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A B S T R A C T   

The human brain matures into a complex structure, and to reach its complete development, connections must 
occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can 
be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral 
processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological dis-
orders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may 
elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult 
zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development 
(24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological 
disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late 
behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the 
open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, 
quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic move-
ments and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, 
characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to 
corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory 
impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive 
behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the 
early life stages of development led to late alterations in behavioral parameters of adult zebrafish.   

1. Introduction 

During prenatal life, the human brain turns into a complex organ, 
controlling movements, behaviors, cognitive processes, and routine ac-
tivities (Bjørling-Poulsen et al., 2008; Julvez and Grandjean, 2009). To 
reach its complete development, connections must occur precisely. All 
processes involved in brain development must occur rigidly, in precise 
time and sequence, so that each stage of development occurs correctly. If 
these processes are altered, inhibited, or interrupted at any of these 
stages, the consequences can be permanent (Bjørling-Poulsen et al., 
2008; Rice and Barone Jr., 2000). Furthermore, changes in pathways 
during neurotransmitter systems development may underlie patho-
physiological processes of neurological disorders (Banerjee et al., 2014; 

Cai et al., 2021; Valenzuela et al., 2011). 
The dopaminergic system is involved in many central nervous system 

functions such as movement, executive functions, reward, motivation, 
learning, and memory (Beaulieu and Gainetdinov, 2011; Björklund and 
Dunnett, 2007; Goldman-Rakic, 1998; Jones and Miller, 2008). By 
acting through its receptors, dopamine can control movement and 
several other behavioral functions (Beaulieu and Gainetdinov, 2011). 
Dopamine receptors are a class of G protein-coupled receptors that act as 
mediating dopamine actions in the central and peripheral nervous sys-
tems. Both pre- and postsynaptic dopamine receptors are present in the 
nervous system of vertebrates and are grouped into two families: D1-like 
receptors (D1 and D5), which increase cyclic AMP levels following 
stimulation; and D2-like receptors (D2, D3, and D4), which decrease 
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cyclic AMP levels or lead to a decrease in intracellular calcium following 
stimulation (Beaulieu and Gainetdinov, 2011). 

Dopaminergic signaling is implicated in several neurological, psy-
chiatric, and neurodegenerative disorders in humans (Armstrong and 
Okun, 2020; Burns et al., 2019; Chadehumbe and Brown, 2019; 
D'Amelio et al., 2018; Howes et al., 2015; Klein et al., 2019). More 
specifically, dopamine receptors are involved in a set of symptoms 
characteristic of schizophrenia, attention deficit hyperactivity disorder, 
Huntington's chorea, Parkinson's disease and Alzheimer's disease, 
Tourette syndrome, tardive dyskinesia, and substance abuse (Brown 
et al., 2012; Kostrzewa, 1995; Kostrzewa et al., 2014; Kostrzewa et al., 
2016a; Kostrzewa et al., 2016b; Kostrzewa and Brus, 2016; Maple et al., 
2015). Moreover, dopamine receptors are considered as targets for the 
treatment of such disorders. Due to the overwhelming importance of 
dopamine receptors in neuropathological processes, studies in animal 
models were carried out to understand the association between them 
and their role in animal behaviors, intending to provide a common 
thread with human neurological disorders (Hoffman, 2011; Kostrzewa 
et al., 2016c; Martel and Gatti, 2020; Medin et al., 2013; Mishra et al., 
2018; Nabinger et al., 2021; Pan et al., 2019; Vaz et al., 2018). 

In this sense, quinpirole, a selective agonist of dopamine D2/D3 re-
ceptors has been used to understand mechanisms underlying human 
neurological disorders, such as schizophrenia, anxiety, and obsessive- 
compulsive disorder (Archer and Kostrzewa, 2016; Bortolato and Pit-
tenger, 2017; Brown et al., 2012; Camilla d'Angelo et al., 2014; Stuchlik 
et al., 2016; Szechtman et al., 2017). In animal models, quinpirole 
administration leads to several behavioral alterations and is correlated 
to these neurological disorders. Some of the endophenotypes include 
alterations in locomotor activity, elevated erratic and repetitive move-
ments, induction of stereotypical responses, and alterations in cognitive 
processes (Abounoori et al., 2020; Bortolato and Pittenger, 2017; 
Camilla d'Angelo et al., 2014; Eilam et al., 1989, 1991; Irons et al., 2013; 
Nabinger et al., 2021; Naderi et al., 2016a, 2016b). Furthermore, 
quinpirole exposure during development can sensitized dopamine re-
ceptors causing effects at late stages of development (Kostrzewa and 
Brus, 1991; Kostrzewa et al., 1993, 2011; Maple et al., 2015; Nowak 
et al., 2001). 

