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Abstract Antipsychotic agents are used for the

treatment of psychotic symptoms in patients with

several brain disorders, such as schizophrenia. Atypical

and typical antipsychotics differ regarding their clinical

and side-effects profile. Haloperidol is a representative

typical antipsychotic drug and has potent dopamine

receptor antagonistic functions; however, atypical

antipsychotics have been developed and characterized

an important advance in the treatment of schizophrenia

and other psychotic disorders. Purine nucleotides and

nucleosides, such as ATP and adenosine, constitute a

ubiquitous class of extracellular signaling molecules

crucial for normal functioning of the nervous system.

Indirect findings suggest that changes in the purinergic

system, more specifically in adenosinergic activity,

could be involved in the pathophysiology of schizophre-

nia. We investigated the effects of typical and atypical

antipsychotics on ectonucleotidase and adenosine

deaminase (ADA) activities, followed by an analysis

of gene expression patterns in zebrafish brain. Haloperi-

dol treatment (9 lM) was able to decrease ATP

hydrolysis (35 %), whereas there were no changes in

hydrolysis of ADP and AMP in brain membranes after

antipsychotic exposure. Adenosine deamination in

membrane fractions was inhibited (38 %) after

haloperidol treatment when compared to the control;

however, no changes were observed in ADA soluble

fractions after haloperidol exposure. Sulpiride

(250 lM) and olanzapine (100 lM) did not alter

ectonucleotidase and ADA activities. Haloperidol also

led to a decrease in entpd2_mq, entpd3 and adalmRNA

transcripts. These findings demonstrate that haloperidol

is an inhibitor of NTPDase and ADA activities in

zebrafish brain, suggesting that purinergic signaling

may also be a target of pharmacological effects

promoted by this drug.

Keywords Antipsychotic � Adenosine deaminase �
Ectonucleotidases � Haloperidol � Zebrafish

K. J. Seibt � R. da Luz Oliveira � C. D. Bonan (&)
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Computacional de Fármacos, Instituto Oswaldo Cruz,

Fundação Oswaldo Cruz, Avenida Brasil, 4365,

Rio de Janeiro, RJ 21040-360, Brazil

e-mail: mario.senger@ioc.fiocruz.br

123

Fish Physiol Biochem (2015) 41:1383–1392

DOI 10.1007/s10695-015-0093-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10695-015-0093-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10695-015-0093-2&amp;domain=pdf


Introduction

Schizophrenia is a neurodevelopmental disorder,

which afflicts about 1 % of the human population

worldwide, and is caused by both genetic and envi-

ronmental factors (McGrath et al. 2004; van Os and

Kapur 2009). Atypical and typical antipsychotics

differ in parts considerably regarding their clinical

and side-effects profile (Heiser et al. 2007). Typical

antipsychotics (for example, haloperidol) alleviate

psychotic symptoms, as hallucinations and delusions,

but are also associated with a high incidence of

extrapyramidal symptoms (EPS), due to the blockade

of dopamine D2 receptors (Crossley et al. 2010).

Furthermore, they are less effective at reducing the

incidence of negative symptoms such as apathy and

poor social functioning, nor do they have significant

effects on cognitive deficits of the illness. Over the

past decade, atypical (second-generation) antipsy-

chotics (for example, sulpiride and olanzapine) have

been increasingly used in the treatment of schizophre-

nia in preference to ‘conventional’ typical drugs

(Crossley et al. 2010; Meltzer 2013). Atypical

antipsychotics produce minimal EPS at clinically

effective doses and, although less potent in blocking

central D2 receptors, have affinity for a wide range of

other receptors including dopaminergic D1 and D4,

serotonergic 5-HT2A and 5-HT6, adrenergic a1, his-
taminergic H1 and muscarinergic M1 (Meltzer 2013).

Haloperidol is a representative typical antipsy-

chotic drug and has potent dopamine receptor antag-

onistic activity (Ishida et al. 2009). However, atypical

antipsychotics (such as, sulpiride and olanzapine) have

been developed and represent important advances for

the therapy of schizophrenia and other psychotic

disorders (Meltzer et al. 2002). Their main advantages

include better tolerability, especially regarding

extrapyramidal symptoms, efficacy in a wider range

of symptoms (Volavka et al. 2002) and increase in

quality of life (Karow and Naber 2002). Drug therapy

for schizophrenia aims to reduce symptoms in the

acute phase and maintain long-term symptomatic

remission during periods of stabilization (Pani 2009).

