the currently 
available results of radiogenomics are promising to nonin-
vasively predict response to targeted therapy (e.g., tyrosine 
kinase inhibitors), the area still requires further validation 
in larger cohorts.

Overall, despite being a relatively recent topic, it is well 
established in literature that radiomics offers great poten-
tial in improving diagnosis of lung cancer, guiding ther-
apy, and proving prognostic assessment. Radiomics may 
become part of clinical practice soon, as imaging is more 
often routinely used in medical practice worldwide and 
sharing of “big data” among different centers worldwide is 
increasing in research. It is also important to highlight that 
development of the radiomics signature is in accordance 
with the evolution and implementation of the personalized 
and precision medicine.

Conclusion

Advances in quantitative imaging techniques are becom-
ing more widely available in clinical practice. Analysis 
and interpretation of quantitative imaging modalities can 
provide valuable information for diagnosis, staging, and 
treatment monitoring of patients with lung cancer.

Acknowledgements  The authors thank Prof. Hans Ulrich Kauczor for 
his scientific contribution to improve this manuscript.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 McMahon PM, Kong CY, Johnson BE et al (2008) Estimating 
long-term effectiveness of lung cancer screening in the Mayo 
CT screening study. Radiology 248:278–287

	 2.	 Harders SW, Balyasnikowa S, Fischer BM (2014) Functional 
imaging in lung cancer. Clin Physiol Funct Imaging 34:340–355

	 3.	 Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung can-
cer: epidemiology, etiology, and prevention. Clin Chest Med 
32:605–644

	 4.	 Yankeelov TE, Mankoff DA, Schwartz LH et al (2016) Quantita-
tive imaging in cancer clinical trials. Clin Cancer Res: Off J Am 
Assoc Cancer Res 22(2):284–290

	 5.	 UyBico SJ, Wu CC, Suh RD et al (2010) Lung cancer staging 
essentials: the new TNM staging system and potential imaging 
pitfalls. Radiographics 30:1163–1181

	 6.	 Halpern BS, Schiepers C, Weber WA et al (2005) Presurgi-
cal staging of non-small cell lung cancer: positron emission 
tomography, integrated positron emission tomography/CT, and 
software image fusion. Chest 128:2289–2297

	 7.	 Henzler T, Schmid-Bindert G, Schoenberg SO et al (2010) Dif-
fusion and perfusion MRI of the lung and mediastinum. Eur J 
Radiol 76:329–336

	 8.	 Matoba M, Tonami H, Kondou T et al (2007) Lung carcinoma: 
diffusion-weighted MR imaging—preliminary evaluation with 
apparent diffusion coefficient. Radiology 243:570–577

	 9.	 García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT per-
fusion in oncologic imaging: a useful tool? Am J Roentgenol 
200:8–19

	10.	 Horeweg N, van Rosmalen J, Heuvelmans MA et al (2014) Lung 
cancer probability in patients with CT-detected pulmonary nod-
ules: a prespecified analysis of data from the NELSON trial of 
low-dose CT screening. Lancet Oncol 15:1332–1341

	11.	 MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines 
for management of incidental pulmonary nodules detected 
on CT images: from the Fleischner Society 2017. Radiology 
284(1):228–243

	12.	 Eisenhauer EA, Therasse P, Bogaerts J et  al (2009) New 
response evaluation criteria in solid tumours: revised RECIST 
guideline (version 1.1). Eur J Cancer 45:228–247

	13.	 Galizia M, Töre H, Chalian H et al (2011) Evaluation of hepa-
tocellular carcinoma size using two-dimensional and volumetric 
analysis. Acad Radiol 14:1555–1560

	14.	 Marten K, Auer F, Schmidt S et al (2007) Automated CT volu-
metry of pulmonary metastases: the effect of a reduced growth 
threshold and target lesion number on the reliability of ther-
apy response assessment using RECIST criteria. Eur Radiol 
17:2561–2571

	15.	 Vogel M, Schmücker S, Maksimovic O et al (2012) Reduction 
in growth threshold for pulmonary metastases: an opportunity 
for volumetry and its impact on treatment decisions. Br J Radiol 
85:959–964