Zebrafish (Danio rerio), a translationally relevant biomedical 
research organism, have become a significant species to study mecha-
nisms implicated in brain function and dysfunction. Due to high genetic 
and physiological homology to mammals, ease of several experimental 
manipulations, and the sensitivity to various pharmacological agents, 
this species has contributed to our better understanding of neurosciences 
(Gerlai, 2012; Kalueff et al., 2014; Stewart et al., 2014). The main 
neurotransmitter systems are known to be involved in several neuro-
logical disorders as dopaminergic, serotonergic, glutamatergic, and 
GABAergic are functional and well-characterized in zebrafish (Stewart 
et al., 2015). Specifically, the development of the dopaminergic system 
begins around 15–18 h post-fertilization (hpf), and all neuronal cells and 
their projections are present by 4 days post-fertilization (dpf), 
(Boehmler et al., 2004, 2007; Li et al., 2007; Rink and Wullimann, 2001, 
2002; Tay et al., 2011). The dopaminergic receptors homologous to the 
mammalian subtypes were identified, except for D5. Around 30 hpf, the 
expression of genes encoding dopamine receptor is detected, and the 
receptors are functional at 4 dpf (Boehmler et al., 2004, 2007; Li et al., 
2007). Furthermore, behavioral endophenotypes linked to neurological 
disorders, such as stereotypy, impulsivity, anxiety-like behavior, 
decision-making, depression, and attention deficit have also been 
observed in this animal model (Kalueff et al., 2013). All these charac-
teristics make zebrafish a promising animal model for the study of 
neurological disorders. Given that, we hypothesized that quinpirole 
exposure during the early life stages of zebrafish might lead to later 
alterations in behavioral patterns, as increase swim activity and anxiety- 
like behaviors. Thus, we investigate the late behavioral effects of quin-
pirole exposure during the early life stages of zebrafish to better un-
derstand the mechanisms underlying neurological disorders related to 

the dopaminergic system. We hope that our study sets a precedent and 
will lead to a better understanding of the mechanisms underlying human 
neurological disorders related to the dopaminergic system with the use 
of zebrafish. 

2. Materials and methods 

2.1. Animals 

Zebrafish (D. rerio), wild-type AB strain from both genders were 
used. To obtain fertilized eggs, females and males (1:2) were placed in 
breeding tanks (beach style design - Tecniplast, Italy) separated by a 
transparent barrier overnight. Larvae were raised in Petri dishes (30 
fertilized eggs per dish) and kept in maintenance water on a 14/10 h 
light/dark cycle following standards methods for the species (reverse 
osmosis-filtered water reconstituted to reach 400–600 μS of salinity, pH 
6.5–7.5, temperature 27 ◦C ± 2 ◦C, ammonia <0.004 ppm, nitrate <50 
mg/L, nitrite <1 mg/L, chloride 0 mg/L and hardness 80–300 mg/L) up 
to an age of 5 dpf. At 5 dpf, quinpirole hydrochloride (Sigma-Aldrich, St. 
Louis, MO, USA - Q102) exposure was conducted in Petri dishes (30 
larvae per dish) at concentrations of 0 (control group), 5.5, 16.7, and 50 
μM for 24 h (Fig. 1). Quinpirole exposure concentrations were chosen 
based on previous studies (Irons et al., 2013; Nabinger et al., 2021). 
After the exposure period, larvae were raised in maintenance water, 
following the conditions described above and respecting proportional 
density for each stage of development – at 7 dpf larvae were transferred 
to 3 L-tanks, with a density of one fish per 60 mL until 30 dpf, when the 
density changed to one fish per 200 mL until 120 dpf, when all experi-
mental procedures were conducted. The number of exposed larvae was 
calculated considering the overall mortality of 30% of the embryos, so 
that the necessary sample size for the experiments could be reached at 
120 dpf. The experiments have been conducted with fish coming from 
three different breeding, and the final sample consisted of 1/3 of each 
one. For feeding, animals received paramecium between 4 and 14 days 
dpf and subsequently received commercial flakes (TetraMin Tropical 
Flake Fish®) three times a day supplemented with brine shrimp 
(Westerfield, 2007). The hatching rate, general morphology, and mor-
tality rate of the animals were monitored daily. Only fish without 
morphological changes were used for exposure and behavioral tasks, 
ensuring that the behavioral effects were not confounded. The study was 
approved by the Institutional Animal Care Committee from Pontifícia 
Universidade Católica do Rio Grande do Sul (CEUA-PUCRS, permit 
number 8181), following the National Council for the Control of Animal 
Experimentation (CONCEA) guidelines. This study was registered in the 
Sistema Nacional de Gestão do Patrimônio Genético e Conhecimento 
Tradicional Associado - SISGEN (Protocol No. A3B073D). 