Despite intensive research, the etiology of schizophre-

nia remains puzzling. The role of extracellular purines

and purinoreceptors in the pathophysiology of several

neurological disorders is the focus of a rapidly expanding

area of research.ATP is a fast excitatory neurotransmitter

co-released with other neurotransmitters in the central

nervous system (CNS) (Burnstock 2009). The inactiva-

tion of ATP-mediated signaling is exerted by ectonu-

cleotidases, which include the nucleoside triphosphate

diphosphohydrolase (NTPDase) family and an ecto-50-
nucleotidase (Massé et al. 2006; Zimmermann 2001).

Indirect findings propose that alterations involving the

purinergic system could be implicated in the schizophre-

nia, since adenosine, the final product of ectonucleotidase

cascade, plays a modulatory role in dopaminergic and

glutamatergic systems (Lara and Souza 2000; Lara et al.

2006). Extracellular adenosine concentrations can be

regulated by neural cell uptake through bidirectional

nucleoside transporters followed by phosphorylation to

AMP by adenosine kinase, or deamination to inosine by

ADA (Franco et al. 1997; Fredholm et al. 2005;

Rosemberg et al. 2007). This ecto-ADA is colocalized

with adenosine A1 and A2B receptors, being essential for

controlling P1 signaling (Herrera et al. 2001; Saura et al.

1998). Additionally, it has been shown that adenosine

A2A receptors reduce the affinity of dopaminergic D2

receptors for dopamine, a probable mechanism underly-

ing the antipsychotic-like profile of adenosine agonists

(Cunha et al. 2008; Wardas 2008).

Zebrafish is a promising vertebrate model for

studying human diseases and drug-related mecha-

nisms (Gerlai et al. 2000; Morris 2009). Ionotropic

P2X receptors have already been characterized in this

species (Kucenas et al. 2003) as well as the expression

of adenosine A2 receptors in developing zebrafish

embryos (Boehmler et al. 2009). Moreover, studies

from our laboratory demonstrated the presence of

ectonucleotidase and ADA activities in zebrafish brain

(Rico et al. 2003; Rosemberg et al. 2008; Senger et al.

2004). Previous study showed that antipsychotics

inhibited in vitro NTPDase activities in zebrafish brain

(Seibt et al. 2009), suggesting that these enzymes

might be sensitive to these drugs. Thus, the purpose of

this study was to investigate the acute effects of typical

and atypical antipsychotics on ectonucleotidase and

ADA activities in zebrafish brain and to evaluate their

gene expression pattern analysis.

Experimental procedures

Animals

Wild-type adult zebrafish (Danio rerio) of both sexes

were obtained from a specialist supplier (Redfish

1384 Fish Physiol Biochem (2015) 41:1383–1392

123



Agroloja, RS, Brazil). Animals were kept at a density

of up to five animals per liter in 50-L housing tanks

containing tap water previously treated with Tetra’s

AquaSafe� (to neutralize chlorine, chloramines, and

heavy metals present in the water that could be

harmful to fish) and continuously aerated (7.20 mg

O2/L) at 25 ± 2 �C under a 14-/10-h light/dark

photoperiod. Animals were acclimated for at least

2 weeks before the experiments. They were fed three

times a day with TetraMin Tropical Flakes fish food�.

The procedures were previously approved by the

Animal Ethics Committee of the Pontifical Catholic

University of Rio Grande do Sul (PUCRS) under

license number CEUA 09/00135.

Chemicals

Sulpiride, haloperidol, olanzapine, nucleotides, ade-

nosine, Trizma base, EDTA, EGTA, sodium citrate,

Coomassie Blue G, bovine serum albumin, malachite

green, ammonium molybdate, polyvinyl alcohol,

nucleotides and calcium chloride were purchased

from Sigma (St. Louis, MO, USA). Magnesium

chloride, phenol and sodium nitroprusside were pur-

chased from aqq1 Merck (Darmstadt, Germany).

TRIzol, SuperScriptTM III First-Strand Synthesis

SuperMix, Taq Platinum, GelRed and low DNA mass

ladder were purchased from Invitrogen (Carlsbad, CA,

USA). All other reagents used were of analytical

grade.