	16.	 Dicken V, Bornemann L, Moltz JH et al (2015) Comparison of 
volumetric and linear serial CT assessments of lung metastases 
in renal cell carcinoma patients in a clinical phase IIB study. 
Acad Radiol 22:619–625

	17.	 Bankier AA, MacMahon H, Goo JM et al (2017) Recommenda-
tions for measuring pulmonary nodules at CT: a statement from 
the Fleischner Society. Radiology 285:584–600

	18.	 Yousaf-Khan U, van der Aalst C, de Jong PA et al (2017) Final 
screening round of the NELSON lung cancer screening trial: 
the effect of a 2.5-year screening interval. Thorax 72(1):48–56

	19.	 de Hoop B, Gietema H, van Ginneken B et al (2009) A com-
parison of six software packages for evaluation of solid lung 
nodules using semiautomated volumetry: what is the minimum 



641Lung (2018) 196:633–642	

1 3

increase in size to detect growth in repeated CT examinations. 
Eur Radiol 19:800–808

	20.	 Zhao YR, van Ooijen PM, Dorrius MD et al (2014) Compari-
son of three software systems for semi-automatic volumetry of 
pulmonary nodules on baseline and follow-up CT examinations. 
Acta Radiol 55:691–698

	21.	 Kuhnert G, Boellaard R, Sterzer S et al (2016) Impact of PET/
CT image reconstruction methods and liver uptake normaliza-
tion strategies on quantitative image analysis. Eur J Nucl Med 
Mol Imaging 43:249–258

	22.	 Boellaard R, Delgado-Bolten R, Oyen WJG et al (2015) FDG 
PET and PET/CT: EANM procedure guidelines for tumour PET 
imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

	23.	 Markovina S, Duan F, Snyder BS et al (2015) Regional lymph 
node uptake of [(18)F]fluorodeoxyglucose after definitive 
chemoradiation therapy predicts local-regional failure of locally 
advanced non-small cell lung cancer: results of ACRIN 6668/
RTOG 0235. Int J Radiat Oncol Biol Phys 93:597–605

	24.	 Paesmans M, Garcia C, Wong CO et al (2015) Primary tumour 
standardised uptake value is prognostic in nonsmall cell lung 
cancer: a multivariate pooled analysis of individual data. Eur 
Respir J 46:1751–1761

	25.	 Cerfolio RJ, Bryant AS, Ohja B et al (2005) The maximum 
standardized uptake values on positron emission tomography 
of a non-small cell lung cancer predict stage, recurrence, and 
survival. J Thorac Cardiovasc Surg 130:151–159

	26.	 Nahmias C, Hanna WT, Wahl LM et al (2007) Time course of 
early response to chemotherapy in non-small cell lung cancer 
patients with 18F-FDG PET/CT. J Nucl Med 48:744–751

	27.	 Gupta NC, Tamim WJ, Graeber GG et al (2001) Mediastinal 
lymph node sampling following positron emission tomography 
with fluorodeoxyglucose imaging in lung cancer staging. Chest 
120:521–527

	28.	 Roberts PF, Follette DM, von Haag D et al (2000) Factors asso-
ciated with false-positive staging of lung cancer by positron 
emission tomography. Ann Thorac Surg 70:1154–1159

	29.	 Nakayama M, Okizaki A, Ishitoya S et al (2013) Dual-time-
point F-18 FDG PET/CT imaging for differentiating the lymph 
nodes between malignant lymphoma and benign lesions. Ann 
Nucl Med 27:163–169

	30.	 Kumar R, Loving VA, Chauhan A et al (2005) Potential of dual-
time-point imaging to improve breast cancer diagnosis with (18)
F-FDG PET. J Nucl Med 46:1819–1824

	31.	 Sathekge MM, Maes A, Pottel H et al (2010) Dual time-point 
FDG PET-CT for differentiating benign from malignant soli-
tary pulmonary nodules in a TB endemic area. S Afr Med J 
100:598–601