2.2. Open tank test 

At 120 dpf, fish were evaluated for exploratory and locomotor ac-
tivity (n = 24 per group). Fish were placed individually in experimental 
tanks (30 cm long × 15 cm high × 10 cm wide) with water. After 1 min 
of familiarization, the exploratory and locomotor behavior of the 
zebrafish were recorded for 5 min for subsequent analysis using software 
EthoVision XT (30 frames per second) (Gerlai et al., 2000; Nabinger 
et al., 2018). Total distance traveled, time mobile, and acceleration were 
analyzed, being considered as the main parameters for exploration and 
swim activity of a new environment. Absolute turn angle was also 
determined, which evaluates erratic movements. Last, we quantified the 
time spent in the bottom zone of the tank, which is considered an in-
dicator of anxiety-like behavior. 

2.3. Social interaction task 

Social interaction was evaluated at 120 dpf after exposure to quin-
pirole during early life stages of development (n = 20 per group). Briefly, 
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fish was individually placed in an experimental tank (30 cm long × 15 
cm high × 10 cm wide). The apparatus consisted of three tanks, on one 
side of the experimental tank, an empty fish tank was placed; on the 
other side, a tank holding 15 zebrafish was placed (stimulus tank). After 
1-min familiarization, a 5-min session was video recorded for subse-
quent analysis with EthoVision XT (30 frames per second) (Gerlai et al., 
2000). To quantify social interaction, the experimental tank was virtu-
ally divided into two halves, a “stimulus zone” closer to the “stimulus 
tank” and the other remaining half closer to the empty tank, the time 
spent at the stimulus zone was measured. 

2.4. Aggression test 

The mirror test was used to quantify aggressive behavior (n = 24 per 
group) (Gerlai et al., 2000; Rambo et al., 2017). Briefly, at 120 dpf fish 
were individually placed in an experimental tank (30 cm long × 15 cm 
high × 10 cm wide). To the back wall of the tank, a mirror (45 cm × 38 
cm) was placed at an angle of 22.5◦, on this configuration, the left 
vertical edge of the mirror touched the side of the tank, and the right 
edge was further away. Thus, when a test fish swam to the left side of the 
tank, their reflection appeared closer to them. A 5-min session following 
1-min familiarization was video recorded for subsequent quantification 
of aggressive behavior with EthoVision XT (30 frames per second). The 
tank was virtually divided into four equal sections allowing counting the 
number of entries and time spent in each zone. Entry to the zone nearest 
to the mirror was assumed as a preference for proximity to the opponent. 
The amount of time spent, frequency of entries, and the circle swimming 
movement in each segment were measured for quantification of 
aggressive behavior. 

2.5. Inhibitory avoidance task 

To evaluate whether administration of quinpirole at early life stages 
of development could impair avoidance memory in adult zebrafish, we 
performed an inhibitory avoidance test (n = 24 per group) (Blank et al., 
2009). The task consisted of two sessions, training and test with 24 h 
interval. In each session, fish were individually placed in an experi-
mental tank with two compartments of equal size divided by guillotine 
door, one black (right side) and one white (left side) (18 cm long × 7 cm 
high × 9 cm wide). Throughout the training session, for 1 min of 
familiarization, fish were placed in the white compartment with the 
door closed. After, the guillotine door was lifted. When the fish swam 
into the black compartment, the guillotine door was closed, and an 
electric shock pulse (3 ± 0.2 V) was applied for five seconds. Zebrafish 
were then returned to their housing tank for 24 h until the test session. 
The test session followed the same procedure as the training session, 
except for the electric shock. During training and test sessions, a time 
limit of 3 min was established for the task (fish that did not cross to the 
black compartment during training session within this period of time 
were excluded from the task). The latency to enter the black compart-
ment during the training and test sessions was quantified and the ex-
pected increase in the test session was used as an index of memory 
retention. 