Drug treatments

For the treatment, fish were transferred to 1-L

aquariums and exposed to water containing sulpiride

(250 lM), olanzapine (100 lM) and haloperidol

(9 lM) for 2 h. The haloperidol dose and time of

treatment in vivo were chosen based on previous

studies in zebrafish (Giacomini et al. 2006). The doses

of sulpiride and olanzapine used in this study were

chosen according to our previous study (Seibt et al.

2010).

Preparation of soluble and membrane fractions

Zebrafish were cryoanesthetized and immediately

euthanized by decapitation, and whole brains dis-

sected. For each sample, five zebrafish brains were

pooled and then homogenized in a glass–Teflon

homogenizer according to the protocol for each

enzyme assay. For NTPDase and ecto-50-nucleotidase
assays, zebrafish brains were homogenized in 60 vol.

(v/w) of chilled Tris–citrate buffer (50 mM Tris–

citrate, 2 mMEDTA, 2 mMEGTA, pH 7.4). For ADA

experiments, brainswere homogenized in 20 vol. (v/w)

of chilled phosphate-buffered saline (PBS), containing

2 mM EDTA and 2 mM EGTA, pH 7.4. The brain

membranes were prepared as described previously by

Barnes et al. (1993). In brief, the homogenates were

centrifuged at 8009g for 10 min and the supernatant

fraction was subsequently centrifuged for 25 min at

40,0009g. The resultant supernatant and the pellet

obtained corresponded to the soluble and membrane

fractions, respectively. For soluble ADA activity

experiments, the supernatant was collected and kept

on ice for enzyme assays. The pellets of membrane

preparations were frozen in liquid nitrogen, thawed,

resuspended in the respective buffers and centrifuged

for 20 min at 40,0009g. This freeze–thaw–wash

procedure was used to ensure lysis of the brain vesicle

membranes. The final pellets were resuspended and

used for enzyme assays. All samples were maintained

at 2–4 �C throughout preparation.

Adenosine deaminase assays

Ecto- and cytosolic-ADA activities were determined

as described previously (Rosemberg et al. 2008). The

brain fractions (5–10 lg protein) were added to the

reaction mixture containing 50 mM sodium phosphate

buffer (pH 7.0) and 50 mM sodium acetate buffer

(pH 5.0) for soluble and membrane fractions, respec-

tively, in a final volume of 200 lL. The samples were

preincubated for 10 min at 37 �C, and the reaction was
initiated by the addition of substrate (adenosine) to a

final concentration of 1.5 mM. The reaction was

stopped after 75 min (soluble fraction) and 120 min

(membrane fraction) by the addition of 500 lL
phenol–nitroprusside reagent (50.4 mg of phenol and

0.4 mg of sodium nitroprusside/mL). Adenosine

deaminase activity was determined spectrophotomet-

rically by measuring the ammonia produced over a

fixed time using a Berthelot reaction as previously

reported (Weisman et al. 1988). In order to correct for

non-enzymatic hydrolysis of the substrates, controls

were employed with the addition of the enzyme

preparation after mixing with phenol–nitroprusside

reagent. The reaction mixtures were immediately
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added to 500 lL of alkaline-hypochlorite reagent

(sodium hypochlorite to 0.125 % available chlorine,

in 0.6 M NaOH) and vortexed. Samples were incu-

bated at 37 �C for 15 min, and the colorimetric assay

was carried out at 635 nm. Incubation times and

protein concentrations were chosen in order to ensure

the linearity of the reactions. Specific activity was

expressed as nmol of NH3 min-1 mg protein-1. The

ADA activity was expressed as nmol NH3 min-1 mg-1

of protein. All enzyme assays were carried out on at

least four separate experiments, with each one per-

formed in triplicate.

Ectonucleotidase assays

NTPDase and 50-nucleotidase assays were performed

as described previously (Rico et al. 2003; Senger et al.