	32.	 Kaneko K, Sadashima E, Irie K et al (2013) Assessment of FDG 
retention differences between the FDG-avid benign pulmonary 
lesion and primary lung cancer using dual-time-point FDG-PET 
imaging. Ann Nucl Med 27:392–399

	33.	 Saleh Farghaly HR, Mohamed Sayed MH, Nasr HA et al (2015) 
Dual time point fluorodeoxyglucose positron emission tomogra-
phy/computed tomography in differentiation between malignant 
and benign lesions in cancer patients. Does it always work? 
Indian J Nucl Med 30:314–319

	34.	 Wong CS, Gong N, Chu YC et al (2012) Correlation of measure-
ments from diffusion weighted MR imaging and FDG PET/CT 
in GIST patients: ADC versus SUV. Eur J Radiol 81:2122–2126

	35.	 Usaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic 
blood flow by the Fick principle in man and problems in the use 
of indocyanine green. Cardiovasc Res 30:106–112

	36.	 Bevilacqua A, Barone D, Malavasi S et al (2014) Quantitative 
assessment of effects of motion compensation for liver and lung 
tumors in CT perfusion. Acad Radiol 21:1416–1426

	37.	 Li Y, Yang ZG, Chen TW et al (2008) Peripheral lung carcinoma: 
correlation of angiogenesis and first-pass perfusion parameters of 
64-detector row CT. Lung Cancer 61:44–53

	38.	 Ma SH, Le HB, Jia BH et al (2008) Peripheral pulmonary nodules: 
relationship between multi-slice spiral CT perfusion imaging and 
tumor angiogenesis and VEGF expression. BMC Cancer 8:186

	39.	 Ma S-H, Le H-B, Jia B et al (2008) Peripheral pulmonary nodules: 
relationship between multi-slice spiral CT perfusion imaging and 
tumor angiogenesis and VEGF expression. BMC Cancer 8:186

	40.	 Wang J, Wu N, Cham MD et al (2009) Tumor response in patients 
with advanced non-small cell lung cancer: perfusion CT evalua-
tion of chemotherapy and radiation therapy. AJR Am J Roentgenol 
193:1090–1096

	41.	 Huellner MW, Collen TD, Gut P et al (2014) Multiparametric 
PET/CT-perfusion does not add significant additional information 
for initial staging in lung cancer compared with standard PET/CT. 
EJNMMI Res 4:6

	42.	 Mirsadraee S, van Beek EJR (2015) Functional imaging: com-
puted tomography and MRI. Clin Chest Med 36:349–363

	43.	 O’Connor JP, Tofts PS, Miles KA et al (2011) Dynamic con-
trast-enhanced imaging techniques: CT and MRI. Br J Radiol 
84:S112–S120

	44.	 Petralia G, Preda L, D’Andrea G et  al (2010) CT perfusion 
in solid-body tumours. Part I: technical issues. Radiol Med 
115:843–857

	45.	 Li Y, Yang Z-G, Chen T-W, Yu J-Q, Sun J-Y, Chen H-J (2010) 
First-pass perfusion imaging of solitary pulmonary nodules with 
64-detector row CT: comparison of perfusion parameters of 
malignant and benign lesions. Br J Radiol 83(993):785–790

	46.	 Yuan X, Zhang J, Quan C et al (2013) Differentiation of malignant 
and benign pulmonary nodules with first-pass dual-input perfu-
sion CT. Eur Radiol 23(9):2469–2474

	47.	 Ohno Y, Koyama H, Matsumoto K et al (2011) Differentiation 
of malignant and benign pulmonary nodules with quantitative 
first-pass 320-detector row perfusion CT versus FDG PET/CT. 
Radiology 258(2):599–609

	48.	 Jiang B, Liu H, Zhou D (2016) Diagnostic and clinical utility of 
dynamic contrast-enhanced MR imaging in indeterminate pulmo-
nary nodules: a metaanalysis. Clin Imaging 40:1219–1225

	49.	 Cheng JC, Yuan A, Chen JH et  al (2013) Early detection of 
Lewis lung carcinoma tumor control by irradiation using diffu-
sion-weighted and dynamic contrast-enhanced MRI. PLoS ONE 
8:e62762