2.6. Statistical analysis 

Data normality was analyzed by Kolmogorov-Smirnov. Data nor-
mally distributed were expressed as mean ± standard error of the mean 
(S.E.M) and further analyzed by one-way ANOVA followed by a post hoc 
Tukey's test. Nonparametric data were expressed as median ± inter-
quartile range and analyzed by Kruskal-Wallis test followed by a post 
hoc Dunn's test. For the inhibitory avoidance task, training and test la-
tencies within each group were compared by the Wilcoxon matched- 
pairs test. The latencies of multiple groups were compared by the 
Kruskal-Wallis and Mann-Whitney U tests. For all comparisons, the p- 
value <0.05 was considered as a significant difference. 

3. Results 

3.1. Open tank test 

The swimming pattern of adult zebrafish was evaluated in an open 
tank test at 120 dpf after quinpirole exposure during development. 
Distance traveled, time mobile, and acceleration were considered as the 
main parameters for exploratory behavior and swimming activity and 
no alterations were observed in these parameters (ANOVA, Distance 
traveled: F(3, 88) = 2.145, p = 0.1003; Kruskal-Wallis, Time mobile: H =
6.021, p = 0.1106; Acceleration: H = 3.825, p = 0.2810) (Fig. 2a, b, c). 

To evaluate whether quinpirole exposure could cause anxiety, the 
time swimming at the bottom of the tank (Kruskal-Wallis, H = 13.37, p 
= 0.0039) and the swim absolute turn angle (ANOVA, F(3, 88) = 4.580, p 
= 0.005) were evaluated. Fish exposed to 50 μM quinpirole (p = 0.0025) 
remained at the bottom of the tank longer than control fish, indicating 
an anxiety-like behavior (Fig. 2d). Furthermore, zebrafish exposed to 
16.7 μM (p = 0.0197) presented increased absolute turn angle, likely an 
indication of elevated erratic movements, a sign of increased fear or 
anxiety (Fig. 2e). 

Additionally, zebrafish exposed to quinpirole presented an altered 
swimming pattern with increased time of duration (Kruskal-Wallis, H =
18.52, p = 0.0003) and frequency (ANOVA, F(3, 88) = 4.065, p = 0.0094) 
when compared to controls. Animals exposed to 5.5 (p = 0.0098), 16.7 
(p = 0.0154), and 50 μM (p = 0.0002) presented a stereotypic swimming 
characterized by the pattern of rigid and repetitive behavior. The fish 
swam from corner to corner at the bottom of the tank repetitive times 
with high-velocity locomotion; the changes of direction during stereo-
typic swimming were made by rapid turning within a single behavioral 
bout. All fish exposed to quinpirole that performed this behavior pre-
sented the same pattern, with time and number of episodes of repetitions 
varying among the groups (Fig. 2f, g) (behavioral results are summa-
rized and presented in Fig. 6). 

3.2. Social behavior 

There were no alterations in social behavior. Adult zebrafish exposed 
to quinpirole during development displayed the same preference for the 
stimulus area as control group when evaluated individually at the social 
interaction task (Kruskal-Wallis, Time in stimulus zone: H = 0.8445, p =
0.8388; Frequency in stimulus zone: H = 0.2283, p = 0.9729) (Fig. 3). 

Fig. 1. Experimental flowchart. Larvae from quinpirole groups were exposed to the respective concentrations (0, 5.5, 16.7, and 50 μM) at 5 dpf for 24 h. At the end of 
the 24-h exposure period, animals were kept in maintenance water until 120 dpf, when the behavioral tasks were performed. 
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Fig. 2. Locomotor and exploratory activity of adult zebrafish evaluated in the open tank test. Sample sizes are n = 20 for control group and n = 24 for quinpirole 
groups. Distance (a), mobile time (b), acceleration (c), time in the bottom of the tank (d), absolute turn angle (e), duration (f), and frequency of stereotypic 
movements (g) were analyzed at 120 dpf after exposure to quinpirole during development. For nonparametric data, Kruskal-Wallis was used, followed by a post hoc 
Dunn's test. Data from graphs b, c, d, and f are presented as median ± interquartile (each dot represents the individual data). For data normally distributed, one-way 
ANOVA was used, followed by post-hoc Tukey's test. Data from graphs a, e, g are presented as media ± SD (each dot represents the individual data). Comparisons 
between control and the quinpirole groups are indicated by asterisk. * indicates significant difference at p ≤ 0.05 and ** p ≤ 0.01. Note that exposure to quinpirole 
led to anxiety-like behaviors and stereotypic movements at 120 dpf (time spent in the bottom zone (d), absolute turn angle (e), duration (f), and frequency of 
stereotypic movements (g). For detailed results of statistical analysis, see Results. 
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(See Fig. 6). 