2004). Zebrafish brain membranes (3 lg protein for

NTPDase and 5 lg protein for 50-nucleotidase) were
added to the reaction mixture containing 50 mM

Tris–HCl (pH 8.0) and 5 mMCaCl2 (for the NTPDase

activity) or 50 mM Tris–HCl (pH 7.2) and

5 mM MgCl2 (for the 50-nucleotidase activity) in a

total volume of 200 lL. The samples were preincu-

bated for 10 min at 37 �C before starting the reaction

by the addition of substrate (ATP, ADP or AMP)

to a final concentration of 1 mM. The reaction was

stopped after 30 min with 200 lL trichloroacetic acid

at a final concentration of 5 %. The samples were

chilled on ice for 10 min, and 1 mL of a colorimetric

reagent composed of 2.3 % polyvinyl alcohol, 5.7 %

ammonium molybdate and 0.08 % malachite green

was added in order to determine the inorganic

phosphate (Pi) released (Chan et al. 1986). The Pi

release was quantified spectrophotometrically at

630 nm, and the specific activity was expressed as

nmol Pi min-1 mg protein-1. In order to correct for

non-enzymatic hydrolysis of the substrates, controls

were used with the addition of the enzyme preparation

after the addition of trichloroacetic acid. All enzyme

assays were carried out on at least four separate

experiments, with each one performed in triplicate.

Protein determination

Protein was measured using Coomassie Blue (Brad-

ford 1976), and bovine serum albumin was used as

standard.

Molecular analysis

For analysis by reverse transcription-polymerase

chain reaction (RT-PCR), zebrafish entpd1, three

different forms of entpd2 (entpd2_mg, entpd2_mq,

entpd2_mv) (Rico et al. 2006), entpd3 (Appelbaum

et al. 2007), ada1, ada2-1, ada2-2 and adal (Rosem-

berg et al. 2007) and b-actin (Chen et al. 2004) primers

were used as described previously. The optimal

annealing temperatures were also tested (Table 1).

TRIzol� reagent (Invitrogen) was employed to isolate

total zebrafish brain RNA in accordance with the

manufacturer’s instructions. RNA was quantified

spectrophotometrically, and samples were adjusted

to 160 ng/lL. cDNA species were synthesized with

the SuperScriptTM First-Strand (Synthesis System for

RT-PCR) kit (Invitrogen) following the supplier’s

instructions. PCRs were performed as described

previously (Rico et al. 2006; Rosemberg et al. 2007).

A negative control was included for each set of PCRs.

PCR products were analyzed on a 1 % agarose gel

containing GelRed� and visualized with ultraviolet

light. The b-actin gene was amplified for normaliza-

tion, and the Invitrogen 1-kb Plus DNA ladder was

used as a molecular marker in order to confirm the

fragment size. The band intensities were measured by

optical densitometry, and the enzyme/b-actin mRNA

ratios were established for each treatment using the

software ImageJ 1.37 for Windows after running all

PCR products in a single gel.

Statistical analysis

For enzyme assays, the data are shown as mean ± SD

of at least four different experiments. For molecular

analysis, the results are expressed as mean ± SEM of

three experiments. A pool of five whole zebrafish

brains was used for each independent experiment.

Data were analyzed by one-way analysis of variance

(one-way ANOVA) followed by Tukey multiple range

post hoc test, considering P B 0.05 as significant.

SPSS 16.0 was used for statistical analysis.

Results

Nucleotidase activities in zebrafish brain membranes

were determined after acute typical or atypical

antipsychotic treatments. The animals were exposed
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to haloperidol (9 lM), sulpiride (250 lM) and olan-

zapine (100 lM) for 2 h. Olanzapine and sulpiride had

no significant effect on ATP hydrolysis in zebrafish

brain. However, haloperidol treatment inhibited ATP

hydrolysis (35 % decrease, P\ 0.05) when compared

to the control group (Fig. 1a). There were no signif-

icant changes in hydrolysis of ADP (Fig. 1a) and AMP

(Fig. 1b) after exposure to all the antipsychotics

tested.

The effect of antipsychotic treatments on ADA

activity was examined in both soluble and membrane

fractions from zebrafish brain (Fig. 2). The results

showed that olanzapine and sulpiride did not alter

ADA activity in either fraction. However, haloperidol

significantly decreased ADA activity from membrane

fraction (a reduction of 38 %, P\ 0.05) when com-

pared to control. In contrast, the soluble ADA activity

was not altered by the drugs at the concentrations

tested.