	50.	 Koenigkam-Santos M, Optazaite E, Sommer G et al (2015) Con-
trast-enhanced magnetic resonance imaging of pulmonary lesions: 
description of a technique aiming clinical practice. Eur J Radiol 
84:185–192

	51.	 Schaefer JF, Vollmar J, Schick F et al (2004) Solitary pulmonary 
nodules: dynamic contrast-enhanced MR imaging–perfusion dif-
ferences in malignant and benign lesions. Radiology 232:544–553

	52.	 Bell LC, Wang K, Munoz Del Rio A et al (2015) Comparison of 
models and contrast agents for improved signal and signal linear-
ity in dynamic contrast-enhanced pulmonary magnetic resonance 
imaging. Invest Radiol 50:174–178

	53.	 Ohba Y, Nomori H, Mori T et al (2009) Is diffusion-weighted 
magnetic resonance imaging superior to positron emission tomog-
raphy with fludeoxyglucose F 18 in imaging non-small cell lung 
cancer? J Thorac Cardiovasc Surg 138:439–445

	54.	 Li B, Li Q, Chen C et al (2014) A systematic review and meta-
analysis of the accuracy of diffusion-weighted MRI in the detec-
tion of malignant pulmonary nodules and masses. Acad Radiol 
21:21–29

	55.	 Wu LM, Xu JR, Hua J et al (2013) Can diffusion-weighted imag-
ing be used as a reliable sequence in the detection of malig-
nant pulmonary nodules and masses? Magn Reson Imaging 
31:235–246



642	 Lung (2018) 196:633–642

1 3

	56.	 Usuda K, Zhao XT, Sagawa M et al (2011) Diffusion-weighted 
imaging is superior to positron emission tomography in the detec-
tion and nodal assessment of lung cancers. Ann Thorac Surg 
91:1689–1695

	57.	 Regier M, Derlin T, Schwarz D et al (2012) Diffusion weighted 
MRI and 18F-FDG PET/CT in non-small cell lung cancer 
(NSCLC): does the apparent diffusion coefficient (ADC) correlate 
with tracer uptake (SUV)? Eur J Radiol 81:2913–2918

	58.	 Pauls S, Schmidt SA, Juchems MS et al (2012) Diffusion-weighted 
MR imaging in comparison to integrated [18F]-FDG PET/CT for 
N-staging in patients with lung cancer. Eur J Radiol 81:178–182

	59.	 Henz-Concatto N, Watte G, Marchiori E et al (2016) Magnetic 
resonance imaging of pulmonary nodules: accuracy in a granu-
lomatous disease-endemic region. Eur Radiol 26:2915–2920

	60.	 Hochhegger B, Marchiori E, dos Reis DQ et al (2012) Chemical-
shift MRI of pulmonary hamartomas: initial experience using a 
modified technique to assess nodule fat. AJR Am J Roentgenol 
199:W331–W334

	61.	 Gillies R, Kinahan P, Hricak H (2016) Radiomics: images are 
more than pictures, they are data. Radiology 278:563–577

	62.	 Doi K (2007) Computer-aided diagnosis in medical imaging: his-
torical review, current status and future potential. Comput Med 
Imaging Graph 31:198–211

	63.	 Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding 
tumour phenotype by noninvasive imaging using a quantitative 
radiomics approach. Nat Commun 5:400665

	64.	 Ganeshan B, Panayiotou E, Burnand K et al (2012) Tumour heter-
ogeneity in non-small cell lung carcinoma assessed by CT texture 
analysis: a potential marker of survival. Eur Radiol 22:796–802

	65.	 Fried DV, Tucker SL, Zhou S et al (2014) Prognostic value and 
reproducibility of pretreatment CT texture features in stage 
III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 
90:834–842

	66.	 Yoon HJ, Sohn I, Cho JH et al (2015) Decoding tumor phenotypes 
for ALK, ROS1, and RET fusions in lung adenocarcinoma using 
a radiomics approach. Medicine (Baltimore) 94:e1753

	67.	 Ferreira-Junior JR, Koenigkam-Santos M, Cipriano FEG et al 
(2018) Radiomics-based features for pattern recognition of lung 
cancer histopathology and metastases. Comput Methods Programs 
Biomed 159:23–30