3.3. Aggression test 

Exposure to quinpirole during the early life stages of zebrafish did 
not induce any alteration in aggressive behavior. Zebrafish exposed to 
quinpirole concentrations presented the same response to the mirror 

protocol than control fish when tested at 120 dpf (Kruskal-Wallis, Time 
in the zone nearest to the mirror: H = 6.028, p = 0.1103; Frequency in 
the zone nearest to the mirror: H = 3.600, p = 0.3080; Rotation: H =
6.829, p = 0.0776) (Fig. 4). (See Fig. 6). 

Fig. 3. Analysis of social behavior in adult zebrafish individually tested at the social interaction task. Median ± interquartile are shown (each dot represents the 
individual data). Sample sizes are n = 14 for control group and n = 20 for quinpirole groups. Time spent in the stimulus zone (a) and frequency in the stimulus zone 
(b) were analyzed at 120 dpf after exposure to quinpirole during development. Kruskal-Wallis was used, followed by a post hoc Dunn's test. Zebrafish exposed to 
quinpirole presented the same preference for the stimulus area as controls when evaluated individually at social interaction task. For detailed results of statistical 
analyses, see Results. 

Fig. 4. Evaluation of aggressive behavior in adult zebrafish in the mirror-induced aggression task. Median ± interquartile are shown (each dot represents the in-
dividual data). Sample sizes are n = 24 for each group. Time spent in the zone nearest to the mirror (a), frequency in the zone nearest to the mirror (b) and frequency 
of rotations (c) were analyzed at 120 dpf after exposure to quinpirole during development. Kruskal-Wallis was used, followed by a post hoc Dunn's test. No alterations 
were observed on fish exposed to quinpirole on the parameters evaluated in the mirror-induced aggression task. For detailed results of statistical analyses, see Results. 
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3.4. Inhibitory avoidance task 

Aversive memory was assessed by the inhibitory avoidance task. 
Zebrafish exposed to quinpirole at the early stages of development 
presented memory impairment. There were no differences in the latency 
to enter the dark compartment for training and test sessions for fish 
exposed to 50 μM, indicating an impairment of aversive memory, 
whereas there was a significant difference in the control group (p <
0.0001), 5.5 μM (p = 0.045), and 16.7 μM (p = 0.0083) groups (Fig. 5a). 
Comparing the groups only at the test session, there is a significant 
decreasing latency at fish injected with 16.7 (Mann-Whitney, W =
141.5; p = 0.029) and 50 μM (Mann-Whitney, W = 116.5; p = 0.0061) 
when compared to controls (Fig. 5b). (See Fig. 6.) 

4. Discussion 

In our study, we investigated the late effects of quinpirole exposure 
during the early life stages of zebrafish on behavioral parameters at 120 
dpf. The exposure to quinpirole concentrations during development led 
to late anxiety-like behaviors, stereotypy, and impaired memory. At the 
open tank test, fish exposed during development remained longer at the 
bottom of the tank when tested at 120 dpf, indicating an anxiety-like 

behavior. Furthermore, quinpirole-treated fish exhibited increased ab-
solute turn angle, likely an indication of elevated erratic movements, 
and a sign of increased fear or anxiety. Additionally, quinpirole-treated 
fish showed a stereotypic swimming pattern – with repetitive swimming 
at the bottom of the tank. Quinpirole exposure led to memory impair-
ment compared to control fish when evaluated at avoidance task. 
However, quinpirole administration had no effects on social and 
aggressive behavior. 