In order to determine whether the decrease in

NTPDase and ADA activities could be a consequence

of transcriptional control, RT-PCR analysis was

performed when alterations in NTPDase and ADA

activities were observed after haloperidol treatment

(Table 1). The expression patterns after acute

haloperidol treatment are presented (Fig. 3a, b).

Haloperidol exposure led to a reduction in entpd2_mq

(45 % decrease, P\ 0.05), entpd3 (24 % decrease,

P\ 0.05) and adal (33 % decrease, P\ 0.05) mRNA

transcript levels, whereas entpd2_mv, entpd2_mg,

entpd1, ada1, ada2-1 and ada2-2 transcripts were

not affected.

Discussion

Extracellular adenosine levels and the degree of

receptor activation depend on the rate of formation,

Table 1 Primer sequences and PCR amplification conditions

Enzymes Sequences (50–30) Annealing

temperature (�C)
PCR product

(bp)

GenBank

accession

number

entpd1* CCCATGGCACAGGCCGGTTG (forward)

GCAGTCTCATGCCAGCCGTG (reverse)

54 380 AAH78240

entpd2_mg* GGAAGTGTiTGACTCGCCTTGCACG (forward)

CAGGACACAAGCCCTTCCGGATC (reverse)

62 554 XP_697600

entpd2_mq* CCAGCGGATTTAGAGCACGCTG (forward)

GAAGAACGGCGGCACGCCAC (reverse)

62 313 XP_687722

entpd2_mv* GCTCATTTAGAGGACGCTGCTCGTG (forward)

GCAACGTTTTCGGCAGGCAGC (reverse)

62 263 AAH78419

entpd3 TACTTTCTTTGGACAGAGCAACCCTG (forward)

AAGCATATAGCCCAGGGACCAGG (reverse)

62 424 ABR15509

ada1 CAGGTCCATTCTGTGCTGCATGCGTC (forward)

AAGTGTGTGGTATCCGTGCCCAATGC (reverse)

58 283 AAH76532

ada2-1** AAGACAAGGGTTTTAACCTGCCCTAC (forward)

CTCCTTTCTTTGACTTGGCAATGTGC (reverse)

63 554 and 440 AAL40922

ada2-2 CTGAAGATGAAGGAAATCACCCTTTCACC (forward)

TGTCTTCATAAAGCTCTTTCAAACCCTGG (reverse)

54 505 XP_687719

adal TCATTCAAGAGTTTGCGGCAGATGG (forward)

TTGGCTTTCTGAAGTGCAGCGAGC (reverse)

61 328 NP_001028916

b-actin GTCCCTGTACGCCTCTGGTCG (forward)

GCCGGACTCATCGTACTCCTG (reverse)

54 678 AAC13314

* Corresponds to the first two amino acid residues of the protein sequence

** The same primers amplified a truncated ada2-l splice isoform (ada2-1/T)
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diffusion and degradation of adenine nucleotides

(ATP, ADP and AMP) and the nucleoside adenosine

(Brundege and Dunwiddie 1997). In the present study,

there was a significant inhibition of ATP hydrolysis

and adenosine deamination in zebrafish brain after

acute treatment with haloperidol. Considering the

existence of antagonistic intramembrane interaction

between adenosine A2A and D2 receptors and the role

of ectonucleotidases and ADA as the enzyme mem-

bers of the pathway responsible for the production and

degradation of extracellular adenosine, it is important

to clarify the role of these enzymes in schizophrenia

and their interactions with therapeutic agents used in

the management of this disorder. Therefore, this study

investigated the effect of haloperidol, sulpiride and

olanzapine on ectonucleotidase and ADA activities,

followed by the analysis of their gene expression

patterns in zebrafish brain.