	68.	 Yang J, Zhang L, Fave X (2016) Uncertainty analysis of quantita-
tive imaging features extracted from contrast-enhanced CT in lung 
tumors. Comput Med Imaging Graph 48:1–8

	69.	 Guo Z, Shu Y, Zhou H et al (2015) Radiogenomics helps to 
achieve personalized therapy by evaluating patient responses to 
radiation treatment. Carcinogenesis 36:307–317

	70.	 Rizzo S, Petrella F, Buscarino V et al (2016) CT radiogenomic 
characterization of EGFR, K-RAS, and ALK mutations in non-
small cell lung cancer. Eur Radiol 26:32–42

	71.	 Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phe-
notype in non-small cell lung cancer: CT radiogenomic charac-
terization. Radiology 272:568–576

Affiliations

Bruno Hochhegger1,2 · Matheus Zanon3 · Stephan Altmayer3 · Gabriel S. Pacini3 · Fernanda Balbinot3 · 
Martina Z. Francisco4 · Ruhana Dalla Costa4 · Guilherme Watte2,3 · Marcel Koenigkam Santos5 · Marcelo C. Barros4 · 
Diana Penha6 · Klaus Irion7 · Edson Marchiori8

	 Matheus Zanon 
	 mhgzanon@hotmail.com

	 Stephan Altmayer 
	 stephanaltmayer@gmail.com

	 Gabriel S. Pacini 
	 gabrielsartorip@gmail.com

	 Fernanda Balbinot 
	 balbinotf@gmail.com

	 Martina Z. Francisco 
	 martinazfrancisco@gmail.com

	 Ruhana Dalla Costa 
	 ruhanadalla@gmail.com

	 Guilherme Watte 
	 g.watte@gmail.com

	 Marcel Koenigkam Santos 
	 marcelk46@fmrp.usp.br

	 Marcelo C. Barros 
	 macardosob@hotmail.com

	 Diana Penha 
	 dianapenha@gmail.com

	 Klaus Irion 
	 klaus.irion@cmft.nhs.uk

	 Edson Marchiori 
	 edmarchiori@gmail.com

1	 LABIMED – Medical Imaging Research Lab, Department 
of Radiology, Pavilhão, Pereira Filho Hospital, Irmandade 
Santa Casa de Misericórdia de Porto Alegre, Av. 
Independência, 75, Porto Alegre 90020‑160, Brazil

2	 Department of Imaging, Pontifical Catholic University of Rio 
Grande do Sul, Av. Ipiranga, 6681 ‑ Partenon, Porto Alegre, 
RS 90619‑900, Brazil

3	 Medical Imaging Research Laboratory, Federal University 
of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, 
Porto Alegre, Rio Grande Do Sul 90050‑170, Brazil

4	 Department of Radiology, Irmandade da Santa Casa de 
Misericordia de Porto Alegre, Av. Independência, 75, 
Porto Alegre 90035‑072, Brazil

5	 Ribeirao Preto Medical School, Av. Bandeirantes, 3900, 
Monte Alegre, Ribeirão Preto, São Paulo 14049‑900, Brazil

6	 Radiology, Liverpool Heart and Chest Hospital, Thomas Dr, 
Liverpool L14 3PE, UK

7	 Central Manchester University Hospitals NHS Foundation 
Trust, Manchester Royal Infirmary, Oxford Road, 
Manchester M13 9WL, UK

8	 Federal University of Rio de Janeiro, Av. Carlos Chagas 
Filho, 373, Rio De Janeiro 21941‑902, Brazil


	Advances in Imaging and Automated Quantification of Malignant Pulmonary Diseases: A State-of-the-Art Review
	Abstract
	Introduction
	CT Nodule Measurement
	18F-FDG PETCT
	Perfusion Computed Tomography
	Magnetic Resonance Imaging (MRI)
	MRI Perfusion
	MRI Diffusion

	Radiomics of Lung Cancer (Artificial Intelligence)
	Conclusion
	Acknowledgements 
	References