Neurodevelopment depends on both intrinsic and extrinsic factors 
that influence the general pattern of neural circuit formation and neu-
rogenesis, which has a straight impact on behavior. Alterations in the 
dopaminergic signaling and brain morphology at the early stages of 
development and mutations in genes related to neurodevelopment are 
strongly associated with numerous neuropsychiatric disorders. Such 
evidence supports the premise of a neurodevelopmental cause of at least 
some forms of mental diseases (Souza and Tropepe, 2011; Souza et al., 
2011). Zebrafish is considered an important biomedical model, largely 
used in different research fields, including studies of development, 
toxicology, genetics, drug screening, and neurobiology of diseases. A 
specific advantage is that neurotransmitter systems are evolutionarily 
conserved among zebrafish and other vertebrates, including humans 
(Wasel and Freeman, 2020). The dopaminergic system in zebrafish is 
well characterized and is completely developed at 4 dpf (Rink and 
Wullimann, 2002). Here we performed a pharmacological manipulation 
of dopamine D2 and D3 receptors during zebrafish development, 
focusing on the late changes that this exposure could cause in adulthood. 
In rodents, this exposure protocol has been used as a model for studying 
psychiatric disorders, and our study aimed to present zebrafish as a 
model for its study as well (Einat and Szechtman, 1993; Kostrzewa et al., 
1993, 2016c; Kurylo and Tanguay, 2003; Maple et al., 2015; Vorhees 
et al., 2009). The choice of exposure at 5 dpf was given because at this 
stage the dopaminergic receptors are already functional and are sensi-
tive to quinpirole exposure (Boehmler et al., 2004, 2007; Li et al., 2007). 
Additionally, it is known that several processes of dopaminergic 
signaling can be affected by feed status, the proportion of nutrients, and 
the amount of food intake (Baladi and France, 2009; Briguglio et al., 
2018; Sevak et al., 2008). Recently, we demonstrated that nutritional 
status affects quinpirole exposure effects on zebrafish larvae. Zebrafish 
larvae that received food before quinpirole exposure presented endo-
phenotypes linked to neuropsychiatric disorders, which were not seen in 
non-fed animals (Nabinger et al., 2021). For this reason, in the present 
study, the larvae started to be fed before quinpirole exposure (i.e., at 4 
dpf), an attempt to enhance the quinpirole effects over dopamine 
receptors. 

Dopaminergic neurons are classically known to control and modu-
late locomotion in vertebrates (Ryczko and Dubuc, 2017). As in mam-
mals, dopamine also participates in the control and regulation of 
locomotion in zebrafish and, for instance, is essential for the initiation of 
movement (Ek et al., 2016; Irons et al., 2013; Lambert et al., 2012; Souza 
and Tropepe, 2011; Souza et al., 2011; Thirumalai and Cline, 2008). In 
our study, quinpirole exposure during development had no late effect 
over the main parameters considered for exploration and swim activity, 
as distance traveled, time mobile, and acceleration. However, quinpirole 
exposure leads to alterations in locomotor activity in zebrafish with 
controversial results. Larvae (around 5 and 7 dpf) exposed to similar 
quinpirole concentrations used here (5.5 to 30 μM) have been reported 
to either present increased and decreased locomotor activity (Boehmler 
et al., 2007; Irons et al., 2013; Lange et al., 2018; Nabinger et al., 2021; 
Souza and Tropepe, 2011; Souza et al., 2011). In adult zebrafish, other 
studies have shown no effects of quinpirole on locomotor activity after 
exposure to 1 mg/L of this agonist (Naderi et al., 2016a, 2016b). 

Dopamine, just like in mammals, is also involved in several neuro-
behavioral functions and phenomena in zebrafish, including not just the 
locomotor activity, but also anxiety, aggression, social behavior, and 
learning and memory (Irons et al., 2013; Kacprzak et al., 2017; Liu et al., 
2020; Naderi et al., 2016a, 2016b; Scerbina et al., 2012; Teles et al., 