Adenosinergic activity may play a role in

schizophrenia, especially because adenosine modulates

several neurotransmitter systems (Burnstock 2008; Lara

et al. 2006). Previous studies have shown that activation

of the adenosine A1 receptor inhibits the release of

several neurotransmitters, such as serotonin, glutamate,

acetylcholine and dopamine, and decreases neuronal

activity by post-synaptic hyperpolarization (Dunwiddie

and Massino 2001). The proposed adenosine dysfunc-

tion in schizophrenia, leading to a synaptic adenosin-

ergic deficit, could be due to receptor alterations or

altered metabolism, i.e., decreased production/release

or increased degradation/uptake of adenosine (Lara

et al. 2006). There has been a growing interest in

purinergic neurotransmission and neuromodulation in

different regions of the brain and spinal cord (Burnstock

2007; North and Verkhratsky 2006), and the involve-

ment of ATP receptors in schizophrenia has been

discussed in relation to reports that antipsychotic drugs,

such as haloperidol, chlorpromazine and fluspirilene,

are able to inhibit ATP-evoked responses mediated by

P2X receptors (Inoue et al. 1996). It was suggested that

ATP might facilitate dopaminergic neurotransmission

and that various antipsychotic drugs suppress dopamin-

ergic hyperactivity through inhibition of P2X receptor-

mediated effects.

Regarding the adenosine involvement in

schizophrenia, there have been reports of adenosine–

dopamine interactions (Cunha et al. 2008; Wardas

2008). For example, it is noteworthy that activation of

adenosine A2A receptors reduces the affinity of

dopaminergic D2 receptors for dopamine, and this is

the probable mechanism underlying the antipsychotic-

like profile of adenosine agonists (Ferré 1997), the

hyperdopaminergic effect of caffeine (Ferré 1997,

2008) and the exacerbation of psychotic symptoms by

Fig. 1 In vivo acute (2 h) effect of haloperidol, sulpiride and

olanzapine on a NTPDase and b 50-nucleotidase activities in

zebrafish brain membranes. Hydrolysis of ATP, ADP and AMP

is determined. Bars represent the mean ± SD of four different

experiments (n = 4), each one performed in triplicate. The

symbol (asterisk) indicates a difference when compared to the

control group. Data are analyzed by one-way ANOVA followed

by Tukey test as post hoc, considering P B 0.05 as significant

Fig. 2 Effect of in vivo acute (2 h) antipsychotic drugs

exposure on soluble and membrane-bound ADA activity from

zebrafish brain. Data are expressed as mean ± S.D. of four

independent experiments (n = 4), each one performed in

triplicate. *Significantly different from the control group (one-

way ANOVA, followed by Tukey’s test as post hoc, P B 0.05)
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caffeine in schizophrenic patients (Lucas et al. 1990).

The demonstration of an increase in basal D2 receptor

occupancy by dopamine in schizophrenic patients

(Abi-Dargham et al. 2000; Seeman et al. 2006) is

compatible with a decreased adenosinergic tone,

which via A2A–D2 receptor interaction increases the

affinity of D2 receptors for dopamine (Ferré 1997).

Moreover, striatal dopamine release is known to be

under tonic inhibition by adenosine acting on presy-

naptic A1 receptors (Borycz et al. 2007; Golem-

biowska and Zylewska 1998), which is in line with the

increased release of dopamine in schizophrenia (Laru-

elle 2000). It was also observed that the ability of

clozapine to induce c-fos expression is blocked by A2A

receptor antagonists (Pinna et al. 1999) and this

antipsychotic also affected the ectonucleotidase path-

way responsible for the formation of ATP-derived

adenosine, which acts on A2A receptors (Lara et al.

2001). Therefore, these observations are consistent

with the importance of the modulation of ectonu-

cleotidase and ADA activities by haloperidol, since

the control of adenosine levels is involved in the

manipulation of activation of the A2A receptor, which,

in turn, might help to restore adequate dopaminergic

signaling. Since extrapyramidal symptoms are com-

monly induced by typical antipsychotics, such as

haloperidol, and atypical drugs (sulpiride and olanza-

pine) are characterized by their lesser occurrence and

less potent in blocking central D2 receptors, the

different response induced by these drugs on ectonu-

cleotidase and ADA activities could differentially

modulate the adenosine levels, which could be

involved in the higher or lower susceptibility to these

undesired effects.