Fig. 5. Inhibitory avoidance task. Sample sizes are n = 24 for each group. 
Median ± interquartile are shown (each dot represents the individual data). 
Inhibitory avoidance training and test latencies within each group were 
compared by the Wilcoxon matched pairs test. Latencies differences between 
training and test session are indicated by asterisk. ** indicate significant dif-
ference at p ≤ 0.01 and **** p ≤ 0.0001 (a). Latencies between groups at 
training session were compared by Mann-Whitney test. Latencies differences at 
testing session between controls and quinpirole groups are indicated by hash-
tag. # indicate significant difference at p ≤ 0.05 and ## p ≤ 0.01 (b). Note that 
quinpirole administration caused memory impairment. Note that quinpirole 
induced memory impairment at 120 dpf in fish exposed to 50 μM quinpirole 
concentrations at the beginning of development. For detailed results of statis-
tical analyses, see Results. 
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2013). We found quinpirole exposure during development to cause late 
behavioral alterations such as elevated anxiety-like behavior and to 
induce stereotypic swimming movements and memory impairment. To 
the best of our knowledge, such late phenotypes have not been observed 
in zebrafish after quinpirole exposure during development. Yet, during 
the early life stages of development, a partial agonist of the D2 dopamine 
receptor was found to induce anxiety-like behavior in zebrafish larvae 
(Félix et al., 2017a, 2017b). However, the administration of partial ag-
onists of D2 and D3 receptors in adult zebrafish has been shown to either 
have an anxiolytic and anxiogenic effect (Barcellos et al., 2020; De 
Campos et al., 2015; Ek et al., 2016; Johnson and Hamilton, 2017; 
Müller et al., 2020; Pittman and Hylton, 2015; Riehl et al., 2011). In 
addition to the effects related to anxiety, partial agonists of D2 receptors 
have also been found to reduce aggression and disrupt shoaling in 
zebrafish (Michelotti et al., 2018; Riehl et al., 2011; Zakhary et al., 
2011). 

Besides leading alteration on anxiety, quinpirole administration 
caused stereotypic behavior. The administration of this dopamine re-
ceptor agonist has been associated with perseveration, stereotypy, re-
petitive behaviors, and reduced behavioral variability, which are related 
to alterations observed in neuropsychiatric disorders (Depoortere et al., 
1996; Hoffman, 2011; Kostrzewa and Brus, 2016; Mattingly et al., 1993; 
Nielsen et al., 2017; Sams-Dodd, 1998; Szechtman et al., 1994; Szecht-
man et al., 2017). Quinpirole exposure also triggered a repetitive travel 
pattern along routes limited to a specific area (Eilam et al., 1989, 1991). 
This is like what we observed here since zebrafish exposed to quinpirole 
during the development presented a stereotypic behavior, characterized 
by a repetitive movement, swimming from corner to corner at the bot-
tom of the tank. For fish exposed to the lower quinpirole concentrations, 
this behavior occurred randomly during the test. However, for animals 
exposed to the highest concentration, the stereotypic behavior was al-
ways followed and preceded by episodes of immobility. Furthermore, 
ketamine, a partial agonist of the D2 dopamine receptor, has also been 
found to induce stereotypical behaviors and evoke circular swimming in 
zebrafish (Michelotti et al., 2018; Riehl et al., 2011; Zakhary et al., 
2011). 

The results regarding anxiety and stereotypic behavior observed here 
are in line with what was observed in these previous studies. However, 

as mentioned above, these studies used partial agonists of D2 and D3 
dopamine receptors. Partial agonists also act via other receptors from 
different signaling systems, justifying some of the controversial findings 
of our study. Nevertheless, quinpirole administration has been used in 
rats and mice to model psychiatric disorders, such as obsessive- 
compulsive disorder and schizophrenia. After exposure, the animals 
presented anxiety-like behavior and elevated stereotypic and erratic 
movements as we observed here. Only a few studies have reported al-
terations in social and aggressive behavior (Hoffman, 2011; Kostrzewa 
et al., 2016c; Maple et al., 2017; Navarro and Maldonado, 1999; Nielsen 
et al., 2017; Sams-Dodd, 1998; Szechtman et al., 2017). 