Ozyurt et al. (2007) reported that ADA activity was

significantly increased in the prefrontal cortex of rats

Fig. 3 Effect of haloperidol exposure on NTPDase and ADA

transcripts. The figure shows a b-actin, entpd1, entpd2_mg,
entpd2_mq, entpd2_mv, entpd3 mRNA expression in adult

zebrafish, b b-actin, ada1, adal, ada2-1 and ada2-2 mRNA

expression in adult zebrafish, c the enzyme (entpd1, entpd2_mg,

entpd2_mq, entpd2_mv, entpd3)/b-actin mRNA ratios obtained

by optical densitometry and d the enzyme (ada1, adal, ada2-1

and ada2-2)/b-actin mRNA ratios obtained by optical densit-

ometry. Figures a and b represent a typical result of three

independent experiments, with entirely consistent results. Data

from figures c and d are expressed as mean ± SD of three

independent experiments (n = 3). *Significantly different from

control (P B 0.05, ANOVA followed by Tukey post hoc)
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in an MK-801-induced experimental psychosis model.

Interestingly, chronic treatment with the adenosine

receptor antagonist caffeine, which induces adaptive

changes to a low endogenous adenosine signal,

significantly reduced the hyperlocomotor and amnesic

effects of MK-801 in mice (Dall’Igna et al. 2003; de

Oliveira et al. 2005). ADA activity is involved in the

regulation of adenosine levels in the extracellular

milieu and also interacts with A1 receptors (Franco

et al. 1997). When we analyzed the effect of sulpiride,

haloperidol and olanzapine on ADA activity, only

haloperidol produced a significant inhibition of this

enzyme activity. Furthermore, taking into considera-

tion that the control of the adenosinergic signaling can

also be exerted by adenosine uptake via bidirectional

transporters and by adenosine kinase in mammals

(Boison 2006; Latini and Pedata 2001), further studies

are important to demonstrate the impact of these

mechanisms in the modulation of adenosine levels in

zebrafish.

Drug interaction with biological membranes influ-

ences the bilayer structure, consequently modulating

processes that range from membrane-bound enzyme

activity and receptor binding to membrane permeabil-

ity and transport (Carfagna and Muhoberac 1993).

Various studies have demonstrated that antipsychotic

drugs have high affinity for biological membranes due

to their amphipathic and amphiphilic properties, and

this implies that antipsychotic drugs can interact with

membrane lipid organization. It is known that antipsy-

chotic intercalation in the membrane can alter the

membrane lipid dynamics, possibly leading to mod-

ification of the receptor response (Tessier et al. 2008).

Accordingly, it is possible to hypothesize that changes

in membrane structure induced by haloperidol might

be responsible for the inhibitory effect observed on

NTPDase and ADA activities in zebrafish brain

membranes, which could not be induced by sulpiride

and olanzapine.

Another possibility is that the inhibitory effect of

haloperidol on NTPDases and ADA may occur via

transcriptional mechanisms. It is known that treatment

with various classes of antipsychotic drugsmay result in

a common, final pathway of changes in gene expression

in the brain. Our findings demonstrated that animals

submitted to haloperidol treatment presented significant

changes in NTPDase and ADA gene expression

patterns. Haloperidol exposure decreased entpd2_mq

(45 %, P\ 0.05) and entpd3 (24 %, P\ 0.05) mRNA

transcript levels, whereas entpd2_mv, entpd2_mg and

entpd1 mRNA transcript levels apparently were not

affected. Considering that ATP is the preferential

substrate for NTPDase2 and NTPDase3 (Zimmermann

2001), it is possible to suggest that the decrease in the

mRNA transcript levels for entpd2_mq and entp3 is

related to the decrease in ATP hydrolysis observed after

haloperidol treatment. Previous work from our group

has already revealed the expression pattern of ADA-

related genes (ada1, ada2a, ada2b and adal) in

zebrafish brain (Rosemberg et al. 2007). In this study,

haloperidol treatment significantly decreased mRNA

transcript levels for adal (33 %, P\ 0.05), but ada1,

ada2-1 and ada2-2 did not change, suggesting that the

observed alteration in ADA activity might be related to

changes in the gene expression level.

Extracellular nucleotides and nucleosides are

important signaling molecules that require effective

mechanisms for their signal regulation (Yegutkin

2008). This regulation is exerted by a broad range of

nucleotide-degrading and interconverting extracellu-

lar enzymes (Abbracchio et al. 2009; Zimmermann

2006). Our findings show that a typical antipsychotic

drug, such as haloperidol, might modulate the ectonu-

cleotidase and ADA pathway, an important source of

extracellular adenosine. These results indicate that

extracellular adenosine metabolism might be a phar-

macological target for this class of drugs.
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