Even though not seeing alterations in aggressive and social behav-
iors, quinpirole exposure during development led to late effects on 
memory. The dopaminergic system is known to participate in learning 
and memory processes (Goldman-Rakic, 1998). Few studies evaluating 
memory after quinpirole exposure have been performed, and depending 
on the task, zebrafish presented memory impairment or facilitation 
when compared to controls. Using a plus-maze associative learning 
paradigm, an enhanced performance was observed in zebrafish exposed 
to quinpirole immediately before the training and the probe test, but not 
when exposed after it (Naderi et al., 2016a). The same authors, assessing 
cognitive performance using a complex maze, showed that quinpirole 
exposure before and after training significantly impacts learning and 
memory in zebrafish (Naderi et al., 2016b). As observed for zebrafish, 
the assessment of memory after quinpirole exposure in rodents also 
presents controversial results. For example, in a fear conditioning 
paradigm, the administration of quinpirole was found either to improve 
or to impair learning and memory processes in rodents (Farahmandfar 
et al., 2016; Lénárd et al., 2017; Nader and LeDoux, 1999a, 1999b). Here 
we performed an inhibitory avoidance task after quinpirole adminis-
tration during development and we observed impaired learning/mem-
ory performance at fish exposed to the higher concentrations tested. To 
the best of our knowledge, this is the first demonstration of quinpirole 
leading to late effects in inhibitory avoidance learning/memory per-
formance in zebrafish. As mentioned, the dopaminergic system partici-
pates in memory processes, and evidence indicates the involvement of 
dopamine receptors on consolidation and reconsolidation, acquisition, 
retrieval, and extinction phases of different kinds of learning and 

Fig. 6. Summary of late behavioral effects of quinpirole exposure during development. The signs in the table indicate the results compared to the control group. =
indicates that there is no statistically significant difference between fish treated with quinpirole and controls. ↑ indicates statistically significant increase and ↓ 
indicates statistically significant decrease comparing quinpirole groups to the control group. 
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memory (El-Ghundi et al., 2007; Puig et al., 2014). Specifically, earlier 
studies observed and identified a differential involvement of D2 receptor 
in the acquisition of different kinds of memory (Brown et al., 2000; 
Kurylo, 2004; Merritt and Bachtell, 2013; Ponnusamy et al., 2005; 
Yawata et al., 2012; Young et al., 2014), explaining the contradictory 
findings. Also, quinpirole may have a dose-dependent biphasic profile in 
zebrafish, a possibility already confirmed in mammals (Li et al., 2010). 
This biphasic dose-response is assumed to result from the dose- 
dependent activation of D2 versus D3 receptor - depending on the 
quinpirole concentration pre- or postsynaptic D2/D3 receptors can be 
activated (De Mei et al., 2009). It has been demonstrated that the acti-
vation of postsynaptic receptors led to recall of memory (Bracs et al., 
1984; Ichihara et al., 1988; Naderi et al., 2016a); likely this could 
indicate that the impaired memory observed here results from presyn-
aptic activation of D2 receptors. Additional studies are necessary to 
deepen the role of D2/D3 receptors in zebrafish memory. 

The manipulation of dopaminergic receptors during development led 
to neurological alterations that reflected the altered behaviors observed 
here. However, the underlying mechanisms involved in the late behav-
ioral effects of quinpirole exposure are still unknown. Yet, neuro-
developmental and psychiatric disorders are linked with abnormalities 
in several epigenetic mechanisms (Archer et al., 2010; Shorter and 
Miller, 2015). The behavioral effects showed in the present study fit into 
the behavioral spectrum observed in animal models used to study 
human neuropsychiatric conditions, including obsessive-compulsive 
disorders, schizophrenia, and anxiety (Archer and Kostrzewa, 2016; 
Bortolato and Pittenger, 2017; Brown et al., 2012; Camilla d'Angelo 
et al., 2014; Stuchlik et al., 2016; Szechtman et al., 2017). Zebrafish 
models to study such disorders, excepting anxiety, are lacking (Kalueff 
et al., 2013; Khan et al., 2017). In addition, the late effects of quinpirole 
exposure during the early life stages of the zebrafish observed here may 
indicate the use of this species and this agonist to better understand the 
disorders related to the dopaminergic system, especially those that occur 
due to changes during the development. 

Thus, in summary, our study shows that quinpirole exposure during 
the early life stages of zebrafish led to late and persistent behavioral 
alterations in the adult phase. Quinpirole effects highly observable 
include anxiety-like behaviors, stereotypic behavior, and memory 
impairment, behavioral phenotypes corresponding to the ones observed 
in some human neurological disorders and in animal models used to 
study these disorders. The observed alterations demonstrate the 
participation of the dopaminergic neurotransmitter system in a variety 
of brain functions and behaviors and show that the zebrafish present 
similar psychopharmacological responses to mammalian model organ-
isms. Thus, our study expands the possibility of using zebrafish, a simple 
vertebrate, for studying neuropsychiatric diseases, contributing to their 
better understanding. 
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